
A framework for bilevel optimization that enables
stochastic and global variance reduction algorithms

Mathieu Dagréou
Inria, CEA

Université Paris-Saclay
Palaiseau, France

mathieu.dagreou@inria.fr

Pierre Ablin
CNRS

Université Paris-Dauphine, PSL-University
Paris, France

pierre.ablin@cnrs.fr

Samuel Vaiter
CNRS

Université Côte d’Azur, LJAD
Nice, France

samuel.vaiter@cnrs.fr

Thomas Moreau
Inria, CEA

Université Paris-Saclay
Palaiseau, France

thomas.moreau@inria.fr

Abstract

Bilevel optimization, the problem of minimizing a value function which involves
the arg-minimum of another function, appears in many areas of machine learning.
In a large scale empirical risk minimization setting where the number of samples is
huge, it is crucial to develop stochastic methods, which only use a few samples at a
time to progress. However, computing the gradient of the value function involves
solving a linear system, which makes it difficult to derive unbiased stochastic
estimates. To overcome this problem we introduce a novel framework, in which
the solution of the inner problem, the solution of the linear system, and the main
variable evolve at the same time. These directions are written as a sum, making it
straightforward to derive unbiased estimates. The simplicity of our approach allows
us to develop global variance reduction algorithms, where the dynamics of all
variables is subject to variance reduction. We demonstrate that SABA, an adaptation
of the celebrated SAGA algorithm in our framework, has O(1

T) convergence rate,
and that it achieves linear convergence under Polyak-Łojasciewicz assumption.
This is the first stochastic algorithm for bilevel optimization that verifies either of
these properties. Numerical experiments validate the usefulness of our method.

1 Introduction

Bilevel optimization is attracting more and more attention in the machine learning community thanks
to its wide range of applications. Typical examples are hyperparameters selection [5, 38, 17, 6],
data augmentation [11, 42], implicit deep learning [3] or neural architecture search [33]. Bilevel
optimization aims at minimizing a function whose value depends on the result of another optimization
problem:

min
x∈Rd

h(x) = F (z∗(x), x), such that z∗(x) ∈ arg min
z∈Rp

G(z, x) , (1)

where F and G are two real valued functions defined on Rp × Rd. G is called the inner function, F
is the outer function and h is the value function. Similarly, z is the inner variable and x is the outer
variable. In most cases, the function z∗ can only be approximated by an optimization algorithm,
which makes bilevel optimization problems challenging. Under appropriate hypotheses, the function
h is differentiable, and the chain rule and implicit function theorem give for any x ∈ Rd

∇h(x) = ∇2F (z∗(x), x) +∇2
21G(z∗(x), x)v∗(x) , (2)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

where v∗(x) ∈ Rp is the solution of a linear system

v∗(x) = −
[
∇2

11G(z∗(x), x)
]−1 ∇1F (z∗(x), x) . (3)

In the light of (2) and (3), it turns out that the derivation of the gradient of h at each iteration is
cumbersome because it involves two subproblems: the resolution of the inner problem to find an
approximation of z∗(x) and the resolution of a linear system to find an approximation of v∗(x). It
makes the practical implementation of first order methods like gradient descent for (1) challenging.

0 100 200 300 400

Iterations

10−12

10−7

10−2

G
ra

d
ie

n
t

n
or

m

SABA

SOBA

Figure 1: Convergence curves of the
two proposed methods on a toy prob-
lem. SABA is a stochastic method that
achieves fast convergence on the value
function.

As is the case in many machine learning problems, we
suppose in this paper that F and G are empirical means:

F (z, x) =
1

m

m∑
j=1

Fj(z, x), G(z, x) =
1

n

n∑
i=1

Gi(z, x) .

This structure suggests the use of stochastic methods to
solve (1). For single-level problems (that is, classical
optimization problems where one function should be min-
imized), using Stochastic Gradient Descent (SGD; [41, 7])
and variants is natural because individual gradients are
straightforward unbiased estimators of the gradient. In
the bilevel framework, we want to develop algorithms that
make progress on problem (1) by using only a few func-
tions Fj and Gi at a time. However, since ∇h involves
the inverse of the Hessian of G, building such stochastic
algorithms is quite challenging, one of the difficulties being that there is no straightforward unbiased
estimator of ∇h. Still, in settings where m or n are large, where computing even a single evaluation
of F or G is extremely expensive, stochastic methods are the only scalable algorithms.
Variance reduction [27, 13, 43, 15, 12] is a popular technique to obtain fast stochastic algorithms. In
a single-level setting, these methods build an approximation of the gradient of the objective function
using only stochastic gradients. Contrary to SGD, the variance of the approximation goes to 0 as the
algorithm progresses, allowing for faster convergence. For instance, the SAGA method [13] achieves
linear convergence if the objective function satisfies a Polyak-Łojasciewicz inequality, and O(1

T)
convergence rate on smooth non-convex functions [40]. The extension of these methods to bilevel
optimization is a natural idea to develop faster algorithms. However, this idea is hard to implement
because it is hard to derive unbiased estimators of ∇h, let alone variance reduction ones.
Contributions. We introduce a novel framework for bilevel optimization in Section 2, where
the inner variable, the solution of the linear system (3) and the outer variable evolve jointly. The
evolution directions are written as sums of derivatives of Fj and Gi, which allows us to derive
simple unbiased stochastic estimators. In this framework, we propose SOBA, an extension of
SGD (Section 2.1), and SABA (Section 2.2), an extension of the variance reduction algorithm
SAGA [13]. In Section 3 we analyse the convergence of our methods. SOBA is shown to achieve
inft≤T E[∥∇h(xt)∥2] = O(log(T)T− 1

2) with decreasing step sizes. We prove that SABA with
fixed step sizes achieves 1

T

∑T
t=1 E[∥∇h(xt)∥2] = O(1

T). SABA is therefore, to the best of our
knowledge, the first stochastic bilevel algorithm that matches the convergence rate of gradient
descent on h. We also prove that SABA achieves linear convergence under the assumption that
h satisfies a Polyak-Łojasciewicz inequality. To the best of our knowledge, SABA is also the first
stochastic bilevel algorithm to feature such a property. Importantly, these rates match the rates of
the single level counterparts of each algorithm in non-convex setting (SGD for SOBA and SAGA
for SABA). Finally, in Section 4, we provide an extensive benchmark of many stochastic bilevel
methods on hyperparameters selection and data hyper-cleaning, and illustrate the usefulness of our
approach.
Related work. The bilevel optimization problem has a strong history in the optimization community,
taking root in game theory [45]. Gradient-based algorithms to solve (1) can be mainly classified in
two different categories depending on how ∇h is computed, by automatic or implicit differentiation.
Since the solution of the inner problem z∗(x) is approximated by the output of an iterative algo-
rithm, it is possible to use automatic differentiation [46, 31] to approximate ∇h(x). It consists in
differentiating the different steps of the inner optimization algorithm – see [4] for a review – and
has been applied successfully to several bilevel problems arising in machine learning [14, 16]. One

2

of the main drawbacks of this approach is that it requires to store in memory each iterate of the
inner optimization algorithm, although this problem can sometimes be overcome using invertible
optimization algorithms [34] or truncated backpropagation [44].
The use of the implicit function theorem to obtain (2) and (3) is known as implicit differentiation [5].
While the cost of computing exactly (2) can be prohibitive for large scale problems, Pedregosa [38]
showed that we can still converge to a stationary point of the problem by using approximate solutions
of the inner problem and linear system (3), if the approximation error goes to 0 sufficiently quickly.
The complexity of approximate implicit differentiation has been studied in [20]. Ramzi et al. [39]
propose to reuse the computations done in the forward pass to approximate the solution of the linear
system (3) when the inner problem is solved thanks to a quasi-Newton method.
In the last few years, several works have proposed different strategies to solve (1) in a stochastic
fashion. A first set of methods relies on two nested loops: one inner loop to solve the inner problem
with a stochastic method, and one outer loop to update the outer variable with an approximate gradient
direction. In [19, 26, 9] the authors use several SGD iterations for the inner problem and then use
stochastic Neumann approximations to get an estimate solution of the linear system, which provides
them with an approximation of ∇h used to update x. The analysis of this kind of method was
refined by Chen et al. [9], allowing to achieve the same convergence rates as those of SGD. The
convergence of the hypergradient when using stochastic solvers for the inner problem and the linear
system has been studied in [21]. Arbel and Mairal [2] replace the Neumann approximation by SGD
steps to estimate (3). Other authors have proposed single loop algorithms, alternating steps in the
inner and the outer problem. Hong et al. [24] propose to perform Neumann approximations of the
inverse Hessian and use a single SGD step for the inner problem. It was refined in [23] and [47]
where the optimization procedure uses a momentum acceleration. Other variations around this idea
include [25, 28, 10, 22, 30]. We refer to Table 1 in appendix for a detailed comparison of these
methods.
Notation. The set of integers between 1 and n (included) is denoted [n]. For f : Rp × Rd → R,
we denote ∇if(z, x) its gradient w.r.t. the ith variable. The Hessian of f with respect to the first
variable is denoted ∇2

11f(z, x) ∈ Rp×p, and the cross-derivatives matrix is ∇2
21f(z, x) ∈ Rd×p. If v

is a vector, ∥v∥ is its Euclidean norm. If M is a matrix, ∥M∥ is its spectral norm. A function is said
to be L-smooth, for L > 0, if it is differentiable, and its gradient is L-Lipschitz.

2 Proposed framework

Algorithm 1 General framework
Input: initializations z0 ∈ Rp, x0 ∈ Rd,
v0 ∈ Rp, number of iterations T , step size
sequences (ρt)t<T and (γt)t<T .
for t = 0, . . . , T − 1 do

Update z: zt+1 = zt − ρtDt
z ,

Update v: vt+1 = vt − ρtDt
v ,

Update x: xt+1 = xt − γtDt
x ,

where Dt
z, D

t
v and Dt

x are unbiased esti-
mators of Dz(z

t, vt, xt), Dv(z
t, vt, vt)

and Dx(z
t, vt, xt).

end for

In this section, we introduce our framework in which
the solution of the inner problem, the solution of the
linear system (3) and the outer variable all evolve at
the same time, following directions that are written
as a sum of derivatives of Fj and Gi. We define

Dz(z, v, x) = ∇1G(z, x) , (4)

Dv(z, v, x) = ∇2
11G(z, x)v +∇1F (z, x) , (5)

Dx(z, v, x) = ∇2
21G(z, x)v +∇2F (z, x) . (6)

These directions are motivated by the fact that we
have ∇h(x) = Dx(z

∗(x), v∗(x), x), with z∗(x)
the minimizer of G(·, x) and v∗(x) the solution of
∇2

11G(z∗(x), x)v = −∇1F (z∗(x), x). When x is
fixed, we approximate z∗ by doing a gradient descent on G, following the direction −Dz(z, v, x).
Finally, when z and x are fixed, we find v∗ by following the direction −Dv(z, v, x), which corre-
sponds to a gradient descent on v 7→ 1

2 ⟨∇
2
11G(z, x)v, v⟩+ ⟨∇1F (z, x), v⟩. The rest of the paper is

devoted to the study of the global dynamics where the three variables z, v and x evolve at the same
time, following stochastic approximations of Dz, Dv and Dx. The next proposition motivates the
choice of these directions.
Proposition 2.1. Assume that for all x ∈ Rd, G(·, x) is strongly convex. If (z, v, x) is a zero of
(Dz, Dv, Dx), then z = z∗(x), v = v∗(x) and ∇h(x) = 0.

We also note that the computation of these directions does not require to compute the matrices
∇2

11G(z, x) and ∇2
21G(z, x): we only need to compute their product with a vector, which can be

computed at a cost similar to that of computing a gradient.

3

The framework we propose is summarized in Algorithm 1. It consists in following a joint update
rule in (z, v, x) that follows directions Dt

z, D
t
v and Dt

x that are unbiased estimators of Dz, Dv, Dx.
The first and most important remark is that whereas ∇h cannot be written as a sum over samples, the
directions Dz, Dv and Dx involve only simple sums, since their expressions are “linear” in F and G:

Dz(z, v, x)=
1
n

∑n
i=1 ∇1Gi(z, x) , (7)

Dv(z, v, x)=
1
n

∑n
i=1 ∇2

11Gi(z, x)v +
1
m

∑m
j=1 ∇1Fj(z, x) , (8)

Dx(z, v, x)=
1
n

∑n
i=1 ∇2

21Gi(z, x)v +
1
m

∑m
j=1 ∇2Fj(z, x) . (9)

It is therefore straightforward to derive unbiased estimators of these directions. In [30], the authors
considered one particular case of our framework, where each direction is estimated by using the
STORM variance reduction technique (see [12]). Taking a step back by proposing the framework sum-
marized in Algorithm 1 opens the way to potential new algorithms that implement other techniques
that exist in stochastic single level optimization. In what follows, we study two of them.

2.1 First example: the SOBA algorithm

The simplest unbiased estimator is obtained by replacing each mean by one of its terms chosen
uniformly at random, akin to what is done in classical single-level SGD. We call the resulting
algorithm SOBA (StOchastic Bilevel Algorithm). To do so, we choose two independent random
indices i ∈ [n] and j ∈ [m] uniformly and estimate each term coming from G using Gi and each
term coming from F using Fj . This gives the unbiased SOBA directions

Dt
z = ∇1Gi(z

t, xt) ,

Dt
v = ∇2

11Gi(z
t, xt)vt +∇1Fj(z

t, xt) ,

Dt
x = ∇2

21Gi(z
t, xt)vt +∇2Fj(z

t, xt) .

(10a)

(10b)

(10c)

This provides us with a first algorithm, SOBA, where we plug Equations (10a) to (10c) in Algorithm 1.
We defer its analysis to the next section. Importantly, we use different step sizes for the update in
(z, v) and for the update in x. We use the same step size in z and in v since the inner problem and the
linear system have similar conditioning, which is that of ∇2

11G(zt, xt). The need for a different step
size for the outer and inner problem is clear: both problems can have a different conditioning.
An important remark for SOBA is that all the stochastic directions used are computed at the same
point zt, vt and xt with the same indices (i, j). The update of z, v and x can thus be performed
in parallel instead of sequentially, benefiting from hardware parallelism. Moreover, this enables
to share the computations between the different directions. This is the case in hyperparameters
selection where Gi(z, x) = ℓi(⟨z, di⟩) + x

2∥z∥
2, with di a training sample, and ℓi that measures

how good is the prediction ⟨z, di⟩. In this setting, we have ∇1Gi(z, x) = ℓ′i(⟨z, di⟩)di + xz and
∇2

11Gi(z, x)v = ℓ′′i (⟨z, di⟩)⟨v, di⟩di. The prediction ⟨z, di⟩ can thus be computed only once to
obtain both quantities. For more complicated models, where automatic differentiation is used to
compute the different derivatives and Jacobian-vector products, we can store the computational graph
only once to compute at the same time ∇1Gi(z, x),∇2

11Gi(z, x)v and ∇2
21Gi(z, x)v, requiring only

one backward pass, thanks to the R technique [37].
Finally, like all single loop bilevel algorithms, our method updates at the same time the inner and outer
variable, avoiding unnecessary optimization of the inner problem when x is far from the optimum.

2.2 Global variance reduction with the SABA algorithm

In classical optimization, SGD fails to reach optimal rates because of the variance of the gradient
estimator. Variance reduction algorithms aim at reducing this variance, in order to follow directions
that are closer to the true gradient, and to achieve superior practical and theoretical convergence.
In our framework, since the directions Dz, Dv and Dx are all written as sums of derivatives of Fj and
Gi, it is easy to adapt most classical variance reduction algorithms. We focus on the celebrated SAGA
algorithm [13]. The extension we propose is called SABA (Stochastic Average Bilevel Algorithm).
The general idea is to replace each sum in the directions D by a sum over a memory, updating only
one term at each iteration. To help the exposition, we denote y = (z, x, v) the vector of joint variables.
Since we have sums over i and over j, we have two memories for each variable: wt

i for i ∈ [n] and
w̃t

j for j ∈ [m], which keep track of the previous values of the variable y.

4

At each iteration t, we draw two random independent indices i ∈ [n] and j ∈ [m] uniformly and
update the memories. To do so, we put wt+1

i = yt and wt+1
i′ = wt

i′ for i′ ̸= i, and w̃t+1
j = yt and

w̃t+1
j′ = w̃t

j′ for j′ ̸= j. Each sum in the directions D is then approximated using SAGA-like rules:
given n functions ϕi′ for i′ ∈ [n], we define S[ϕ,w]ti = ϕi(w

t+1
i) − ϕi(w

t
i) +

1
n

∑n
i′=1 ϕi′(w

t
i′).

This is an unbiased estimators of the average of the ϕ’s since Ei

[
S[ϕ,w]ti

]
= 1

n

∑n
i=1 ϕi(y

t).

With a slight abuse of notation, we call ∇2
11Gv the sequence of functions (y 7→ ∇2

11Gi(z, x)v)i∈[n]

and ∇2
21Gv the sequence of functions (y 7→ ∇2

21Gi(z, x)v)i∈[n]. We define the SABA directions as

Dt
z = S[∇1G,w]ti ,

Dt
v = S[∇2

11Gv,w]ti + S[∇1F, w̃]
t
j ,

Dt
x = S[∇2

21Gv,w]ti + S[∇2F, w̃]
t
j .

(11a)

(11b)

(11c)

These estimators are unbiased estimators of the directions Dz, Dv and Dx. The SABA algorithm
corresponds to Algorithm 1 where we use Equations (11a) to (11c) as update directions. When taking
a step size γt = 0 in the outer problem, hereby stopping progress in x, we recover the iterations
of the SAGA algorithm on the inner problem. In practice, the sum in S is computed by doing a
rolling average (see Appendix B for precision), and the quantities ϕi(w

t
i) are stored rather than

recomputed: the cost of computing the SABA directions is the same as that of SGD. It requires an
additional memory for the five quantities, of total size n× p+ (n+m)× (p+ d) floats that can be
reduced by using larger batch sizes. Indeed, if bin and bout are respectively the inner and the outer
batch sizes, the memory load is reduced to nb × p + (nb + mb) × (p × d) with nb = ⌈ n

binn
⌉ and

mb = ⌈ m
bout

⌉ which are smaller than the number of samples. This memory load can also be reduced
in specific cases, for instance when G and F correspond to linear models, where the individual
gradients and Hessian-vector products are proportional to the samples. In this case, we only store the
proportionality ratio, reducing the memory load to 3n+ 2m floats. Like for SOBA, the computations
of the new quantities ϕi(w

t+1
i) are done in parallel, thus benefiting from hardware acceleration and

shared computations. Despite this memory load, using SAGA-like variance reduction instead of
STORM as done in [30, 47, 28] has the advantage to bring the variance of the estimate directions to
zero, enabling faster O(1

T) convergence.
In the next section, we show that SABA is fast. It essentially has the same properties as SAGA:
despite being stochastic, it converges with fixed step sizes, and reaches the same rate of convergence
as gradient descent on h.

3 Theoretical analysis

In this section, we provide convergence rates of SOBA and SABA under some classical assumptions.
Note that, unlike most of the stochastic bilevel optimization papers, we work in finite sample setting
rather than the more general expectation setting. Actually, SABA does not make any sense for
functions that don’t have a finite sum structure. However, we stress that SOBA could be studied in a
more general setting to obtain the same bounds as here. Also, the finite sum setting is still interesting
since doing empirical risk minimization is very common in practice in machine learning. The proofs
and the constants in big-O are deferred in Appendix C.

3.1 Background and assumptions

We start by stating some regularity assumptions on the functions F and G.
Assumption 3.1. The function F is twice differentiable. The derivatives ∇F and ∇2F are Lipschitz
continuous in (z, x) with respective Lipschitz constants LF

1 and LF
2 .

Note that the above assumption is typically verified in the machine learning context, e.g., when F is
the ordinary least squares (OLS) loss or the logistic loss.
Assumption 3.2. The function G is three times continuously differentiable on Rp × Rd. For
any x ∈ Rd, G(· , x) is µG-strongly convex. The derivatives ∇G, ∇2G and ∇3G are Lipschitz
continuous in (z, x) with respective Lipschitz constants LG

1 , LG
2 and LG

3 .

Strong convexity and smoothness with respect to z of G are verified when G is a regularized least-
squares/logistic regression with a full rank design matrix, when the data is not separable for the

5

logistic regression. Moreover, the strong convexity ensures the existence and uniqueness of the inner
optimization problem for any x ∈ Rd.
Assumption 3.3. There exists CF > 0 such that for any x we have ∥∇1F (z∗(x), x)∥ ≤ CF .

This assumption, combined with the strong convexity of G(· , x), shows boundedness of v∗. This
assumption holds, for instance, in the case of hyperparameters selection for a Ridge regression
problem. Note that in Assumptions 3.1 and 3.2, we assume more regularity of F and G than in
stochastic bilevel optimization literature (see for instance [19, 24, 26, 2]). It is necessary to get the
smoothness of v∗ which will allow to adapt the proof of Chen et al. [9] and get tight convergence
rates. The following lemma gives us some smoothness properties of the considered directions that
will be useful to derive convergence rates of our methods.
Lemma 3.4. Under the Assumptions 3.1 to 3.3, there exist constants Lz , Lv and Lx such that
∥Dz(z, v, x)∥2 ≤ L2

z∥z − z∗(x)∥2, ∥Dv(z, v, x)∥2 ≤ L2
v(∥z − z∗(x)∥2 + ∥v − v∗(x)∥2) and

∥Dx(z, v, x)−∇h(x)∥2 ≤ L2
x(∥z − z∗(x)∥2 + ∥v − v∗(x)∥2).

In first order optimization, a fundamental assumption on the objective function is the smoothness
assumption. In the case of vanilla gradient descent applied to a function f , it allows to get a
convergence rate of ∥∇f(xt)∥2 in O(1/T), i.e. convergence to a stationary point [36]. The following
lemma proved by Ghadimi and Wang [19, Lemma 2.2] ensures the smoothness of h.
Lemma 3.5. Under the Assumptions 3.1 to 3.3, the function h is Lh-smooth for some Lh > 0.

The constant Lh is specified in Appendix C.3. As usual with the analysis of stochastic methods, we
define the expected norms of the directions V t

z = E[∥Dt
z∥2], V t

v = E[∥Dt
v∥2] and V t

x = E[∥Dt
x∥2],

where the expectation is taken over the past. Thanks to variance-bias decomposition, they are the
sum of the variance of the stochastic direction and the squared-norm of the unbiased direction. For
SOBA, we use classical bounds on variances like those found for instance in [24]:
Assumption 3.6. There exists Bz , Bv and Bx such that for all t,
Et[∥Dt

z∥2] ≤ B2
z (1 + ∥Dz(z

t, vt, xt)∥2) and Et[∥Dt
v∥2] ≤ B2

v(1 + ∥Dv(z
t, vt, xt)∥2)

where Et denotes the expectation conditionally to (zt, vt, xt).

For SOBA and SABA, we need to bound the expected norm of Dt
x. For SABA, this assumption

allows to get a the same sample complexity as SAGA for single level problems.
Assumption 3.7. There exists Bx such that for all t, Et[∥Dt

x∥2] ≤ B2
x.

Assumptions 3.6 and 3.7 are verified for instance, if all the Gi and ∇1Gi have at most quadratic
growth, and if F has bounded gradients. They are also verified if the iterates remain in a compact set.
Note that we do not assume that G has bounded gradients, as this would contradict its strong-convexity.
Finally, for the analysis of SABA, we need regularity on each Gi and Fj :

Assumption 3.8. For all i ∈ [n] and j ∈ [m], the functions ∇Gi, ∇Fj , ∇2
11Gi and ∇2

21Gi are
Lipschitz continuous in (z, x).

3.2 Fundamental descent lemmas

Our analysis for SOBA and SABA is based on the control of both δtz = E[∥zt − z∗(xt)∥2] and
δtv = E[∥vt − v∗(xt)∥2], Strong convexity of G and smoothness of z∗(x) and v∗(x) allow to obtain
the following lemma by adapting the proof of Chen et al. [9]. In what follows, we drop the dependency
of the step sizes ρ and γ in t for clarity.

Lemma 3.9. Assume that γ2 ≤ min
(

µGL2
∗

4B2
xL

2
zx
,

µGL2
∗

8B2
xL

2
vx

)
ρ. We have:

δt+1
z ≤

(
1− ρµG

4

)
δtz + 2ρ2V t

z + βzxγ
2V t

x + βzx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2]

δt+1
v ≤

(
1− ρµG

8

)
δtv + βvzρδ

t
z + 2ρ2V t

v + βvxγ
2V t

x + βzx

γ2

ρ
E[∥Dx(z

t, vt, xt)∥2]

where βzx = βvx = 3L2
∗, βzx =

8L2
∗

µG
, βvx =

16L2
∗

µG
, L∗ is the maximum between the Lipschitz

constants of z∗ and v∗ (see Lemma C.1), βvz = 1
µ3
G
(LF

1 µG + LG
2)

2, Lzx and Lvx are respectively
the smoothness constants of z∗ and v∗.

6

We insist that this result is obtained in general for Algorithm 1 with arbitrary unbiased directions. We
can therefore invoke this lemma for the analysis of both SOBA and SABA. We use the smoothness of
h to get the following lemma, which is similar to [9, Lemma 1].
Lemma 3.10. Let ht = E[h(xt)] and gt = E[∥∇h(xt)∥2]. We have

ht+1 ≤ ht − γ

2
gt − γ

2
E[∥Dx(z

t, vt, xt)∥2] + γ

2
L2
x(δ

t
z + δtv) +

Lh

2
γ2V t

x .

If zt = z∗(xt), vt = v∗(xt), that is δz , δv both cancel and Dx(z
t, vt, xt) = ∇h(xt), we get an

inequality reminiscent of the smoothness inequality for SGD on h.

3.3 Analysis of SOBA

The analysis of SOBA is based on Lemmas 3.5 and 3.9. We have the following theorem, with fixed
step sizes depending on the number of iterations:

Theorem 1 (Convergence of SOBA, fixed step size). Fix an iteration T > 1 and assume that
Assumptions 3.1 to 3.7 hold. We consider fixed steps ρt = ρ√

T
and γt = ξρt with ρ and ξ precised

in the appendix. Let (xt)t≥1 the sequence of outer iterates for SOBA. Then,

1

T

T∑
t=1

E[∥∇h(xt)∥2] = O(T− 1
2) .

As opposed to [24], we do not need that the ratio γ
ρ goes to 0, which allows to get a complexity

(that is, the number of call to oracles to have an ϵ-stationary solution) in O(ϵ−2) better than the
Õ(ϵ−

5
2) they have. Also, note that this rate is the same as the one of SGD for non-convex and smooth

objective [18, 8]. We obtain a similar rate using decreasing step sizes:

Theorem 2 (Convergence of SOBA, decreasing step size). Assume that Assumptions 3.1 to 3.7 hold.
We consider steps ρt = ρt−

1
2 and γt = ξρ. Let xt the sequence of outer iterates for SOBA. Then,

inf
t≤T

E[∥∇h(xt)∥2] = O(log(T)T− 1
2) .

As for SGD, SOBA suffers from the need of decreasing step sizes to get actual convergence because of
the variance of the estimation on each directions. On the other hand, the analysis of SABA leverages
the dynamic of all three variables, resulting in fast convergence with fixed step sizes.

3.4 SABA: a stochastic method with optimal rates

In what follows, we denote N = n + m the total number of samples. The following theorem
shows O(N

2
3T−1) convergence for the SABA algorithm in the general case where we only assume

smoothness of h. Our analysis of SABA is inspired by the analysis of single-level SAGA by Reddi
et al. [40].

Theorem 3 (Convergence of SABA, smooth case). Assume that Assumptions 3.1 to 3.3 and 3.7 to
3.8 hold. We suppose ρ = ρ′N− 2

3 and γ = ξρ, where ρ′ and ξ depend only on F and G and are
specified in appendix. Let xt the iterates of SABA. Then,

1

T

T∑
t=1

E[∥∇h(xt)∥2] = O
(
N

2
3T−1

)
.

To prove the theorem, the idea is to control the distance from the memory to the current variables. We
define St = 1

n

∑n
i=1 ∥yt − wt

i∥2 + 1
m

∑m
j=1 ∥yt − w̃t

j∥2 . In appendix, we show that we can find
scalars ϕs, ϕz, ϕv > 0 such that the quantity Lt = ht+ϕsS

t+ϕzδ
t
z+ϕvδ

t
v satisfies Lt+1 ≤ Lt− γ

2 g
t.

Summing these inequalities for t = 1 . . . T and using the fact that Lt is lower bounded demonstrates
the theorem.
Note that the step sizes are constant with respect to the time, but they scale with N− 2

3 . As a
consequence, the sample complexity is O(N

2
3 ϵ−1) which is analogous of the one of SAGA for

7

non-convex single level problems [40]. This is better than the sample complexity of Algorithm 1 with
full batch directions, which is O(Nϵ−1). Hence, with SABA, we get the best of both worlds: the
stochasticity makes the scaling in N of the sample complexity goes from N in full batch mode to
N

2
3 for SABA, and the variance reduction makes the scaling in ϵ goes from ϵ−2 for SOBA to ϵ−1 for

SABA. Our experiments in Section 4 confirm this gain.
Furthermore, if we assume that h satisfies a Polyak-Łojasiewicz (PL) inequality, we recover linear
convergence. Recall that h has the PL property if there exists µh > 0 such that for all x ∈ Rd,
1
2∥∇h(x)∥2 ≥ µh(h(x)− h∗) with h∗ the minimum of h.

Theorem 4 (Convergence of SABA, PL case). Assume that h satisfies the PL inequality and that
Assumptions 3.1 to 3.3 and 3.7 to 3.8 hold. We suppose ρ = ρ′N− 2

3 and γ = ξρ′N−1, where ρ′

and ξ depend only on F and G and are specified in appendix. Let xt the iterates of SABA and
c′ ≜ min

(
µh,

1
16P ′

)
with P ′ specified in the appendix. Then,

E[hT]− h∗ = (1− c′γ)T (h0 − h∗ + C0)

where C0 is a constant specified in appendix that depends on the initialization of z, v, x and memory.

The proof is similar to that of the previous theorem: we find coefficients ϕs, ϕz, ϕv such that
Lt = ht + ϕsS

t + ϕzδ
t
z + ϕvδ

t
v satisfies the inequality Lt+1 ≤ (1 − c′γ)Lt, which is then

unrolled. Note that in the case where we initialize z and v with z0 = z∗(x0), v0 = v∗(x0), and
the memories w0

i = w0, w̃0
j = w0 for all i, j, the constant C0 cancels and the bound simplifies to

E[h(xT)]− h∗ ≤ (1− c′γ)T (h(x0)− h∗).
Just like classical variance reduction methods in single-level optimization, this theorem shows that
our method achieves linear convergence under PL assumption on the value function. To the best
of our knowledge, our method is the first stochastic bilevel optimization method that enjoys such
property. We note that the PL hypothesis is more general than µh-strong convexity of h – it is a
necessary condition for strong convexity.
We see here the importance of global variance reduction. Indeed, using variance reduction only
on z and SGD on x would lead to sub-linear convergence in x. This would be the case even with
a perfect estimation of z∗(x). Similarly, using variance reduction only on x and SGD on z would
lead to sub-linear convergence in z, and hence in x. Using global variance reduction with respect
to each variable as we propose here is the only way to achieve linear convergence. We now turn to
experiments, where we find that our method is also promising from a practical point of view.

4 Experiments

Here we compare the performances of SOBA and SABA with competitor methods on different tasks.
The different methods being compared are stocBiO [26], AmiGO [2], FSLA [30], MRBO [47],
TTSA [24], BSA [19] and SUSTAIN [28]. A detailed account of the experiments is provided in
Appendix B. 1

4.1 Hyperparameters selection

The first task we perform is hyperparameters selection to choose regularization parameters on
ℓ2 logistic regression. Let us denote ((dtraini , ytraini))1≤i≤n and ((dvali , yvali))1≤i≤m the training
and the validation sets. In this case, the inner variable θ corresponds to the parameters of the
model, and the outer variable λ to the regularization. The functions F and G of the problem (1)
are the logistic loss, with ℓ2 penalty for G, that is to say F (θ, λ) = 1

m

∑m
i=1 φ(y

val
i ⟨dvali , θ⟩) and

G(θ, λ) = 1
n

∑n
i=1 φ(y

train
i ⟨dtraini , θ⟩) + 1

2

∑p
k=1 e

λkθ2k where φ(u) = log(1 + e−u). We fit a
binary classification model on the IJCNN12 dataset. Here, n = 49 990, m = 91 701 and p = 22.
The suboptimality gap is plotted in Figure 2a for each method. The lowest values are reached by
SABA. Moreover, SABA is the only single-loop method that reaches a suboptimality below 10−3.
SOBA reaches a quite high final value but slightly better than TTSA and FSLA. The gap between

1The code of the benchmark is available at https://github.com/benchopt/benchmark_bilevel and
the results are displayed in https://benchopt.github.io/results/benchmark_bilevel.html.

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

8

https://github.com/benchopt/benchmark_bilevel
https://benchopt.github.io/results/benchmark_bilevel.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

100 200 300 400

Time [sec]

10−4

10−3

10−2

10−1

O
p

ti
m

a
li
ty

h
(x
t
)
−
h
∗

(a) Logistic regression

10−1 100 101 102

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

(b) Datacleaning

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SABA

SOBA

SOBA FULL BATCH

Figure 2: Comparison of SOBA and SABA with other stochastic bilevel optimization methods. For
each algorithm, we plot the median performance over 10 runs. In both experiments, SABA achieves
the best performance. The dashed lines are for one loop competitor methods, the dotted lines are for
two loops methods and the solid lines are the proposed methods. Left: hyperparameter selection for
ℓ2 penalized logistic regression on IJCNN1 dataset , Right: data hyper-cleaning on MNIST with
p = 0.5 corruption rate.

SOBA and SABA highlights the benefits of variance reduction: it gives us a lower plateau and the
fixed step sizes enable faster convergence.

4.2 Data hyper-cleaning

The second task we perform is data hyper-cleaning introduced in [16] on the MNIST3 dataset. The data
is patitioned into a training set (dtraini , ytraini), a validation set (dvali , yvali), and a test set. The training
set contains 20000 samples, the validation set 5000 samples and the test set 10000 samples. The
targets y take values in {0, . . . , 9} and the samples x are in dimension 784. Each sample in the training
set is corrupted with probability p: a sample is corrupted when we replace its label yi by a random
label in {0, . . . , 9}. Samples in the validation and test sets are not corrupted. The goal of datacleaning
is to train a multinomial logistic regression on the train set and learn a weight per training sample,
that should go to 0 for corrupted samples. This is formalized by the bilevel optimization problem
(1) with F (θ, λ) = 1

m

∑m
i=1 ℓ(θd

val
i , yvali) and G(θ, λ) = 1

n

∑n
i=1 σ(λi)ℓ(θd

train
i , ytraini) +Cr∥θ∥2

where ℓ is the cross entropy loss and σ is the sigmoid function. The inner variable θ is a matrix of
size 10× 784, and the outer variable λ is a vector in dimension ntrain = 20000.
For the estimated parameters θ during optimization, we report in Figure 2b the test error, i.e., the
percent of wrong predictions on the testing data. We use for this experiment a corruption probability
p = 0.5. In general, the error decreases quickly until it reaches a final value. We observe that our
method SABA outperforms all the other methods by reaching faster its smallest error, which is smaller
than the ones of the other methods. For SOBA, it reaches a lower final error than stocBiO and BSA.
In appendix, we provide other convergence curves, and find that for higher values of p, SABA is still
the fastest algorithm to reach its final accuracy. Overall, we find that among all methods, even those
that implement variance reduction (that is FSLA, MRBO, SUSTAIN, SABA), SABA is the one that
demonstrates the best empirical performance.

5 Conclusion

In this paper, we have presented a framework for bilevel optimization that enables the straightforward
development of stochastic algorithms. The gist of our framework is that the directions in Equations (4)
to (6) are all written as simple sums of samples derivatives. We leveraged this fact to propose SOBA,
an extension of SGD to our framework, and SABA, an extension of SAGA to our framework, which
both achieve similar convergence rates as their single level counterparts. Finally, we think that our
framework opens a large panel of potential methods for stochastic bilevel optimization involving
techniques of extrapolation, variance reduction, momentum and so on.

Acknowledgments and Disclosure of Funding

We thank Othmane Sebbouh, Zaccharie Ramzi and Benoît Malézieux for their precious comments.
The authors acknowledge the support of the ANER RAGA BFC. SV acknowledges the support of

3http://yann.lecun.com/exdb/mnist/

9

http://yann.lecun.com/exdb/mnist/

the ANR GraVa ANR-18-CE40-0005. This work is supported by a public grant overseen by the
French National Research Agency (ANR) through the program UDOPIA, project funded by the
ANR-20-THIA-0013-01 and DATAIA convergence institute (ANR-17-CONV-0003).

References

[1] Zeeshan Akhtar, Amrit Singh Bedi, Srujan Teja Thomdapu, and Ketan Rajawat. Projection-Free
Algorithm for Stochastic Bi-level Optimization. preprint ArXiv 2110.11721, 2021.

[2] Michael Arbel and Julien Mairal. Amortized Implicit Differentiation for Stochastic Bilevel
Optimization. In International Conference on Learning Representations (ICLR), 2022.

[3] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. In Advances in
Neural Information Processing Systems (NeurIPS). Curran Associates, Inc., 2019.

[4] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in Machine Learning: A survey. Journal of Machine Learning
Research, 18(153):1–43, 2018.

[5] Yoshua Bengio. Gradient-Based Optimization of Hyperparameters. Neural Computation, 12(8):
1889–1900, 2000.

[6] Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort,
and Joseph Salmon. Implicit differentiation of lasso-type models for hyperparameter opti-
mization. In International Conference on Machine Learning (ICML), pages 810–821. PMLR,
2020.

[7] Léon Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings
of COMPSTAT, pages 177–186. Physica-Verlag HD, Heidelberg, 2010.

[8] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale Machine
Learning. Siam Reviews, 60(2):223–311, 2018.

[9] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the Gap: Tighter Analysis of Alternat-
ing Stochastic Gradient Methods for Bilevel Problems. In Advances in Neural Information
Processing Systems (NeurIPS). Curran Associates, Inc., 2021.

[10] Tianyi Chen, Yuejiao Sun, and Wotao Yin. A Single-Timescale Stochastic Bilevel Optimization
Method. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.

[11] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. AutoAugment:
Learning Augmentation Strategies From Data. In CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 113–123. IEEE, 2019.

[12] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
SGD. In Advances in Neural Information Processing Systems (NeurIPS). Curran Associates,
Inc., 2019.

[13] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A Fast Incremental Gradient
Method With Support for Non-Strongly Convex Composite Objectives. In Advances in Neural
Information Processing Systems (NeurIPS), volume 28, pages 1646–1654, Montreal, QC,
Canada, December 2014. Curran Associates, Inc.

[14] Justin Domke. Generic methods for optimization-based modeling. In International Conference
on Artificial Intelligence and Statistics (AISTAT), volume 22, pages 318–326. PMLR, 2012.

[15] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-Optimal Non-
Convex Optimization via Stochastic Path Integrated Differential Estimator. In Advances in
Neural Information Processing Systems (NeurIPS), 2018.

[16] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Machine
Learning (ICML), pages 1165–1173. PMLR, 2017.

10

[17] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning (ICML), pages 1568–1577. PMLR, 2018.

[18] Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. doi: 10.1137/
120880811.

[19] Saeed Ghadimi and Mengdi Wang. Approximation Methods for Bilevel Programming. preprint
ArXiv 1802.02246, 2018.

[20] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In International Conference on Machine Learning
(ICML), pages 3748–3758. PMLR, 2020.

[21] Riccardo Grazzi, Massimiliano Pontil, and Saverio Salzo. Convergence properties of stochastic
hypergradients. In International Conference on Artificial Intelligence and Statistics (AISTAT),
pages 3826–3834. PMLR, 2021.

[22] Zhishuai Guo, Quanqi Hu, Lijun Zhang, and Tianbao Yang. Randomized Stochastic Variance-
Reduced Methods for Multi-Task Stochastic Bilevel Optimization. preprint ArXiv 2105.02266,
2021.

[23] Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On Stochastic Moving-Average
Estimators for Non-Convex Optimization. preprint ArXiv 2104.14840, 2021.

[24] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A Two-Timescale Framework
for Bilevel Optimization: Complexity Analysis and Application to Actor-Critic. preprint ArXiv
2007.05170, 2021.

[25] Feihu Huang and Heng Huang. BiAdam: Fast Adaptive Bilevel Optimization Methods. preprint
ArXiv 2106.11396, 2021.

[26] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International Conference on Machine Learning (ICML), pages 4882–4892.
PMLR, 2021.

[27] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems (NeurIPS), volume 26. Curran
Associates, Inc., 2013.

[28] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang.
A Near-Optimal Algorithm for Stochastic Bilevel Optimization via Double-Momentum. In
Advances in Neural Information Processing Systems (NeurIPS). Curran Associates, Inc., 2021.

[29] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit compiler.
In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pages
1–6, 2015.

[30] Junyi Li, Bin Gu, and Heng Huang. A Fully Single Loop Algorithm for Bilevel Optimization
without Hessian Inverse. In Proceedings of the Thirty-sixth AAAI Conference on Artificial
Intelligence, AAAI’22, 2022.

[31] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical
Mathematics, 16(2):146–160, 1976.

[32] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1-3):503–528, 1989.

[33] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations (ICLR), 2018.

[34] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter opti-
mization through reversible learning. In International Conference on machine learning (ICML),
pages 2113–2122. PMLR, 2015.

11

[35] Thomas Moreau, Mathurin Massias, Alexandre Gramfort, Pierre Ablin, Pierre-Antoine Ban-
nier Benjamin Charlier, Mathieu Dagréou, Tom Dupré la Tour, Ghislain Durif, Cassio F. Dantas,
Quentin Klopfenstein, Johan Larsson, En Lai, Tanguy Lefort, Benoit Malézieux, Badr Moufad,
Binh T. Nguyen, Alain Rakotomamonjy, Zaccharie Ramzi, Joseph Salmon, and Samuel Vaiter.
Benchopt: Reproducible, efficient and collaborative optimization benchmarks. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

[36] IU E. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Number v. 87
in Applied Optimization. Kluwer Academic Publishers, Boston, 2004.

[37] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):
147–160, 1994.

[38] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
Conference on Machine Learning (ICML), pages 737–746. PMLR, 2016.

[39] Zaccharie Ramzi, Florian Mannel, Shaojie Bai, Jean-Luc Starck, Philippe Ciuciu, and Thomas
Moreau. SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization
and implicit models. In International Conference on Learning Representations (ICLR), 2022.

[40] Sashank J. Reddi, Suvrit Sra, Barnabas Poczos, and Alex Smola. Fast Incremental Method
for Nonconvex Optimization. In 2016 IEEE 55th Conference on Decision and Control (CDC),
IEEE, pages 1971–1977, 2016.

[41] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

[42] Cédric Rommel, Thomas Moreau, Joseph Paillard, and Alexandre Gramfort. CADDA: Class-
wise Automatic Differentiable Data Augmentation for EEG Signals. In International Conference
on Learning Representations (ICLR), 2022.

[43] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[44] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated Back-
propagation for Bilevel Optimization. In Artificial Intelligence and Statistics (AISTAT), pages
1723–1732, Okinawa, Japan, 2019.

[45] Heinrich von Stackelberg. Theory of the market economy. Oxford University Press, 1952.

[46] R. Wengert. A simple automatic derivative evaluation program. Communications of the ACM, 7
(8):463–464, 1964.

[47] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably Faster Algorithms for Bilevel Optimization.
In Advances in Neural Information Processing Systems (NeurIPS). Curran Associates, Inc.,
2021.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 3 and Section 4
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.1
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix C

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Appendix B
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix B
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

