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Abstract

In this paper, we study the gyrovector space structure (gyro-structure) of matrix
manifolds. Our work is motivated by the success of hyperbolic neural networks
(HNNs) that have demonstrated impressive performance in a variety of applications.
At the heart of HNNs is the theory of gyrovector spaces that provides a powerful
tool for studying hyperbolic geometry. Here we focus on two matrix manifolds,
i.e., Symmetric Positive Definite (SPD) and Grassmann manifolds, and consider
connecting the Riemannian geometry of these manifolds with the basic operations,
i.e., the binary operation and scalar multiplication on gyrovector spaces. Our
work reveals some interesting facts about SPD and Grassmann manifolds. First,
SPD matrices with the Affine-Invariant (AI) and Log-Euclidean (LE) geometries
have rich structure with strong connection to hyperbolic geometry. Second, linear
subspaces, when equipped with our proposed basic operations, form what we
call gyrocommutative and gyrononreductive gyrogroups. Furthermore, they share
remarkable analogies with gyrovector spaces. We demonstrate the applicability of
our approach for human activity understanding and question answering.

1 Introduction

Data lying on matrix manifolds are commonly encountered in various applied areas such as medical
imaging [3, 37], shape analysis [41], drone classification [6], image recognition [11], and human
behavior analysis [10, 15, 16, 20, 21, 22, 31, 40]. These data arise from constraint sets of the problem,
for which there is a natural representation of elements in the form of matrix arrays [2]. Due to the
non-Euclidean nature of these data, traditional optimization algorithms usually fail to obtain good
results in the matrix manifold setting. While a large body of works [6, 7, 8, 10, 20, 21, 22, 31, 33, 48]
has been developed to generalize traditional optimization algorithms to this setting, there is still
a lack of works that translate the language of differential geometry to basic operations on matrix
manifolds so that they can be used in computational building blocks of neural network models
on these manifolds just as basic operations on Euclidean spaces, e.g., matrix-matrix addition and
scalar-matrix multiplication are used in deep neural networks (DNNs).

To address the above issue, we propose a novel framework based on the theory of gyrovector
spaces [44, 45, 46] that has been successfully applied in the context of HNNs [12, 39]. Our aim is to
uncover hidden analogies between the target manifolds and Euclidean spaces in the same way that we
uncover hidden analogies between hyperbolic and Euclidean spaces [12, 39, 44, 45, 46]. Although
there are some works [1, 17, 24, 25, 26, 27, 29] showing the gyro-structure of SPD manifolds with the
AI geometry, none of them provides a rigorous mathematical formulation for the connection between
the basic operations of [1, 17, 18, 24, 25, 26, 27] and the AI geometry of SPD manifolds. In this
paper, we show how the basic operations can be constructed from the Riemannian geometry of matrix
manifolds, and derive their compact expressions for SPD and Grassmann manifolds. In the case of
SPD manifolds with the LE geometry [3], one recovers precisely the operations of [3] that give these
manifolds a vector space structure. In the case of Grassmann manifolds, we obtain gyrocommutative
and gyrononreductive gyrogroups that share remarkable analogies with gyrovector spaces. To the
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best of our knowledge, our work is the first that studies the structure of Grassmann manifolds under
the framework of gyrovector spaces. Our main contributions are (1) We propose a method for
constructing some basic operations, i.e., matrix-matrix addition and scalar-matrix multiplication
on SPD and Grassmann manifolds; (2) We derive compact expressions of these operations for the
considered manifolds; (3) We verify the gyro-structure of SPD manifolds, and some axioms of
gyrovector spaces for Grassmann manifolds; (4) We showcase our approach on the tasks of human
activity understanding and question answering.

2 Background

2.1 Gyrovector Spaces

Gyrovector spaces form the setting for hyperbolic geometry in the same way that vector spaces form
the setting for Euclidean geometry [44, 45, 46]. We first recap the definitions of gyrogroups and
gyrocommutative gyrogroups proposed in [44, 45, 46]. For greater mathematical detail and in-depth
discussion, we refer the interested reader to these papers.
Definition 2.1 (Gyrogroups [46]). A pair (G,⊕) is a groupoid in the sense that it is a nonempty set,
G, with a binary operation, ⊕. A groupoid (G,⊕) is a gyrogroup if its binary operation satisfies the
following axioms for a, b, c ∈ G:

(G1) There is at least one element e ∈ G called a left identity such that e⊕ a = a.

(G2) There is an element 	a ∈ G called a left inverse of a such that 	a⊕ a = e.

(G3) There is an automorphism gyr[a, b] : G→ G for each a, b ∈ G such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c (Left Gyroassociative Law).

The automorphism gyr[a, b] is called the gyroautomorphism, or the gyration of G generated by a, b.

(G4) gyr[a, b] = gyr[a⊕ b, b] (Left Reduction Property).
Definition 2.2 (Gyrocommutative Gyrogroups [46]). A gyrogroup (G,⊕) is gyrocommutative if it
satisfies

a⊕ b = gyr[a, b](b⊕ a) (Gyrocommutative Law).

The following definition of gyrovector spaces is slightly different from Definition 3.2 in [46].
Definition 2.3 (Gyrovector Spaces). A gyrocommutative gyrogroup (G,⊕) equipped with a scalar
multiplication

(t, x)→ t� x : R×G→ G

is called a gyrovector space if it satisfies the following axioms for s, t ∈ R and a, b, c ∈ G:

(V1) 1� a = a, 0� a = t� e = e, and (−1)� a = 	a.

(V2) (s+ t)� a = s� a⊕ t� a.

(V3) (st)� a = s� (t� a).

(V4) gyr[a, b](t� c) = t� gyr[a, b]c.

(V5) gyr[s� a, t� a] = Id, where Id is the identity map.

Note that the axioms of gyrovector spaces considered in our work are more strict than those proposed
in [24, 25, 26, 27]. Thus many results proved in [24, 25, 26, 27] can be applied to our case, which
gives rise to interesting applications.

3 Proposed Approach

For simplicity of exposition, we will concentrate on real matrices. Denote by Mn,m the space of
n × m matrices, Sym+

n the space of n × n SPD matrices, Symn the space of n × n symmetric
matrices, On the space of n× n orthogonal matrices, Grn,p the p-dimensional subspaces of Rn. Let
M be a Riemannian homogeneous space, TPM be the tangent space ofM at P ∈M. Denote by
exp(P) and log(P) the usual matrix exponential and logarithm of P, ExpP(W) the exponential
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map at P that associates to a tangent vector W ∈ TPM a point ofM, LogP(Q) the logarithmic
map of Q ∈M at P. Let TP→Q(W) be the parallel transport of W from P to Q along geodesics
connecting P and Q. We will use superscripts for the exponential and logarithmic maps, and the
parallel transport to indicate their associated Riemannian metric (in the case of SPD manifolds) or
the target manifolds (in the case of Grassmann manifolds). The following definitions generalize those
of [12] to the matrix manifold setting.
Definition 3.1. Let r be a positive real number. The binary operation P⊕r Q where P,Q ∈M is
obtained by projecting Qr in the tangent space at the identity element I ∈M with the logarithmic
map, computing the parallel transport of this projection from I to Pr along geodesics connecting I
and Pr, and then projecting it back on the manifold with the exponential map, i.e.,

P⊕r Q =
(

ExpPr (TI→Pr (LogI(Q
r)))

) 1
r . (1)

Definition 3.2. The scalar multiplication t⊗P where t ∈ R and P ∈M is obtained by projecting
P in the tangent space at the identity element I ∈ M with the logarithmic map, multiplying this
projection by the scalar t in TIM, and then projecting it back on the manifold with the exponential
map, i.e.,

t⊗P = ExpI(tLogI(P)). (2)

In addition to the basic operations defined above, we need to determine an automorphism in order
to verify the gyro-structure of a given matrix manifold. In the following, we will provide such
automorphisms and derive compact expressions of the basic operations for SPD and Grassmann
manifolds. The obtained expressions will ease the task of verifying the axioms of gyrovector spaces.
Also, they often lead to simple and efficient implementations of neural networks on the considered
manifolds. Furthermore, they enable effective generalizations of some operations on Euclidean
spaces, e.g., matrix scaling to these manifolds (see Sections 4.1.2 and 4.2.2).

3.1 Gyrovector Spaces of SPD Matrices

We investigate the gyro-structure of SPD manifolds with the AI and LE geometries in Sections 3.1.1
and 3.1.2, respectively. The AI and LE frameworks are reviewed in the supplemental material. We
refer the interested reader to that document for our theoretical results that reveal hidden analogies
between SPD manifolds with the AI and LE geometries and Euclidean spaces.

3.1.1 AI Gyrovector Spaces

We first examine SPD manifolds with the AI geometry. Lemma 3.3 gives a compact expression of the
binary operation (matrix-matrix addition).
Lemma 3.3. For P,Q ∈ Sym+

n , the binary operation P⊕rai Q is given as

P⊕rai Q = (P
r
2QrP

r
2 )

1
r . (3)

Proof See the supplemental material.

An implicit assumption in Eq. (3) is that positive definite matrices are taken from the computations
related to matrix powers. This assumption is used in all computations in Sections 3.1.1 and 3.1.2.

The identity element of Sym+
n is the n× n identity matrix In. Then, from Eq. (3), the inverse of P is

given by
	raiP = P−1.

Lemma 3.4. For P ∈ Sym+
n and t ∈ R, the scalar multiplication t⊗ai P is given as

t⊗ai P = Pt. (4)

Proof See the supplemental material.
Definition 3.5 (AI Gyrovector Spaces). Define a binary operation ⊕rai and a scalar multiplication
⊗ai by Eqs. (3) and (4), respectively. Define a gyroautomorphism generated by P and Q as

gyrrai[P,Q]R =
(
F rai(P,Q)Rr(F rai(P,Q))−1

) 1
r , (5)

where F rai(P,Q) = (P
r
2QrP

r
2 )−

1
2P

r
2Q

r
2 .

Theorem 3.6. Gyrogroups (Sym+
n ,⊕rai) with the scalar multiplication ⊗ai form gyrovector spaces

(Sym+
n ,⊕rai,⊗ai).
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Proof See the supplemental material.

The expressions of the binary operation, scalar multiplication, and gyroautomorphism given in
Eqs. (3), (4), and (5) have appeared in [1, 17, 18]. However, these works concern with algebraic
structures referred to as generalized gyrovector spaces where their considered set of axioms is
different from the one in Section 2.1. The expressions given in Eq. (5) with r = 1 and r = 2 have
also appeared in [24, 25, 26, 27]. However, no general form of the gyroautomorphism is given in
these works.

3.1.2 LE Gyrovector Spaces

The LE metrics have proven to yield similar results as the AI metrics in practice, but with much
simpler and faster computations [3]. This motivates us to study the gyro-structure of SPD manifolds
with the LE geometry. As far as we know, this topic has not been investigated in previous works.
The result given in the following lemma is not trivial as closed formulae do not exist for the parallel
transport associated with the LE geometry.
Lemma 3.7. For P,Q ∈ Sym+

n , the binary operation P⊕rle Q is given as

P⊕rle Q =
(

exp(log(Pr) + log(Qr))
) 1

r . (6)

Proof See the supplemental material.

From Lemma 3.7, the inverse of P is given by

	rleP = P−1.

Similarly to the scalar multiplication ⊗ai, the scalar multiplication ⊗le is constructed from Eq. (2).
Lemma 3.8 gives an expression of this operation that is straightforward.
Lemma 3.8. For P ∈ Sym+

n and t ∈ R, the scalar multiplication t⊗le P is given by

t⊗le P = Pt. (7)

Definition 3.9 (LE Gyrovector Spaces). Define a binary operation ⊕rle and a scalar multiplication
⊗le by Eqs. (6) and (7), respectively. Define a gyroautomorphism generated by P and Q as

gyrrle[P,Q] = Id .

Theorem 3.10. Gyrogroups (Sym+
n ,⊕rle) with the scalar multiplication ⊗le form gyrovector spaces

(Sym+
n ,⊕rle,⊗le).

Proof See the supplemental material.

The conclusion of Theorem 3.10 agrees with [3] which shows that the space of SPD matrices
with the LE geometry has a vector space structure. This vector space structure is given by the
operations defined in [3] that turn out to be the binary operation and scalar multiplication on LE
gyrovector spaces in the specific case where r = 1. Indeed, it can be shown that the mapping
exp : (Symn,+, .) → (Sym+

n ,⊕rle,⊗le) is a vector space isomorphism. Thus, for any r, the
operations defined above also turn the space of SPD matrices with the LE geometry into a vector
space. This generalizes the result of [3].

3.2 Grassmann Gyrocommutative and Gyrononreductive Gyrogroups

In the previous sections, we concern with the non-positively curved spaces of SPD matrices. In this
section, we focus on another family of matrix manifolds, i.e., the non-negatively curved Grassmann
manifolds. We adopt the following definition for Grassmann manifolds:

Grn,p = {P ∈ Mn×n |PT = P,P2 = P, rank(P) = p}.

The Riemannian geometry of Grassmann manifolds is reviewed in the supplemental material.

Let In,p =

[
Ip 0
0 0

]
be the identity element of Grn,p. For the sake of convenience, we denote

P = LoggrIn,p
(P). For P,Q ∈ Grn,p, assuming that In,p and P are not in each other’s cut locus (see
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the supplemental material for a definition of cut locus of Grassmann manifolds), and In,p and Q are
not in each other’s cut locus, the binary operation is defined as

P⊕gr Q = ExpgrP (TIn,p→P(LoggrIn,p
(Q))).

Lemma 3.11. For P,Q ∈ Grn,p, the binary operation P⊕gr Q is given as

P⊕gr Q = exp([P, In,p])Q exp(−[P, In,p]), (8)
where [., .] denotes the matrix commutator.

Proof See the supplemental material.

Lemma 3.12 gives a closed-form expression of the binary operation in terms of P and Q.
Lemma 3.12. For P,Q ∈ Grn,p, the binary operation P⊕gr Q is given as

P⊕gr Q = exp
(1

2
log
(
(In − 2P)(In − 2In,p)

))
Q exp

(
− 1

2
log
(
(In − 2P)(In − 2In,p)

))
.

Proof See the supplemental material.

For P ∈ Grn,p such that In,p and P are not in each other’s cut locus, the inverse 	grP of P is
defined as

	grP = ExpgrIn,p
(−LoggrIn,p

(P)).

The scalar multiplication is defined as in Eq. (2) (subject to the assumption stated above).
Lemma 3.13. For P ∈ Grn,p and t ∈ R, the scalar multiplication t⊗gr P is given by

t⊗gr P = exp([tP, In,p])In,p exp(−[tP, In,p]). (9)

Proof See the supplemental material.

Lemma 3.14 gives a closed-form expression of the scalar multiplication in terms of t and P.
Lemma 3.14. For P ∈ Grn,p and t ∈ R, the scalar multiplication t⊗gr P is given by

t⊗gr P = exp
( t

2
log
(
(In − 2P)(In − 2In,p)

))
In,p exp

(
− t

2
log
(
(In − 2P)(In − 2In,p)

))
.

Proof See the supplemental material.

Grassmann manifolds, when equipped with the above operations, do not form gyrovector spaces.
However, as we will show later, they still form spaces that verify most of the axioms of gyrovector
spaces. Note that since these operations can only be defined under the assumptions stated at the
beginning of this section, all the axioms in Section 2.1 must be considered under these assumptions.
We thus make them implicitly in the following. In order to specify the structure of Grassmann
manifolds, we need to define some new algebraic structures that are generalizations of groups
(Definitions 3.15 and 3.16) and vector spaces (Definition 3.17).
Definition 3.15 (Nonreductive Gyrogroups). A groupoid (G,⊕) is a nonreductive gyrogroup if its
binary operation satisfies axioms (G1), (G2), and (G3).
Definition 3.16 (Gyrocommutative and Gyrononreductive Gyrogroups). A nonreductive gy-
rogroup (G,⊕) is gyrocommutative and gyrononreductive if it satisfies the Gyrocommutative Law.
Definition 3.17 (Nonreductive Gyrovector Spaces). A gyrocommutative and gyrononreductive
gyrogroup (G,⊕) equipped with a scalar multiplication � is called a nonreductive gyrovector space
if it satisfies axioms (V1), (V2), (V3), (V4), and (V5).

Definition 3.18 gives the expression of a gyroautomorphism in Grassmann manifolds.
Definition 3.18 (Grassmann Gyrocommutative and Gyrononreductive Gyrogroups). Define
a binary operation ⊕gr and a scalar multiplication ⊗gr by Eqs. (8) and (9), respectively. For
P,Q ∈ Grn,p, assuming that In,p and P are not in each other’s cut locus, In,p and Q are not in
each other’s cut locus, In,p and P⊕gr Q are not in each other’s cut locus, then a gyroautomorphism
generated by P and Q can be defined as

gyrgr[P,Q]R = Fgr(P,Q)R(Fgr(P,Q))−1, (10)

where Fgr(P,Q) is given by

Fgr(P,Q) = exp(−[P⊕gr Q, In,p]) exp([P, In,p]) exp([Q, In,p]). (11)
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The following identities are required for the verification of some axioms of nonreductive gyrovector
spaces for Grassmann manifolds subject to certain conditions (Theorem 3.20). These identities are
new to the best of our knowledge.
Lemma 3.19. For P,F ∈ Grn,p, O ∈ On, ∆ ∈ TP Grn,p, m ∈ N, and s ∈ R, the following
identities hold:

1. Loggr
OFOT (OPOT ) = OLoggrF (P)OT ;

2. Expgr
OPOT (O∆OT ) = OExpgrP (∆)OT ;

3. [∆,P]m = (In − 2P)(−[∆,P])m(In − 2P);

4. exp(s[∆,P]) = (In − 2P) exp(−s[∆,P])(In − 2P).

Proof See the supplemental material.

We are now ready to state the main results of this section.
Theorem 3.20. Groupoids (Grn,p,⊕gr) form gyrocommutative and gyrononreductive gyrogroups.
Furthermore, gyrocommutative and gyrononreductive gyrogroups (Grn,p,⊕gr) with the scalar mul-
tiplication ⊗gr satisfy axioms (V1) and (V4), and axioms (V2), (V3), and (V5) under the following
conditions:

(V2) (s+ t)⊗gr P = s⊗gr P⊕gr t⊗gr P for P ∈ Grn,p, t ∈ R, and s ∈ R such that:

|s| < min
λi

{ π

2| Im(λi)|

}
,

where λi is an eigenvalue of [P, In,p], and Im(λi) is the imaginary part of λi.

(V3) (st)⊗gr P = s⊗gr (t⊗gr P) for P ∈ Grn,p, s ∈ R, and t ∈ R such that:

|t| < min
λi

{ π

2| Im(λi)|

}
.

(V5) gyrgr[s⊗gr P, t⊗gr P] = Id for P ∈ Grn,p, and s, t ∈ R such that:

max{|s|, |t|, |s+ t|} < min
λi

{ π

2| Im(λi)|

}
.

Proof See the supplemental material.

The following corollaries are useful in practice for the verification of axioms (V2), (V3), and (V5).
Corollary 3.21. Gyrocommutative and gyrononreductive gyrogroups (Grn,p,⊕gr) with the scalar
multiplication ⊗gr satisfy axioms (V2), (V3), and (V5) if the right-hand sides of the inequalities
stated in Theorem 3.20 are replaced with

π

2‖[P, In,p]‖
,

where ‖.‖ denotes the Hilbert-Schmidt norm.

Proof See the supplemental material.
Corollary 3.22. Gyrocommutative and gyrononreductive gyrogroups (Grn,p,⊕gr) with the scalar
multiplication ⊗gr satisfy axioms (V2), (V3), and (V5) under the following conditions: (V2) |s| ≤ 1;
(V3) |t| ≤ 1; (V5) max{|s|, |t|, |s+ t|} ≤ 1.

Proof See the supplemental material.

It follows from Corollary 3.22 that if max{|s|, |t|, |s + t|} ≤ 1, then Grassmann manifolds, when
equipped with the basic operations defined in Eqs. (8) and (9), verify all the axioms of nonreductive
gyrovector spaces.

4 Applications

To showcase our approach, we propose new methods for human activity understanding and question
answering. We refer the interested reader to the supplemental material for more applications.
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4.1 Human Activity Understanding

In this section, we develop a class of RNNs on SPD manifolds for human activity understanding.
It is worth mentioning that the operations defined in Section 3.1 as well as those constructed in
Section 4.1.2 can be used to build any type of neural networks on SPD manifolds, e.g., convolutional
neural networks. However, since RNNs are based on update equations that involve the basic operations
on matrices, they are well suited for validating our approach.

4.1.1 Problem Formulation

Human activities can be recognized from low/mid level features [35, 36] or high-level poses [23, 32,
33, 34]. We use 3D skeleton data as they have shown to outperform low/mid level features for the
considered task [23]. The goal is to build a model that for each sequence of 3D positions of body
(hand) joints identifies the action performed by the person (or group of persons) in the sequence.

4.1.2 Proposed Method

We will make use of the basic operations on AI and LE gyrovector spaces and the concept of gy-
roderivative in these spaces (see the supplemental material) that is similar to hyperbolic derivative [4]
in Möbius gyrovector spaces. We also need to generalize some operations of Euclidean RNNs to the
SPD manifold setting. Here we focus on 2 operations, i.e., matrix scaling and pointwise nonlinearity.

Matrix Scaling If P ∈ Sym+
n , W ∈ Rn,W > 0, then the matrix scaling W ⊗vspd P is given by

W ⊗vspd P = U diag(W ∗V)UT ,

where Udiag(V)UT is the eigenvalue decomposition of P, and W ∗V is the element-wise multi-
plication.

Pointwise nonlinearity If ϕ is a pointwise nonlinear activation function, then the pointwise non-
linearity ϕ⊗a(P) is given by

ϕ⊗a(P) = Udiag(max(εI, ϕ(V)))UT ,

where ε > 0 is a rectification threshold, and U diag(V)UT is the eigenvalue decomposition of P.

By adapting a class of models that are invariant to time rescaling [42] to the SPD manifold setting
(see the supplemental material), we obtain the following update equations for our models:

Pt = ϕ⊗a(Wh ⊗vspd Ht−1 + Wx ⊗vspd Xt), (12)

Ht = Ht−1 ⊕ α� ((	Ht−1)⊕Pt), (13)
where Xt ∈ Sym+

n is the input at frame t, Ht−1,Ht ∈ Sym+
n are the hidden states at frames t− 1

and t, respectively, Wh,Wx ∈ Rn, and α ∈ R is a learnable parameter.

4.1.3 Implementation Details

In order to retain the correlation of neighboring joints [5, 49] and to increase feature interactions
encoded by covariance matrices, we first identify a closest left (right) neighbor of every joint based
on their distance to the hip (wrist) joint1, and then combine the 3D coordinates of each joint and those
of its left (right) neighbor to create a feature vector for the joint. For a given frame t, a mean vector
µµµt and a covariance matrix ΣΣΣt are computed from the set of feature vectors of the frame and then
combined [30] to create a SPD matrix as

Yt =

[
ΣΣΣt +µµµt(µµµt)

T µµµt
(µµµt)

T 1

]
.

The lower part of matrix log(Yt) is flattened to obtain a vector ṽt. All vectors ṽt within a time
window [t, t + c − 1] where c is a constant are used to compute a covariance matrix as Zt =
1
c

∑t+c−1
i=t (ṽi − v̄t)(ṽi − v̄t)

T , where v̄t = 1
c

∑t+c−1
i=t ṽi. Matrix Zt is then the input data at frame

t of the networks. Our network GyroAI-HAUNet is illustrated in Fig. 1a. For classification, the
network output is projected to the tangent space at the identity matrix using the logarithmic map. The
lower part of the resulting matrix is flattened and then is fed to a fully-connected layer.

1For joints having more than 2 neighbors, one of them can be chosen.
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(a) Architecture of GyroAI-HAUNet (d = 6)

Similarity Scoring Layer

Question Embedding Negative Answer EmbeddingPositive Answer Embedding

BCE Loss

Token EmbeddingToken Embedding

Projection Layer

Embedding Layer

Positive Answer Sequence Negative Answer SequenceQuestion Sequence

(b) Architecture of GyroGR-QANet

Figure 1: Our proposed architectures for human action understanding and question answering.

Table 1: Accuracy comparison (%) of our networks against state-of-the-art SPD neural networks.

Dataset
SPDNet SPDNetBN SPD-SRU GyroAI-HAUNet GyroLE-HAUNet

M = 1 M = 3 M = 1 M = 3 M = 1 M = 3 M = 1 M = 3 M = 1 M = 3

HDM05 58.44 72.75 62.54 76.25 42.26 54.79 61.50 78.14 57.01 74.53
#HDM05 0.12 MB 0.77 MB 0.13 MB 0.82 MB 0.05 MB 0.32 MB 0.05 MB 0.31 MB 0.05 MB 0.31 MB

FPHA 87.65 88.17 88.52 91.83 78.57 85.16 89.73 96.00 83.03 89.94
#FPHA 0.04 MB 0.28 MB 0.05 MB 0.31 MB 0.019 MB 0.114 MB 0.018 MB 0.110 MB 0.018 MB 0.110 MB
NTU60 73.26 77.38 75.84 79.52 66.25 75.34 83.12 94.72 77.25 89.44

#NTU60 0.03 MB 0.20 MB 0.04 MB 0.28 MB 0.004 MB 0.027 MB 0.004 MB 0.026 MB 0.004 MB 0.026 MB

4.1.4 Results

We use three datasets, i.e., HDM05 [16], FPHA [13], and NTU RGB+D 60 (NTU60) [38]. These
datasets include three different types of activities: body actions (HDM05), hand actions (FPHA), and
interaction actions (NTU60). In the same spirit of previous works [6, 20, 40], we are interested in
comparing manifold networks with a focus on SPD manifolds, and do not necessarily seek state-of-
the-art performance for the target task. We use a temporal pyramid representation for each sequence.
At temporal pyramid M , a given sequence is partitioned into M subsequences of equal size. Each
subsequence is then fed to a model with its own parameter set. The outputs from all the models are
concatenated to create a final representation of the sequence. We run each model three times and
report the best accuracy from these three runs [12]. The experimental settings can be found in the
supplemental material. This document also reports the mean accuracies and standard deviations of
some representative methods, an ablation study, and a comparison of our networks against Euclidean
RNNs, transformers, HNNs, and graph neural networks (GNNs).

Comparison against SPD Neural Networks Our networks, referred to as GyroAI-HAUNet and
GyroLE-HAUNet, are compared against SPDNet [20], SPDNetBN [6], and SPD-SRU [8]. Results
of these networks are obtained using their official code2,3,4 with default parameter settings. Results
for M = 1 and M = 35 are given in Tab. 1. On HDM05 dataset, GyroAI-HAUNet outperforms
SPDNet and SPD-SRU, and performs worse than SPDNetBN when M = 1. However, when M = 3,
GyroAI-HAUNet gives the best result among the competing networks. On FPHA and NTU60
datasets, GyroAI-HAUNet gives the best results for both M = 1 and M = 3. In terms of model size,
GyroAI-HAUNet and GyroLE-HAUNet require far fewer parameters than SPDNet and SPDNetBN
in all cases. For example, on FPHA dataset, when M = 3, GyroAI-HAUNet outperforms SPDNetBN
by 4.17% with 2.8 times fewer parameters. Also, on NTU60 dataset, when M = 3, GyroAI-HAUNet
outperforms SPDNetBN by 15.20% with 10.7 times fewer parameters.

2https://github.com/zhiwu-huang/SPDNet
3https://papers.nips.cc/paper/2019/hash/6e69ebbfad976d4637bb4b39de261bf7-Abstract.

html
4https://github.com/zhenxingjian/SPD-SRU/tree/master
5For all the networks, setting M > 3 did not yield better results on the three datasets.
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4.2 Question Answering

In this section, we consider learning word embeddings in Grn,p. We also investigate the use of
product manifolds Grn1,p×Sym+

n2
for training word embeddings. This idea is mainly motivated by

the work of [14] that shows the efficacy of mixed-curvature representations for graph embeddings.

4.2.1 Problem Formulation

Let Q be a list of questions, A be a list of answers to the questions in Q. Each question q ∈ Q has
a list of candidate answers in A. The candidate set comes with their relevancy judgements, where
answers that are correct (positive) have labels equal to 1 and 0 otherwise. The goal is to build a model
that for each query q and its list of candidate answers generates an optimal ranking such that correct
answers appear at top of the list [29, 43].

4.2.2 Proposed Method

The core idea is to learn a scoring function [29, 43] given as

φqa(q, a) = −wfd(Q,A) + wb,

where Q and A are embeddings of question q and answer a, respectively, wf , wb ∈ R are parameters
of the model, and d(.) is a distance function in the target manifolds. We define a matrix scaling
operation as follows.

Matrix Scaling We parameterize a point P ∈ Grn,p by a matrix B ∈ Mp,n−p such that[
0 B
−BT 0

]
= [P, In,p].

Then point P can be computed (see Eq. (8) and the supplemental material) by

P = exp([P, In,p])In,p exp(−[P, In,p]) = exp

([
0 B
−BT 0

])
In,p exp

(
−
[

0 B
−BT 0

])
.

The matrix scaling ⊗mgr is defined as

A⊗mgr P = exp

([
0 A ∗B

−(A ∗B)T 0

])
In,p exp

(
−
[

0 A ∗B
−(A ∗B)T 0

])
,

where A ∈ Mp,n−p. The embedding of question q is computed from those of its tokens as

Q = B⊕gr
(
(S⊗mgr T1)⊕gr (S⊗mgr T2) . . .⊕gr (S⊗mgr Tl)

)
,

where Ti ∈ Grn,p, i = 1, . . . , l are embeddings of the tokens in question q, S ∈ Mp,n−p and
B ∈ Grn,p are parameters of the model. The embedding of answer a is the summation of those of its
tokens using operation ⊕gr. For P,Q ∈ Grn,p, the distance function d(., .) is defined as

d(P,Q) = dgr(P,Q) = ‖P−Q‖F .

We also train word embeddings in product manifold Grn1,p×Sym+
n2

using the distance function

d((Pgr,Pspd), (Qgr,Qspd)) = dgr(Pgr,Qgr) + τdF1

spd(Pspd,Qspd),

where Pgr,Qgr ∈ Grn1,p, Pspd,Qspd ∈ Sym+
n2

, dF1

spd(., .) is the Finsler distance function proposed
in [29], and τ is a constant. This results in three models based on the scaling, rotation, and reflection
transformations of [29]. Our Grassmann model is shown in Fig. 1b.

4.2.3 Results

We use two datasets, i.e., TrecQA [47] (clean version) and WikiQA [50]. The mean average precision
(MAP) and mean reciprocal rank (MRR) are used as evaluation metrics [43]. We compare our
models6 against the SPD models of [29]. Since the codes of these models are not publicly available,

6Code available at https://github.com/spratmnt/qa.
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Table 2: Comparison of our models against the SPD models of [29]. The SPD models learn
embeddings in Sym+

14. Our Grassmann model learns embeddings in Gr14,7. Our models based on
the product manifold learn embeddings in Gr14,7×Sym+

8 . Results are computed over three runs.

DOF Model
TrecQA WikiQA Time (TrecQA,seconds)

MAP MRR MAP MRR Train/epoch Test
105 SPDRSca 47.77 ± 0.18 57.54 ± 0.32 59.42 ± 0.04 60.57 ± 0.05 15.35 1.41
105 SPDF1

Sca 48.35 ± 1.24 57.64 ± 2.23 60.68 ± 0.42 62.01 ± 0.34 15.56 1.43
105 SPDRRot 48.07 ± 0.89 54.49 ± 0.87 59.37 ± 1.25 60.74 ± 1.50 15.98 1.41
105 SPDF1

Rot 49.02 ± 1.62 58.72 ± 1.85 60.60 ± 0.67 62.28 ± 0.74 16.09 1.43
105 SPDRRef 48.79 ± 0.91 57.12 ± 1.23 59.07 ± 0.53 60.58 ± 0.52 15.98 1.41
105 SPDF1

Ref 48.33 ± 0.48 56.18 ± 0.97 59.93 ± 0.18 61.80 ± 0.39 16.09 1.43
49 GyroGR-QANet 50.18 ± 1.29 58.19 ± 2.59 56.69 ± 1.45 58.26 ± 1.45 3.69 0.25
85 GyroGR-SPDF1

Sca-QANet 50.10 ± 0.30 57.70 ± 0.93 60.62 ± 0.25 62.42 ± 0.16 11.62 0.90
85 GyroGR-SPDF1

Rot-QANet 50.27 ± 0.56 58.62 ± 1.35 59.78 ± 0.15 61.66 ± 0.23 11.72 0.90
85 GyroGR-SPDF1

Ref -QANet 48.83 ± 1.89 58.11 ± 0.87 60.41 ± 0.39 61.86 ± 0.35 11.72 0.90

we implemented them by following closely the instructions in [29]. The implementation details and
experimental settings can be found in the supplemental material.

Tab. 2 reports the means and standard deviations of MAP and MRR from three runs (DOF stands for
degrees of freedom). Our Grassmann model GyroGR-QANet performs favorably against most of the
SPD models on TrecQA dataset. Also, results of our models based on the product manifold show
the efficacy of mixed-curvature representations [14] in question answering. Note that the numbers
of DOF of our models are smaller than those of the SPD models. We also note that techniques
in [19, 28] could potentially improve the performance of our models.

5 Limitations of Our Work

To develop our SPD models, we only construct the basic operations and two other operations, i.e.,
matrix scaling and pointwise nonlinearity (see Section 4.1.1). Other operations [39] should also be
designed in order to improve the representation power of our networks. Also, the question of how to
generalize a broader class of DNNs to the SPD manifold setting should be addressed in future work.

Our experiments for question answering have shown the usefulness of product manifolds
Grn1,p×Sym+

n2
for learning word, entity, and relation embeddings. More investigation is needed

to see if a product of multiple smaller-dimension SPD and Grassmann manifolds will improve
performance [14]. It would also be interesting to find out patterns that show the relationship between
the performance of the embeddings and the theoretical curvature of the manifolds in our problems [9].

6 Conclusion

We have shown that the AI and LE geometries of SPD manifolds have strong connection to hyperbolic
geometry, and Grassmann manifolds share very similar properties with gyrovector spaces. We have
presented new methods for generalizing Euclidean neural networks to the SPD and Grassmann
manifold settings. Our experimental results on human activity understanding and question answering
have demonstrated the effectiveness of the proposed approach.
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