
Appendix

6.1. Proofs for Section 4

Before we prove Theorem 4.1, we first recap the b-transportation problem. Given a bipartite graph
B(V 0, E0), and a required load value bu � 0, 8u 2 V 0, a b-transportation is an assignment
xuv � 0 to the edges of the bipartite graph such that

P
v2�(u) xuv = bu for all u 2 V 0. Hence,

it can be thought of as a fractional b�matching problem. Rado characterized the existence of a
b�transportation in bipartite graphs using the following result
Theorem 6.1. Rado, 1948 [37] Let B(V 0, E0) be a biparite graph. Then there exists a b-
transportation for B if and only if b(C) � 1

2b(V
0) for each vertex cover C of B.

In addition, we need the following lemma on the dense decomposition properties.
Lemma 6.2. For a dense decomposition S1, ..., Sk of G with densities �1, ...,�k obtained by Algo-

rithm 1, we have: (i) �1 > �2 > ... > �k � 1
2 , (ii) For S ✓ Si, we must have E(S,Ui) � �i |S|.

Proof: (1): Suppose for the sake of a contradiction that this is not the case, and let i be the first
index where �i � �i�1. Then consider the set Si�1 [ Si when the algorithm selected Si�1. We
have that

�0 =

E(Si�1 [ Si) + E(Si�1 [ Si,
S

1t<i�1
St)

|Si�1 [ Si|
Note that Sj are disjoint by construction. So we have the simplification

�0 =

E(Si�1) + E(Si) + E(Si�1,
S

1t<i�1
St) + E(Si,

S
1t<i

St)

|Si�1|+ |Si|
=

�i�1 |Si�1|+ �i |Si|
|Si�1|+ |Si|

� �i�1

If �0 = �i�1 then this would be a contradiction to the maximality of Si�1. If �0 > �i�1 then that
would be a contradiction that Si�1 was the densest subgraph when it was chosen. Finally, �k � 1/2
is clear, the minimum density for a connected component is that of just a single edge which has
density 1

2 .

(2): Suppose for the sake of a contradiction that this is not the case for some Si and S ⇢ Si, then
consider the set Si � S. Then we have that

E(Si � S) + E(Si � S,Ui�1)

|Si � S| =
E(Si) + E(Si, Ui�1)� E(S,Ui)

|Si|� |S| >
�i|Si|� �i|S|
|Si|� |S| = �i

A contradiction to optimality of Si.

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1 We construct a bipartite graph B(V 0, E0) as follows. V 0 = L0[R0, where the
left side vertices L0 = V (G) and the right side vertices are the edges R0 = E(G). We set bu = �u

for u 2 L0, and be = 1 for e 2 R0. We connect a vertex i 2 L0 to e 2 E0 if i is incident on e in G. It
is clear that a b�transportation for B induces a feasible solution for LP 4.2. We will now show that
there is a feasible b�transport using Theorem 6.1. First, note that b(V 0) =

⇣Pk
i=1 �i|Si|

⌘
+m⇥ 1

But note that m =
Pk

i=1 �i|Si| (as each edge in G gets counted exactly once) which implies that
1
2b(V

0) =
Pk

i=1 �i|Si|. Now we will show that any vertex cover C of the bipartite graph must
satisfy b(C) �

Pk
i=1 �i|Si| which would imply the theorem. Let CL = C \ L0 and CR = C \ R0

be the vertices in the vertex cover on the left and right respectively. Further, subdivide CL, CR into
CL1, ..., CLk and CR1, ..., CRk where CLi = CL \ Si and CRi = CR \ (E(Si)[E(Si,

S
t<i St)).

See Figure 6.3.

Consider S1 �CL1, we must have that E(S1 �CL1) +E(S1 �CL1, CL1) � �1 |S1 � CL1| using
Lemma 6.2. But note that E(S1 � CL1) [ E(S1 � CL1, CL1) are precisely the edges that are not
covered by CL1 and hence must be covered by CR1, so it must be that E(S1 � CL1) [ E(S1 �
CL1, CL1) ✓ CR1 which implies |CR1| � |E(S1 � CL1)|+ |E(S1 � CL1, CL1)| � �1|S1 � CL1|
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Figure 6.3: B(V 0, E0) bipartite graph in Proof of Theorem 4.1. The colored vertices are the vertex
cover C. The red vertices are CL1 , the blue vertices are CL2 , and the yellow vertices are CLk .
Similarly, the orange vertices are CR1 , the purple vertices are CR2 , and the green vertices are CRk .

So we have that b(CL1[CR1) � �1|CL1|+�1|S1�CL1| = �1|S1|. This analysis holds inductively
to show that b(CLi [ CRi) � �i|Si|. Summing up, we obtain the following,

b(C) =
kX

i=1

b(CLi [ CRi) �
kX

i=1

�i|Si| =
1

2
b(V 0).

This finishes the proof.

Fujishige proved Theorem 4.3 [34] and more general versions of his theorem are also known (see
[50]). Here we give a proof for the sake of completeness following the algorithmic definition of the
decomposition.
Proof of Theorem 4.3: (1): Clearly bu � 0 for all u 2 V . Consider an arbitrary set R ✓ V and let
Ri = Si \R. Since Ri ✓ Si and Si is the densest set chosen during iteration i, then it must be that

f(Ri [ S1 [ ... [ Si�1)� f(S1 [ ... [ Si�1)

|Ri|
 f(Si [ S1 [ ... [ Si�1)� f(S1 [ ... [ Si�1)

|Si|
= �i

And hence we have that

b(R) =
X

u2R

bu =
kX

i=1

�i|Ri| �
kX

i=1

(f(Ri [ S1 [ ... [ Si�1)� f(S1 [ ... [ Si�1))

�
kX

i=1

(f(Ri [R1 [ ... [Ri�1)� f(R1 [ ... [Ri�1)) = f(R)

Where the second inequality is by supermodularity of f and the last equality is because of the
telescoping sum. Finally, note the chain of inequalities above hold with equality if R = V since
Ri = Si. This implies b(V ) = f(V ).
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Problem Algorithm Convergence (Current worst
case number of iters.)

Time/iter Iteration
paral-
lelizable?

DSG-LD Frank-Wolfe based
Algorithm

O(m�(G)
✏2 ) iterations for ✏-load

vector
O(m) Yes

DSG-LD Greedy++ Load vector not proven to con-
verge, but experimentally does.

O(m log n) No

DSG-LD MWU based Algo-
rithm

O(m�(G)
✏2 ) iterations for ✏-load

vector
O(m) Yes

DSG-LD FISTA based Algo-
rithm

O(
p

m�(G)

✏ ) iterations for ✏-
load vector

O(m) Yes

DSG Bahmani et al. [30]
primal-dual

O( logm
✏2 ) for (1� ✏) multiplica-

tive DSG.
O(m) Yes

DSG Boob et al. [31]
via mixed packing-
covering LP solver

Õ(m�(G)
✏ ) for (1 � ✏) multi-

plicative DSG.
NA NA

DSG Greedy++ O(�(G)
�⇤✏2 ) for (1� ✏) multiplica-

tive DSG
O(m log n) No

DSG Chekuri et al. [2] via
approximate flow

O( logm
✏ ) for (1� ✏) multiplica-

tive DSG.
Õ(m) No

DSG Frank-Wolfe based
Algorithm

O(mn�(G)
✏2 ) for ✏ additive DSG

using fractional peeling from
this paper.

O(m) Yes

DSG FISTA based Algo-
rithm

O(
p

mn�(G)

✏ ) for ✏ additive

DSG using fractional peeling
from this paper.

O(m) Yes

Figure 6.4: Summary of currently known bounds on different iterative algorithms for DSG and
DSG-LD including results in this paper.

(2) : Let b⇤u = �u with b⇤ 2 Bf from (1). Let b 2 Bf be a lexicographically minimal base. We will
prove that b = b⇤ by inductively proving that for all i, bu = �u if u 2 Si. Consider i = 1 for the
base case. Since b 2 Bf we have

b(S1) � f(S1) = �1 |S1|

Hence the maximum load in b is at least �1. Since the maximum load in b⇤ is �1, then it forces
bu = �u for u 2 S1. Now we proceed inductively, assuming that bu = �u for u 2 S1 [ ... [ Si.
Since b 2 Bf ,

i+1X

h=1

b(Sh) = b(S1 [ ... [ Si+1) � f(S1 [ ... [ Si+1) =
i+1X

h=1

(f(S1, ..., Sh)� f(S1, ..., Sh�1))

= f(S1 [ ... [ Si+1)� f(S1 [ ... [ Si)) +
iX

h=1

b(Sh) = �i+1 |Si+1|+
iX

h=1

b(Sh)

This implies that b(Si+1) � �i+1 |Si+1|. We have b⇤u = bu for u 2 S1 [ ... [ Si by induction
hypothesis. Since b⇤u = �i+1 for all u 2 Si+1 and b(Si+1) � �i+1|Si+1| it follows that bu = �i+1

for u 2 Si+1 for otherwise b is not lexicographically minimal.

Hence, by induction, bu = �u for all u 2 V .

(3): The function g(b) =
P
u2V

b2u is strictly convex. Bf is a bounded polyhedron and hence a closed

convex set. In addition, we showed that Bf is feasible. Any strictly convex function with a feasible
convex constraint set must have a unique solution, and so b⇤ must be unique.
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Now consider the constraint polytope C defined as the intersection of the following k inequalities

C = {b 2 R|V | : 81  r  k,
rX

l=1

b(Sl) �
rX

l=1

�l|Sl|}

Recall if b 2 Bf then
rX

i=1

b(Si) = b(S1[...[Sr) � f(S1[...[Sr) =
rX

i=1

f(S1[...[Si)�f(S1[...[Si�1) =
rX

i=1

�i |Si|

And so b 2 Bf =) b 2 C. Hence minb2C g(b)  minb2Bf g(b).

We aim to prove that for the unique optimal solution of g under C, all inequalities are active (i.e hold
with equality). Let b be the optimal solution of g under C. From (1), we have that b(V ) = f(V )
and so the last inequality has to be active. Now suppose for the sake of contradiction that not
all inequalities are active, and let i be the first index of an inequality that is not active. SincePi�1

h=1 b(Sh) =
Pi�1

h=1 �h |Sh| and
Pi

h=1 b(Sh) >
Pi

h=1 �h |Sh|, then it must be that b(Si) >
�i|Si|. Similarly, let j > i be the first index of an inequality after i which is active (this must exist
since the last inequality holds with equality). Then it must be that b(Sj) < �j |Sj |. Now let

✏ = min

 
min
it<j

 
tX

r=1

b(Sr)�
tX

r=1

�rsr

!
,
1

2
(�i � �j)

!
> 0

be the minimum “excess” from inequalities i to j � 1 and half the difference between �i,�j . Since
b(Si) > �i|Si|, then there exists bu > �i for u 2 Si. Similarly, there exists bv < �j for v 2 Sj . Now
consider the solution of b0 where b0u = bu � ✏, b0v = bv + ✏, and b0x = bx otherwise. The solution is
feasible in C because inequalities 1, ..., i�1 stay the same (no bu, bv variable), inequalities i, ..., j�1
stay feasible (LHS decreases by ✏), and the effect by inequality j is cancelled. However, we have
that since bu > �i > �j > bv and ✏  1

2 (�i � �j) that (bu � ✏)2 + (bv + ✏)2 < b2u + b2v So the
solution b0 has a strictly smaller cost, contradicting optimality of b.

This implies that all inequalities have to hold with equality in an optimal solution. So
P

u2Si
bu =

�i|Si|. The sum of squares is minimized if and only if all variables have equal weight, and so it must
be that bu = �i = �u for all u 2 Si. This shows g(b) is minimized at bu = �u under C. But recall
from (1) that b 2 Bf , and so b is the unique optimal solution for Problem 4.7

We now show the equivalence of the two LPs 4.2 and 4.6 for DSG.
Proof of Theorem 4.4: Suppose b 2 Bf . Then b(V ) = m and b(S) � |E(S)| for all S ✓ V . We
need to prove the existence of x � 0 such that xuv + xvu = 1 for all edge {u, v} 2 E and such that
the total load on each vertex is at most b. The idea from the proof of Theorem 4.1 goes through to
show this. The only fact we used in the proof of Theorem 4.1 is that b(S) � |E(S)| for certain sets
S ✓ V and b(V ) = m which hold as we mentioned.

Suppose x, b satisfy the constraints of 4.2. Since xuv + xvu = 1 for each edge {u, v}, for any
S ✓ V ,

b(S) =
X

u2S

bu =
X

u2S

X

v2�(u)\S

xuv +
X

u2S

X

v2�(u)\S

xuv � |E(S)|

Similarly, b(V ) =
P

u2V

P
v2�(u) xuv = m = |E(V )|. Thus b 2 Bf .

6.2. Details of FISTA based Algorithm

Proof of Lemma 5.1 rfuv = 2
P

w2�(u) xuw. So for x, y 2 R2m,

krf(x)�rf(y)k2 = 4
X

uv2ord(E)

0

@
X

w2�(u)

xuw � yuw

1

A
2

= 4
X

u2V

X

v2�(u)

0

@
X

w2�(u)

xuw � yuw

1

A
2

 4�(G)
X

u2V

0

@
X

w2�(u)

xuw � yuw

1

A
2

 4�(G)2
X

u2V

X

w2�(u)

(xuw � yuw)
2 = 4�(G)2 kx� yk2

Where the last inequality holds by Cauchy-Schwarz inequality.
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Proof of Lemma 5.2 Fix u < v and let p = proxh(x). Then we aim to minimize
X

uv2ord(E)

(puv � xuv)
2 =

X

uv2E

�
(puv � xuv)

2 + (1� puv � xvu)
2
�

So it is sufficient to minimize (puv � xuv)2 + (1 � puv � xvu)2 individually for each unordered
edge u < v subject to 0  puv  1. Proving that the described proximal mapping minimizes this
quadratic is a standard exercise so we omit it.

We describe below the full details of the FISTA based algorithm for DSG.

Algorithm 3 FISTA Algorithm for Densest Subgraph
Input is Graph G and number of iterations T . Assume E = E(G) is ordered (so includes (u, v)
and (v, u) for every edge).
� = maxu2G |�(u)| . Maximum Degree
↵ 1

2� . Learning Rate
x(0)(u, v) = 1 8(u, v) 2 E, u < v
x(0)(v, u) = 0 8(u, v) 2 E, u < v
y(0) = x(0)

for t 2 [1, T ] do
b(t)(u) = 0 8u 2 V . Calculate Load with respect to y(t�1)

for u 2 G do
for v 2 �(u) do

b(t)(u) = b(t)(u) + y(t�1)(u, v)

g(t)(u, v) = 0 8(u, v) 2 E . Calculate Gradient with respect to y(t�1)

for (u, v) 2 E, u < v do
g(t)(u, v) = g(t)(u, v) + 2b(t)(u)
g(t)(v, u) = g(t)(v, u) + 2b(t)(v)

z(t)(u, v) = y(t)(u, v)� ↵g(t)(u, v) 8(u, v) 2 E . Descent direction
x(t)(u, v) = 0 8(u, v) 2 E . Calculate New x(t), which is projected descent direction
for (u, v) 2 E, u < v do

diff  z(t�1)(u, v)� z(t�1)(v, u)
if diff � �1 and diff  1 then

x(t)(u, v) diff+1
2

else if diff > 1 then
x(t)(u, v) 1

else
x(t)(u, v) 0

x(t)(v, u) 1� x(t)(u, v)

y(t)(u, v) x(t)(u, v) + t�1
t+2 (x

(t)(u, v)� x(t�1)(u, v)) 8(u, v) 2 E . Calculate New y(t)

return x(T )

6.3. Approximate densest decomposition via fractional peeling

Proof of Theorem 5.5

f(b)� f(b⇤) =
X

u2V

b2u �
X

u2V

�2
u =

kX

i=1

X

u2Si

(b2u � �2
u) =

kX

i=1

X

u2Si

(b2u � �2
i )  µ
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Now let bu = �u + �u, then we have from above that
kX

i=1

X

u2Si

(2�i�u + �2u)  µ

We will first show that
Pk

i=1

P
u2Si

2�i�u � 0. Note that for any l, we have

lX

i=1

X

u2Si

(�i + �u) =
lX

i=1

X

u2Si

bu �
lX

i=1

�i|Si|

Since the edges with both endpoints in S1 [ ...[ Sl get double counted, and xuv + xvu = 1. Which
implies that for all l,

lX

i=1

X

u2Si

�u � 0

Now we prove that for all l, and any a1 > a2 > ... > al � 0

lX

i=1

X

u2Si

�uai � 0

by induction. Observe that it holds for l = 1 since a1
P

u2S1
�u � 0. For l = r, we have that

rX

i=1

X

u2Si

�uai =
r�1X

i=1

X

u2Si

�u(ai � ar) + ar

rX

i=1

X

u2Si

�u � 0 + 0 = 0

By induction. Since �1 > ... > �k by Lemma 6.2, this implies
kX

i=1

X

u2Si

�i�u � 0

Which implies
kX

i=1

X

u2Si

�2u  µ

Now let µ = ✏2, which would imply
kX

i=1

X

u2Si

(bu � �u)
2  ✏2

And hence kb� b⇤k  ✏

6.4. Proof of Theorem 5.6

We first note the running time follows easily from using a heap in the fractional peeling subroutine
to identify the next minimum-load vertex. We focus on proving the approximation factor.

In what follows, refer to Figure 6.5. Let x(0) = x and b(0) = b. Each iteration t = 1, 2, . . . , the al-
gorithm runs fractional peeling over the remaining vertices, with respect to the fractional orientation
given by x(t�1) and the loads given by b(t). This produces a set of vertices Tt. We remove Tt from
the vertex set. x(t) is obtained from x(t�1) by assigning all the edges cut by Tt to the endpoint not in
Tt. That is, for each edge {u, v} cut by Tt in the remaining graph, where u 2 Tt and v /2 Tt we set
x(t)
uv = 0 and x(t)

vu = 1. We let b(t) denote the loads induced by x(t). Note that b(t)u is nondecreasing
for u /2 Tt, and nonincreasing for u 2 Tt. In particular we have b(t)u � b(0)u � �u � " for every
remaining vertex u.

We want to show that for each iteration t, and each vertex u 2 Tt, the density of Tt is at least
�u � "(1 +

p
n).
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S1

S2

Sk

Figure 6.5: Let S1, ..., Sk be as shown in the figure. Suppose we are in iteration t. The dark vertices
represent the vertices that were deleted in previous rounds (i.e T1 [ ... [ Tt�1), while the white
vertices are those that were not deleted yet. The sum of �(t)2 only includes the black edges leaving
S1, S2 to “outside” white points. The red edges are all examples of edges not included in the sum.

First, for each iteration t, and each index i from the dense decomposition, let �(t)i denote the sum,

�(t)i =
X

u2S1[···[Si
v2Si+1[···[Sk

v/2T1[···[Tt

x(t)
uv .

At a high-level, �(t)i represents the sum of loads in S1 [ · · · [ Si from edges cut by S1 [ · · · [ Si,
except omitting the edges where the endpoint outside S1 [ · · · [ Si was taken in one of the first t
iterations.

We claim that for each index i and iteration t, we have

�(t)i  "
p
n.

We first observe that �(t)i is non-increasing in t. Indeed, fix t, and consider a term x(t)
uv appearing in

the sum. (That is, u 2 S1 [ · · · [ Si, v 2 Si+1 [ · · · [ Sk, and v /2 T1 [ · · · [ Tt.) In the (t+ 1)th
iteration, we select a new set Tt+1 and x(t+1)

uv is bigger than x(t)
uv only if v 2 Tt+1. But in this case,

x(t+1)
uv is omitted from the sum for �(t)i .

Since �(t)i is non-increasing in t, suffices to prove the claim for t = 0, when b(0) = b and x(0) = x.
To this end, observe that

X

u2S1[···[Si

bu = �(0)i + |E(S1 [ · · · [ Si)| = �(0)i +
X

u2S1[···[Si

�u.

Rearranging and applying the Cauchy-Schwarz inequality, we have

�(0)i =
X

u2S1[···[Si

(bu � �u) 
p
n

s X

u2S1[···[Si

(bu � �u)2  "
p
n.

This establishes the inequality for t = 0, hence all t by monotonicity.

Let u 2 Tt and suppose u 2 Si. We want to show that Tt has density at least �u � "(1 +
p
n).

Let v be the first vertex in S1 [ · · · [ Si peeled in the tth iteration; in particular, �v � �u. Recall
that just before v is peeled, v has the lowest load remaining of any vertex, and the sum of loads of
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the remaining vertices counts the total number of edges in Tt. Thus the load at v is a lower bound
on the density of Tt. Additionally, before v is peeled, any decrease in v’s load is from edges {v, w}
where w 2 Si+1 [ · · ·[ Sk and w /2 T1, . . . , Tt�1. Thus v has load at least b(t�1)

v � �(t�1)
i . Putting

everything together, we conclude that Tt has density at least

b(t�1)
v � �(t�1)

i � b(0)v � "
p
n � �v � "(1 +

p
n),� �u � "(1 +

p
n),

as desired. This completes the proof.

6.5. Hypergraphs

The projective results for DSG can be generalized for DSS. We say a supermodular function is
projectable if given a vector y 2 R|V |, there is a fast oracle that can calculate proxf (y) =

min
x2Bf

kx� yk22.

Theorem 6.3. Given f , a projectable supermodular function, and an initial load vector b(0) for the

guess of b⇤u = �u, there exists an algorithm that returns an approximate load vector b̂ that uses

O(
kb(0)�b⇤k

✏ ) oracle calls to the projection oracle, and satisfies kb� b⇤k  ✏ for all u 2 V .

Proof: Consider applying FISTA [40] on Problem 4.7 where we have unconstrained optimization
problem

P
u2V b2u + h(b) where h(b) is an indicator function for Bf . We have that rf(b) = 2b,

and hence the Lipschtiz constant of rf is 2. Applying Lemma 5.3 with a learning rate of 0.5, we
get the desired result.

A hypergraph G = (V,E) generalizes the idea of a graph by allowing edges to have size greater
than two. For example, if V = {a, b, c, d}, then a potential “edge” is e = {a, b, d}. The rank r of
a hyper graph is maxe2E |e|. For practical purposes, r is generally “small”. Given a hypergraph
G = (V,E) we let E(S) denote the set of all hyperedges in E that are fully contained in S, that
is E(S) = {e 2 E | e ✓ S}. One can easily verify that the function f : 2V ! R+ where
f(S) = |E(S)| is a monotone nonnegative supermodular function.

We can generalize the approach for DSG to hypergraphs as follows. Charikar’s LP relaxation can be
generalized to hypergraphs. Here we focus on the dual. For e 2 E and u 2 e, we define a variable
xe,u which corresponds to the load that e assigns to u. The LP requires each e to be assigned to its
end points and hence we have a constraint

P
u2e x(e, u) = 1. The load on u, denote by the variable

bu, is
P

e:u2e x(e, u). The goal is to minimize maxu2V bu. Similar to Theorem 4.4, one can prove
in the same way that b 2 Bf if and only if 9x that induces b. Now given a vector y that induces b, we
can project it on Bf by finding xe,u that minimizes

P
u2e(xe,u � ye,u)2 subject to

P
u2e xe,u = 1

and xe,u � 0. This is known as the simplex projection and it has a simple closed form solution
(See [51] for the basic algorithm, and [52] for a recent distributed variant of the algorithm). The
algorithm in this case would take O(|e| log |e|) time for each e 2 E to do the projection, and hence
overall the projection step takes O(p log r) for all edges where p =

P
e2E |e| is the representation

size of the hypergraph G (p corresponds to m in graphs). We can apply FISTA analysis in a very
similar fashion to that for graphs to obtain the following theorem.

Theorem 6.4. For a hyper graph G with rank r, maximum degree �(G) (i.e

maxu2V |{e : u 2 e}| = �(G)), and size p =
P

e2E |e|, there exists an algorithm that

takes O(
p

r�(G)p

✏ ) iterations, each needing O(p log r) time, to compute an ✏-approximate load

vector b̂ satisfying

���b̂� b⇤
���  ✏.

6.6. Approximate load vector via minimum-cost flow

We set up the problem as a quadratic min cost flow problem. Namely, we will set the flow network
V = {s}[ {av : v 2 V }[ {ae : e 2 E}[ {t}. We add an edges to E of the form (s, av) of capacity
degG(v). We add an edge (av, ae) is v if one of the endpoints of e of capacity 1. Finally, we add
an edge (ae, t) of capacity 1 for all edges e 2 E. See Figure 6.6. One can verify that the maximum
flow has cost m = |E| using max flow min cut theorem. Let F be the set of valid maximum flows
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Figure 6.6: Quadratic min cost flow network

for (V, E). We are interested in the problem of

minimize
X

u2V

f(s, au)
2

subject to f 2 F
(6.1)

One can verify that the optimal flow for Problem 6.1 gives the solution for Problem 4.3; any flow
f 2 F corresponds to a solution of the same cost to Problem 4.3 and vice versa. Hence the optimal
flow f⇤ is the dense decomposition vector.

Observe that this flow network has size O(m). We will use Theorem 10.14 from [43]. Define
h(s,avi )

(x) = x2 and he(x) = 0 otherwise for e 6= (s, avi). These are functions which are sums of
Õ(1) p�norms. Hence, in m1+o(1) time, we can compute a min cost flow f of value |E|. Setting
C = 3 in the Theorem, we get that
X

u2V

f(s, au)
2 

X

u2V

f⇤(s, au)
2+O(exp (� log3 m)) = OPT+

1

mlog2 m
 OPT+

1

m4
 OPT+✏2

Note that the smallest ✏ we care about is ✏ � n�2 (since any smaller epsilon wouldn’t change the
value from setting ✏ = n�2). The chain of inequalities hold for reasonably large m (say m � 5).
Hence f is an ✏-approximate load vector.

6.7. Further Details of Experimental Section

6.7.1. More details on MWU and FRANK-WOLFE based algorithms

We described the theoretical aspects of the FRANK-WOLFE and MWU algorithms in Sections 5.5.
Here we discuss some concrete details of our implementation.

We use the FRANK-WOLFE implementation in the context of DSG as described by Danisch et al.

[3]. The algorithm maintains an edge assignment vector that it updates in each iteration t. The edge
assignment vector x(t�1) at the start of iteration t naturally induces a vertex load vector bt�1. We
loop over each edge, and set y(t)uv = 1, y(t)vu = 0 if b(t�1)

u < b(t�1)
v and y(t)uv = 0, y(t)vu = 1 otherwise.

Finally, we let x(t) = x(t�1) + 2
t+2y

(t) which itself induces a new load vector b(t). Each iteration
takes O(m) time. This is the same implementation as described in the Danisch et al. [3] paper except
that we initialize the starting vector x(0) differently. Danisch et al. initialize x(0)

uv = x(0)
vu = 0.5 while

we initialize it with the edge assignment obtained from running the Greedy algorithm.

There is an alternative way to implement the algorithm without using edge assignment variables.
We maintain a vertex load vector b(t) of size n. Each iteration is implemented as follows. We sort
the vertices u1 < ... < un in ascending order of b(t�1)

u (ties broken arbitrarily). Then, for each ui,
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we set
b(t)u = b(t�1)

u +
2

t+ 2
|uj 2 �(ui) : j > i|

One can verify that the two algorithms are equivalent with a slightly different implementation. This
implementation takes O(n log n) time for the sort, and an O(m) loop over the graph, but does not
have to store an additional array of size 2m for each edge. When n⌧ m, this can make a substantial
difference.

The MWU algorithm can also be implemented in two different ways (one edge based, and one
vertex based). We choose to implement the algorithm in the vertex based approach in comparison
to the FRANK-WOLFE based approach. Specifically, the algorithm maintains a vertex load vector
that it updates in each iteration as follows. In iteration t, it sorts the vertices as u1 < ... < un in
ascending order of b(t�1)

u values. Then, for each ui, it sets

b(t)u = b(t�1)
u +

1

t+ 1
|uj 2 �(ui) : j > i|

We keep track of the edge assignment vector x(t) (that induces b(t)) for the fractional peeling exper-
iment — however, when reporting the running time we do not add this overhead since the algorithm
does not require maintaining the x(t) vector.

6.7.2. Additional data

See the end of the Appendix for enlarged plots of the main paper plots and additional plots for all
datasets.

1. Figure 6.7 shows the density achieved as number of iterations vary for all algorithms on all
datasets when static load sorting is used instead of fractional peeling. Figure 6.8 shows the
effect of adding fractional peeling to all the algorithms.

2. Figure 6.9 shows the time per iteration histogram for all datasets and all algorithms that we
tested.

3. Figures 6.10 and 6.11 show the error plots (i.e sum of
P

u2V b2u) of all algorithms on
all datatasets. Specifically, Figure 6.11 zooms in on the last few iterations to see what is
happening near the end.

4. Figure 6.12 shows the sorted load vector after 100 iterations of FISTA in sorted order,
where a vertex rank is its relative order in terms of its load vector in V , and load is the
value bu. It appears that for each Si, FISTA focuses on adjusting bu for most vertices
in Si, but a few vertices “lag” behind in lower/higher levels, and slowly bubble down as
shown the dataset for CLOSE CLIQUES and ROADNET PA. This gives some intuition on
why fractional peeling does well in practice as these “trailing” vertices will be peeled first
by fractional peeling allowing the dense component to stabilize.

5. Figure 6.13 shows the wall clock time of different algorithms on all 8 datasets. Figure 6.14
shows the same figure but zoomed in on the first 20 percent of the time.
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Figure 6.7: Density based on sorting loads
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Figure 6.8: Density based on Fractional Peeling
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Figure 6.9: Time take per iteration histogram
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Figure 6.10: L2 norm of load vector. See Figure 6.11 for a zoom-in on the last 20 iterations.
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Figure 6.11: Same as Figure 6.10 but zoomed in from Iteration 70 and after.
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Figure 6.12: Scatter plot of sorted load vector. This can be used to approximate the densest at least
k subgraph.
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Figure 6.13: Wall clock time vs Maximum Density. See Figure 6.14 for a zoom in on first few
seconds of each dataset.
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Figure 6.14: Wall clock time vs Maximum Density zoomed in on first few seconds for each dataset.

32


	Introduction
	Technical Contributions
	Densest Subgraph Decomposition and Supermodularity
	LP and QP for DSG and Decomposition
	LP and QP for DSS and densest decomposition

	Solving the Quadratic Program using proximal projections, and rounding
	Fractional Peeling.
	-dense local decomposition
	Projections vs Frank-Wolfe vs MWU for DSG and DSS
	A theoretically fast algorithm for approximate load vector via min-cost flow
	Frank-Wolfe and MWU

	Experimental Evaluation
	Proofs for Section 4
	Details of FISTA based Algorithm
	Approximate densest decomposition via fractional peeling
	Proof of [theo:dense-decomp-approx]Theorem 5.6
	Hypergraphs
	Approximate load vector via minimum-cost flow
	Further Details of Experimental Section
	More details on MWU and Frank-Wolfe based algorithms
	Additional data



