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be included after double-blind review.
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were chosen)? [Yes]
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periments multiple times)? [Yes] Top 5 models that met disentanglement criteria
in Table ??, for the other experiments the best performing model according to the
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(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] The experiment files will be made
public with the code release

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Code link will be included after double-blind review.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Not applicable
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] All data comes from cell lines.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] Not applicable

13



(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] Not applicable

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] Not applicable
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A Appendix

A.1 Benchmarking drug molecule encoders

Enabled by the flexibility of the molecule encoder G, we investigated what impact the architecture
choice has on the performance of chemCPA. For this, we compared multiple pretrained graph-based
models whose weights were frozen during the training. Next to predefined RDKit fingerprints (which
are non-differentiable, and hence not trainable), we included a GCN, MPNN, weave model, GROVER
model, and a JT-VAE.

Table 5 summarises the results of this experiment on the L1000 dataset. The weave model performs
much worse than the others, achieving an r

2-score of only 65 ± 8 on DEGs. While the GCN
disentangles well, it is outperformed by the JT-VAE and GROVER models. All experiments in the
main text were ran across all three best performing models (GROVER, JT-VAE and RDKit), however
due to space constraints we only report RDKit results in the main text.

Table 5: Summary of chemCPA on the L1000 dataset for different molecule encoders G. All models
were trained on the same random split. Reported are the overall disentanglement scores (drug and
cell line) and the r

2-scores on the test set.
Model G Drug Cell line Mean r

2 all Mean r
2 DEGs

GCN 0.08± 0.03 0.17± 0.01 0.92± 0.01 0.81± 0.05
MPNN 0.10± 0.03 0.28± 0.07 0.92± 0.01 0.82± 0.03
GROVER 0.09± 0.03 0.19± 0.04 0.93± 0.01 0.87± 0.01
JT-VAE 0.08± 0.02 0.20± 0.04 0.93± 0.01 0.87± 0.01
RDKit 0.10± 0.04 0.29± 0.13 0.93± 0.01 0.85± 0.03
weave 0.10± 0.03 0.29± 0.09 0.89± 0.02 0.65± 0.08

Table 6 shows the test performance of chemCPA for the nine unseen drugs across the three cell
lines in the transfer learning scenario with identical genes. This is the same experiment as Table 2,
but evaluated across more embedding models. The fine-tuned chemCPA models for GROVER and
RDKit consistently outperform the baseline and their non-pretrained version with RDKit achieving
the highest median score on DEGs. Interestingly, the fine-tuned JT-VAE model is better than the
baseline and other non-pretained chemCPA models but worse than its own non-pretrained version.

Table 6: Performance of pretrained and non-pretrained chemCPA models across the three versions of
the molecule encoder G, for the L1000 to SciPlex3 transfer learning experiment with shared gene
sets. Since drug effects are stronger for high dosages, the scores are evaluated at a dosage value of
10µM.

Model G Type Mean r
2 all Mean r

2 DEGs Median r
2 all Median r

2 DEGs

baseline 0.50 0.29 0.49 0.12

GROVER non-pretrained 0.52 0.32 0.51 0.18
pretrained 0.63 0.47 0.70 0.49

JT-VAE non-pretrained 0.60 0.39 0.68 0.42
pretrained 0.55 0.35 0.55 0.28

RDKit non-pretrained 0.51 0.32 0.47 0.24
pretrained 0.68 0.54 0.75 0.64

In Table 7, we show the same experiment as in Table 3. Again, the pretrained chemCPA model
with an RDKit molecule encoder G perform best. We believe that this can be attributed to two
things. First, the sci-Plex3 data is the first of its kind, and technological noise is still an issue. When
evaluated over the whole training set, the baseline achieves r2-scores higher than 65% for more than
96% of the observations. This sparsity might hinder the more complex perturbation networks P',
which are based on GROVER and JT-VAE, from finding good perturbation representations. We
suspect that the same reason also explains the bad performance of non-pretrained models as these are

15



more susceptible to noise, whereas the fine-tuned models are more robust. Second, the pretrained
embedding h that result from RDKit identifies the histone deacetylation drugs as a distinct cluster,
see Figure 10. Since these compounds show the strongest effect in the sci-Plex3 data, the inductive
bias from RDKit give an explanation for the favourable generalisation performance.

Table 7: Performance of pretrained and non-pretrained chemCPA models across the three versions of
the molecule encoder G on the extended gene set. Since drug effects are stronger for high dosages,
the scores are evaluated at a dosage value of 10µM.

Model G Type Mean r
2 all Mean r

2 DEGs Median r
2 all Median r

2 DEGs

baseline 0.37 0.19 0.16 0.00

GROVER non-pretrained 0.41 0.22 0.28 0.00
pretrained 0.59 0.36 0.75 0.45

JT-VAE non-pretrained 0.40 0.22 0.20 0.00
pretrained 0.51 0.24 0.51 0.00

RDKit non-pretrained 0.46 0.22 0.35 0.00
pretrained 0.69 0.47 0.79 0.62

A.2 Attribute embedding

Table 8: Details on pretrained models for the molecule encoder G.
Molecule encoder G Embedding dim hdrug Pretrained

RDKit 200 –
GROVER 3400 authors
JT-VAE 56 ZINC, L1000, sci-Plex3
GCN 128 PCBA
MPNN 128 PCBA
weave 128 PCBA

A.3 Counterfactual prediction
1. To compute counterfactual predictions, we obtain basal states zi for all control observations

present in the test set. For each combination of drug, dose, and cell line in the test set,
we compute the latent attribute state zattribute and combine it with all zi. Subsequently, we
compute the mean per gene across all predictions and likewise for the real measurements. As
a result, we obtain two n dimensional vectors, where n is the number of genes (977 or 2000),
for which we compute the r

2 score. Taken together, we get one score per combination.

A.4 Additional information on the L1000 experiment
1. For infos on the RDKit sweep and resulting best run, see Table 9 and Table 10.
2. Architectures for best configuration of the perturbation networks P' and adversary classifiers

are presented in Table 11.
3. For details on the performance of the best runs, see Table 12.

Table 9: Fixed Parameters for the RDKit sweep in the L1000 dataset.
Parameter Value

num_epochs 1500
dataset_type lincs
decoder_activation linear
model rdkit
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Table 10: Random parameters for the RDKit sweep in the L1000 dataset.
Parameter Type Values Best config

samples fixed 25 NaN
dim choice {64, 32} 32
dosers_width choice {64, 256, 128, 512} 64
dosers_depth choice {1, 2, 3} 1
dosers_lr loguniform [1⇥ 10�4

, 1⇥ 10�2] 5.61⇥ 10�4

dosers_wd loguniform [1⇥ 10�8
, 1⇥ 10�5] 1.33⇥ 10�7

autoencoder_width choice {128, 256, 512} 256
autoencoder_depth choice {3, 4, 5} 4
autoencoder_lr loguniform [1⇥ 10�4

, 1⇥ 10�2] 1.12⇥ 10�3

autoencoder_wd loguniform [1⇥ 10�8
, 1⇥ 10�5] 3.75⇥ 10�7

adversary_width choice {64, 256, 128} 128
adversary_depth choice {2, 3, 4} 3
adversary_lr loguniform [5⇥ 10�5

, 1⇥ 10�2] 8.06⇥ 10�4

adversary_wd loguniform [1⇥ 10�8
, 1⇥ 10�3] 4.0⇥ 10�6

adversary_steps choice {2, 3} 2
reg_adversary loguniform [5, 100] 24.1
penalty_adversary loguniform [1, 10] 3.35
batch_size choice {32, 64, 128} 128
step_size_lr choice {200, 50, 100} 100
embedding_encoder_width choice {128, 256, 512} 128
embedding_encoder_depth choice {2, 3, 4} 3

Table 11: Presented are the best configurations per molecule encoder from 18 random hyperparamter
samples similar to the one presented in Table 10.

Parameter GROVER MPNN RDKit

dosers_width 512 64 64
dosers_depth 2 2 3
dosers_lr 5.61⇥ 10�4 1.58⇥ 10�3 1.12⇥ 10�3

dosers_wd 1.33⇥ 10�7 6.25⇥ 10�7 3.75⇥ 10�7

embedding_encoder_width 512 128 128
embedding_encoder_depth 3 4 4

Parameter weave JT-VAE GCN

dosers_width 512 64 512
dosers_depth 2 2 2
dosers_lr 1.12⇥ 10�3 2.05⇥ 10�4 2.05⇥ 10�4

dosers_wd 2.94⇥ 10�8 2.94⇥ 10�8 1.33⇥ 10�6

embedding_encoder_width 128 256 128
embedding_encoder_depth 3 4 3

A.5 Additional information on the sci-Plex3 experiments

1. The optimisation was performed similarly to the presented sweeps in Table 10 and Table 11
for the perturbation network and adversary parameters for 10 samples each per category.

2. Boxplot results for RDKit, see Figures 6 and 8, and JT-VAE, see Figures 7 and 9.

3. Paired t-tests were performed for both settings, see Table 14 for the shared gene set and
Table 14 for the extended gene set.

4. More examples on the performance with respect to specific drugs are presented in Figure 11,
Figure 12, Figure 13, and Figure 14.

5. The Drug embedding that results from RDKit is shown in
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Table 12: Performance of the best runs on L1000 for different molecule encoders G
Model G Drug Cell line Mean r

2 all Mean r
2 DEGs Mean r

2 DEGs [val]

GCN 0.11 0.16 0.92 0.84 0.83
MPNN 0.07 0.24 0.94 0.87 0.84
GROVER 0.07 0.16 0.94 0.88 0.86
JT-VAE 0.06 0.15 0.94 0.88 0.85
RDKit 0.08 0.15 0.93 0.86 0.85
weave 0.09 0.20 0.91 0.74 0.72

Figure 6: Performance of the pretrained and non-pretrained chemCPA model using GROVER.
Comparisons against the baseline are done on both the complete gene set (977 genes) and the
compound specific DEGs (50 genes).

A.6 Additional information on the uncertainty score

1. The uncertainty computation for the chemCPA model with an RDKit molecule embedding
for the shared gene setting is shown in Figure 15.
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Figure 7: Performance of the pretrained and non-pretrained chemCPA model using JT-VAE. Com-
parisons against the baseline are done on both the complete gene set (977 genes) and the compound
specific DEGs (50 genes).

Figure 8: Performance of the pretrained and non-pretrained chemCPA model on the extended gene
set using GROVER, see also Figure 6.

Figure 9: Performance of the pretrained and non-pretrained chemCPA model on the extended gene
set using JT-VAE, see also Figure 7.

Figure 10: TSNE embedding based on the RDKit features of the 188 drugs.
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Table 13: Significance test for a dosage of 10µM on the shared gene set using the paired t-test.
Model G Against Gene set p-value

rdkit baseline all genes 0.0002
rdkit baseline DEGs 0.0001
rdkit non-pretrained all genes 0.0001
rdkit non-pretrained DEGs 0.0003
grover baseline all genes 0.0008
grover baseline DEGs 0.0002
grover non-pretrained all genes 0.0023
grover non-pretrained DEGs 0.0022
jtvae baseline all genes 0.0002
jtvae baseline DEGs 0.0004
jtvae non-pretrained all genes 0.0141
jtvae non-pretrained DEGs 0.0528

Table 14: Significance test for a dosage of 10µM on the extended gene set using the paired t-test.
Model G Against Gene set p-value

rdkit baseline all genes 0.0001
rdkit baseline DEGs 0.0004
rdkit non-pretrained all genes 0.0003
rdkit non-pretrained DEGs 0.0020
grover baseline all genes 0.0009
grover baseline DEGs 0.0038
grover non-pretrained all genes 0.0029
grover non-pretrained DEGs 0.0165
jtvae baseline all genes 0.0005
jtvae baseline DEGs 0.0024
jtvae non-pretrained all genes 0.0026
jtvae non-pretrained DEGs 0.0721

Figure 11: Drug-wise comparison between the baseline, pretrained and non-pretrained models using
RDKit for all nine drugs in the test set considering all genes for the shared gene set.

20



Figure 12: Drug-wise comparison between the baseline, pretrained and non-pretrained models using
RDKit for all nine drugs in the test set considering the DEGs for the shared gene set.

Figure 13: Drug-wise comparison between the baseline, pretrained and non-pretrained models using
RDKit for all nine drugs in the test set considering all genes for the extended gene set.
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Figure 14: Drug-wise comparison between the baseline, pretrained and non-pretrained models using
RDKit for all nine drugs in the test set considering the DEGs for the extended gene set.

Figure 15: Uncertainty score for chemCPA’s prediction on the perturbation embedding in relation to
the model’s improvement over the baseline score, measured in r

2.
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