Appendix

A Overview

Organizational Details. This Appendix is organized as follows.
* In Section[B] we provide technical background materials that will be needed for proving the
homogenization results.

* In Section[C] we present a general theorem that includes Theorem [4.T]as a special case and
provide the proof.

* In Section|D] we provide proof for the generalization bound (Theorem {.2).
* In Section[E] we provide proof for the implicit regularization result (Theorem [4.3).
* In Section[F] we provide additional empirical results and details.

In addition to the notations introduced in the main paper, we shall need the following notations.

Notation. Denote the space of cadlag (right continuous with left limits) functions from [0, 1]
to R? by D([0,1],R?), on which the Skorokhod-type metrics are denoted by o.. The left limit
of f € D([0,1],R%) at ¢ is written by f(t—) := limgy f(s). The identity function is denoted
byid : ¢+ t, t € [0,1]. For a continuous function f defined on R?, denote the uniform norm by
[l flloo = sup,cga | f(x)]. Denote by 2([0, 1], R?) the space of admissible path-trajectory pairs in
Deﬁnition whose metrics are denoted by av.. Denote by CP~¥ ([0, 1], R?) the space of continuous
functions with finite p-variation. In Deﬁnition denote by 4 the linear interpolation in R?.

B Additional Technical Background

B.1 Background on metrics and topologies on the space of cadlag functions

B.1.1 Skorokhod-type topologies

The Skorokhod J; topology on D([0, 1],R?) is induced by the following metric.

Definition B.1 (Skorokhod distance). The Skorokhod distance on D([0, 1], R¢), the space of cadlag
functions, is defined by

oo (X1, X) = inf A — id||oo V || X1 0 A, Xaloc,

where the inf is taken on all increasing bijections A from [0, 1] to itself.

Another important topology on D([0, 1], R?) is the SM topology defined as follows.

Definition B.2 (Skorokhod SM topology). The Skorokhod SM; topology on D([0, 1], R?), the
space of cadlag functions, is defined by the metric

ds i, (X1, Xp) = inf [[(A1, 71) = (A2, 72)lloos
where the inf is taken on all pairs (\;, ;) € C’([O 1] [ 1] x Rd) such that (A;,7;)(0) = (0, X;(0)),
(Niy7:)(1) = (1, X;(1)) and 7, (t) € [X;(Ai(t)-) Ai(t))], i = 1, 2. Tt is equivalent to the metric
on the graph of functions in D, with discontlnultles connected by the straight segments.
Recall that for 1 < p < oo, the p-variation of u : [0, 1] — R is given by

1/p

k
[l povar = sup D lulty) —ult;-)l” |

O=to<t1<...<tp=1 i=1

and the subspace of D([0,1],R?) with finite p-variation is denoted by DP™¥ ([0, 1], R?). Let us
define the following p-variation generalisations of the Skorokhod topology.

Definition B.3 (Skorokhod-type p-variation).
Opvar(X1, X2) = inf max{||A — id||oc, || X1 0 A — Xa||pvar }

where the inf is taken on all increasing bijections A from [0, 1] to itself.
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B.1.2 Generalised Skorokhod topologies with interpolations

For discontinuous cadlag functions, one can interpolate jumps with path functions.

Definition B.4 (Path function). A path function on R? is a map ¢ : J — C([0, 1], R?), where
J C R4 x R, for which ¢(z,y)(0) = z and ¢(z, y)(1) = y for all (z,y) € J.

Definition B.5. A pair (X, ¢) is called admissible if all the jumps of X are in the domain of definiton
J of ¢, i.e. (X(t—),X(t)) € J for all jump times ¢ of X. Denote by ([0, 1], R?) the space of
admissible pairs, modulo the equivalence (X1, ¢1) ~ (Xa, ¢2) if X1 = X5 and ¢1 (X4 (¢t—), X1 (¢))
is a reparametrization of ¢o(X1(t—), X1(t)) for all jump times ¢ of X;.

Definition B.6. For admissible pair (X, $) € 2(]0,1],R?), we now construct a continuous path
X #9 as follows.

* Given a sequence 11,72, ... > 0 with 7 1=}, 7; < 00,

Let7:[0,1] = [0,1+ ] givenby 7(t) =t + Z Or i, <ty
k
« Define an intermediate process X € C([0,1 + 7], R%),
X(s) ift = 7(s) for some s € [0, 1]

B(X (1), X (1)) (‘“’“‘)

57%

X(t) =
®) ) ift € [7(tx—), 7(tx)) for some k.
« Finally, let X (t) = X (t(1 4 r)). We will drop the superscript § if § = 1.
Definition B.7. The (pseudo)metric cv.vsr on 2([0, 1], RY) is defined by
= - . 4.0
ap—var((Xa d))v (X7¢)) = %I_I}%) Up-Var(Xd)’JvX )
independent of the choice of the series Y -, rx. Denote by 27 ([0, 1], R?) the subspace of
2([0,1],R?) with finite .y, distance to 0. Conventionally, write
oo (X, 9), (X)) = lim 0 (X, X)
—
Remark B.1. If ¢ is the linear path function, then ., induces the SM; topology on the space
D([0,1],R%).
B.2 Background on rough differential equations (RDEs)

Definition B.8 (Forward RDE). We say that X is a solution to the forward RDE dX; = b(X); dW;
if
t
X, = Xo+ / b(X,)dWW,,
0

where the integral above denotes a limit of Riemann-Stieltjes sums with b(X (s—)) evaluated at the
left limit points of the partition intervals:

JREE SIS N SR e (AR A}

1
P|—0
[s,s’]€P
where the P are partitions of [0, ¢] into intervals, and |P| is the size of the longest interval.
Remark B.2. We make the following two observations.

» If W has finitely many jumps at times 0 < ¢; < ... < t, < 1, then the forward solution
of dX; = b(X); dW;, Xy = x can be obtained by solving the canonical RDE on each of
the intervals on which W is continuous, i.e., [0,%1), [t1,%2), - . ., [tn, 1), and requiring that
at jump times tg, k=1,...,,n:

th = th— + b(th—)(Wtk - Wtk—)'

« If in ), we write X™) := xm)t | and V™ = |tm]/m. then the first equation of (7] is
nothing but the forward RDE

dX™ = a4 (XY= av ™ 4 b (x™ymawt™, XM = 2™ e R4
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B.2.1 Young’s integral and Marcus SDE

For the purpose of defining Young’s integral for driving functions with finite g-variation, ¢ > 1, we
fix x € CP([0,1],R?) and y € CT([0,1], R*?) with 6§ = L + L > 1.

Definition B.9 (Young’s integral [You36]). There exists a sequence 2™ € C1¥([0, T],R?) such
that 2" — z in CP¥([0, 7], R?) and a sequence ¥,, € C’1 var([0, T'), Re*4) such that y,, — y in

C’q"’ar([O T] Re*4). For every s < t, the limit of f y™(u)dx™(u) exists, which we denote by

f y(u ) the Young’s integral of y against x on the 1nterva1 [s,t]. The Young’s integral does not
depend on the choices of sequences 2™ and y”, and we have

1

[ 9ot = 6)00) = 26D < =g el

We record the following Young-Léeve estimate, which will be useful for our purposes.

Proposition B.1 ([FVI0] Theorem 6.8). Let x € CP*([0,T],R%) and y € CT ([0, T], R**?)
with L + > 1. The integral path t — fo w)dx(u) is continuous with a finite p-variation and

‘ | vtdst

Solutions to Marcus rough differential equation (RDE) are defined via Young’s integrals and the
linear path function defined in Definition [B.6]

Definition B.10. The solution of a Marcus RDE

< C”x”p—var;[s,t](”qu-var;[s,t] + ||y||oo,[st])
p-var,[s,t]

dX = b(X) odW, X(0) =z
is obtained by

« first solving the continuous RDE dX = b(X' YAW 1, with ¢ = [, being the linear path
function on R¥;

« then the cadlag solution path X[0,1] — R? is given by X (t) = X (7(t)). Recall that
7:[0,1] = [0,1+r] givenby 7(t) =t + >, Orglir, <ey-

B.3 Example of a Marcus RDE

Here is an example of the solution of a rough differential equation in the Marcus sense [CEKM20].
Let # > 0 and W™ : [0,1] — R be the deterministic process which are 0 on [0,1/2], § on

[1/2 + 1/m, 1] and linear on [1/2,1/2 + 1/m)]. Denote by X\™ = (2™, 4{™) the solution to the
ordinary differential equation

day™ _ (=™ qpom (267 (1
ay™ L | W o | = o
It is not hard to see that that X\™ = (cos W™, sin W ™). Therefore, we have that pointwise
m m x 1 cos
W( S W, = 01,1 1) and X( ) X, = (yi) = (O) Licjo,41 (Sin9>)1te(§-,1].

If 0 # 0, (Xt)1e[0,1 fails to be the right-hand side of the limiting forward RDE since

[ )aw= g > (Y ae-w = () 0= (5) x5 -

[s,s']€P

Effectively, (X¢):e[o,1] is the solution to the Marcus RDE in the limit.
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C Homogenization: The Rigorous Version and the Proof of Theorem [4.1]

When talking about convergence of solutions to RDEs, we need to specify the sense of integration.
In view of the example in Subsection[B.3] it is not enough to look at the solution X as an element
of D(]0,1],R?) — it has to be coupled with jumps of the driving function. Let us consider the
driver-solution space D([0, 1], R"*¢) and introduce a new path function on R" .

Definition C.1. Consider b € C(R4,R4*"), a € C(R?,R?). Forx € R% and ® € C*¥ ([0, 1], R"),
let . p[z; @] € C1¥1([0, 1], RY) denote the solution IT of the equation

dIl = a(I)dt + b(IN)d®,  TI(0) = 2.
For the coefficient b, a pair of admissible points (wq, 1), (w2, 22) € Jup C R"T4 is in the space
Jap = {((w1,21), (w2, 22)) 1 w1, wa € RY, w15 Lg(wr, w2)](1) = 2}

We define the path function ¢, on J, ; by
Gap(wr,21), (w2, 22)) = (la(w1, w2)(t), mp[z1; la(wr, w2)](1)).

Next, we first state the precise assumptions for Theorem[4.1]in the main paper. The required topology
for the coefficients a,,, by, in Q) is as follows. For 4 > 0, ny1,n2 € N, denote by C7(R"™t, R™2)
the space of functions f : R™ — R™2 such thatE]

|flles =  max || flleo + sup max |9 (x) — P f(y)]

131=0,.... |7 oyerm li=15] |z —y[i~1¥)

< 00.

In particular, if 3 > 1, we have [|floc < [|fllcs and ||l < 1f]lo-

Assumption 1. Suppose that a € C7*(R?, R?), b € C72(R?, R?*") for some y; > 1,72 > . In
addition, we assume that

lim a,, = ain C"(RY RY), lim b, =bin C"2(R? R¥") and lim ac(()m) = Zo.
m— 00 m—r o0 m— 00

Assumption |1| requires that the difference between the gradients of coefficients ||V (a,, — @)||co
goes to zero and also their Holder constant W(“m_“)(ﬁ ):?Xe(“m_“)(y)‘ goes to zero uniformly on

x,y € R™ for some € > 0. This translates to the assumptions that the loss is second differentiable and
its Hessian is e-Holder, which are reasonable assumptions. Similarly, for the coefficients appearing
before the a-stable process (for o € (1,2) ), it is required that ||V (b,, — b)||oc goes to zero and

SUDP, ,cpm W(b’"’_b)(lz)__yi,(bm_b)(y)l goes to zero for some € > o — 1. In the setup for MPGD
where a,, = 77%(1:, Sp) = a (independent of m) and the b,,, is —p diag(x) or o1, it is easy to see

that these assumptions are satisfied.

In terms of how general the assumption is, we note that Assumption [I] can cover more general
situations; e.g., the case where is an empirical loss (taking m = n, the number of training samples)
and a is the population loss, and therefore our framework can be adapted for analysis in other settings
as well.

Theorem is an extension of Theorem 4.1 in [GMZ21]] (with the € there equal 1/m) to the case
where the coefficients a, b are dependent on the scaling parameter m. In particular, the proof of
Theorem 4.1 in [GM21] relies on verifying the hypotheses of Theorem 2.6 in [CFKM20] for the
particular example of the observable and Thaler map constructed for the MPGD (g).

We now prove a more general theorem that extends Theorem 2.6 in [CEKM20] and includes Theorem
[M.T]as a special case, stating all the needed assumptions. Applying this theorem together with the
hypotheses verification in the proof of Theorem 4.1 in [GM21]] completes the proof of Theorem {.1]

Theorem C.1 (A more general version of Theorem[d.1). Ler o € (1,2), 71 > 1 and vo > a. Let
v € L=(Y,RY) be Holder such that J vdp = 0, where 1 is the unique ergodic invariant probability

*Forany n € N, j = (j1,...,jn) € N§ is a multi-index with |j| = 37, 7; and the higher-order partial
derivative is defined by & = (9/031)---(9/9").
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measure of T :' Y — Y. We focus on the case where T exhibits superdiffusive behavior, which means
that there exists a r-dimensional Lévy process L and

[nt]—1
W (t) =n=1/ z vori Y L; in D([0, 1], R") under the SM topology (Definition[B.2)
j=0

asmn — oo.

If; in addition,
o lim, o0 ay, = ain O (R4, RY) for some a € O (R4, RY),
o lim, 00 by = bin C72(R%, R for some b € C72 (R, RI*T);
o limy, oo Tp =,

o W llpvar is tight for all p > ocand ", |Wy,(t) — Wy, (t=)|* = 0 a.s., where the sum is
taken over all jump times of W,

>

then for the forward RDE dX,, = a,,(X,,)~dV, +b,(X,)~dW,,, X,,(0) = x,, where V,,(t) = UHLJ
we have:

(W X, Lesa) (LX), 60) in (2770, 1], ™), 010r) a0 = 00
forall p > o, where (X (t))i>0 is the solution of the Marcus differential equation
dX = a(X)dt + b(X) o dL with X (0) =

Remark C.1. With the choices of v and 7 in Section 3] the assumptions in Theorem [C.1]are satisfied
(see the proof in [GM21]]).

Before proving Theorem|[C.1] we start by proving the following lemma.
Lemma C.1. Let X € D([0,1],R%), p > 1 such that | X || pvar < 0. Then for any path function ¢,

> X lpevar = [1X " |p-var-

Proof. Itis obvious from the scaling invariance of of the p-variation that || X | ,var = || X ? || p-var-
For the second inequality, using again the definition,

12 [lp-var
= [ X (14 7)) llp-var
k 1/p
= sup D OIX(E(1+7)) = Xt (1 +7)P
O=to<t1<...<tp=1 j=1
B 1/p
> sup X (t;(1+7) = X(tj_1(1+7)P
0=to<t1<...<tp=1,t;(1+r)=7(s;) for some s; €[0,1] J=1
1/p
= sup Z | X (s X(sj-1)" = [| X || p-var,

0=s50<51<...<sp=1

where the last equality follows from the fact that if ¢ lies in an interval [a, b] then (¢ —a)P + (b—c¢)P <
(b — a)? for p > 1. This completes the proof.

O

As a first step for proving Theorem [C.I} we aim to prove a deterministic variant of Theorem
@ In order to make the arguments more concise, let us neglect the first time-derivative term
(with coefficients a and a,,, for which the treatment is the same by considering the jump process
V., : t — |nt]/n) and consider the following.
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Theorem C.2. Assume thatp € (1,2) and {W,,},>1 is a sequence in D ([0, 1], R") with finitely
many jumps. Suppose that y > p and

o lim, o0 by = bin C7(RE, R¥*™) for some b € C7 (R4, R4*T);

o dspt, W, W) — 0and > |W,(t) — Wy(t—)|? — 0, where the sum is taken over all
Jjump times of W,.

Let X, be the solution of the forward RDE dX,, = b, (X,,)”dW,, with X(0) = x,,. Let X be the
solution of the Marcus RDE dX = b(X) o dW, X (0) = x. Then it holds that

(
(W, X)), lrya) = (W, X), ¢p) in (2([0, LRr—i_d)aap-vur) asmn — 0o.

C.1 Proof of Theorem

We will use the following lemma in the proof of Theorem[C.2]

Lemma C.2 (I[CEKM20] Lemma 3.6). Suppose that W € D([0, 1], R") has finitely many jumps. Let
X, X € D([0,1],R%) be given by

dX =b(X)"dW, dX =b(X)odW, X(0)=X(0)==.
Then ~ )
I1X = Xllpsar < KllbllLipllblloc Y (W () = W(t-)P,
t
where K depends on ||b||cv, [|W || p-var, v, D, and the sum is over all jump times t of W.

We are now ready to prove Theorem|[C.2]

Proof of Theorem|C.2] Let X, be the solution to the Marcus RDE
dX, = b(X,) o dW,, X,,(0) = .
The continuity of the solution map for generalised geometric RDEs gives that
povar (Wis X ), 0), (W, X), 6)) = 0. (17)
Then let X, be the solution to the Marcus RDE
dX,, = b, (X)) 0 dW,, X,(0) = z,.

On any subinterval [s1, s3], we can compare solutions to the Marcus RDE with b,, and b by using
Proposition [B-T}

Hyn - Xn”p-var

_ ‘ /O (b () — b(X)) AW

S ‘

p-var

[ )~ b [ 0. - o aw
0 0

<[1bn = blloo W llpmvar + CLllBllLipl X = X llprvar + [0 0) = 6X) (SO [l prvar
=[1bn = bllco W llp-var + Cr([[bllLipl| X = X llpvar + [6(X7) = b(X7) | (51 W [|p-var,

where the last inequality is due to Lemma[C.1] If we choose a subdivision 0 = sg < s1 < ... <
Sn—1 < $n = 1 of the interval [0, ¢] such that for any ¢ = 0,1,...,n — 1,

ClHb”Lip||W||p-var,[s7:,sqz+1] <ec<l1,

1

p-var p-var

then on the interval [0, s1],

16— Blloc WV llp-var,0,51) + CoLIW llprvary 0,511 [6(X ) — b(X2)[(0)
1= Cul[bllLipl W | pvar, f0,5:]

< ||bn - bHOOHWHp-vaI,[Om]/(l - C)-

||Yn - Xan—var,[O,sl] <
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Similarly on the interval [sy, s3],
HY - X Hp var,[s1,82]

an - b”OO”W”p -var,[s1,s2] + CIHW”p Var,[s1752]|b( ) - b(Xn)'(sl)
1 - CIHbHLIPHW”p var,[s1,52]

< (an - b||00||W||p’Var7[51732] + CIHWprvar,[SLSQ]”bHLipHYH - Xanfvar,[O,sl]) /(1 - c)
San - bHO@HW”P-Var,[Sl,Sz]/(l - C) + Cl||bHLlprn - b”OO”W”p—Var,[O,Sl] ”WHp—V;ir,[sl,sz]/(l - C)2~
It is not hard to obtain by induction that there exists C'(b, W) > 0 such that

||yn - Xan—var,[O,l] < C(b, W)an - bHoo

Therefore ~ -
ap—var(((Wru Xn)a ¢b)7 ((Wna Xn>7 (bb")) =0. (18)

Since b, — bin C7(R%,RY*"), ||by ||Lip and ||b,, || are uniformly bounded independent of n. Then
it follows from Lemma[C.2] that

1 X0 = Xallpvar < K[10n[Liplbnlloo Z [Wi(t) = Wa(t=)|| = 0as n — oco.
t

Then the same argument in [CFKM20] gives that for any p’ > p,

nlggc ap’-var(((Wna X n)yleva), (Wa, Xn), lrga)) = 0. (19)
Recall also from the [CEKM20] that
nh~>nolo O‘p’—var(((WTHYn)v ¢bn)7 (Wna Yn)a lr+d)) =0. (20)

Finally Theorem|[C.2]follows from combining (T7)), (I8), (I9) and (20). This completes the proof. [

C.2 Proof of Theorem|C.1|

Proof of Theorem[C.] 1f we write V,,(t) = [tn]/n, the assumptions of Theorem C.1|and the same
treatment in [CFKM20] implies that up to subtracting a subsequence, (V;,, W,,) — (id,L) a.s. in
Otp-var for any p > o Then it follows from Theoremthat for p’ > p and along each subsequencial
limit of (V,,, W,,) as n — oo,

(Wi, Xn), lrta) = (L, X), @a) in (D([0, 1L, R™), aprovar).-

Therefore (Wh,, Xp), lrtd) @ (L, X), ¢ap) in (D([0,1],R"F), vy o) for any p > «. This
completes the proof.

O

D Generalization Bound: Proof of Theorem

To begin with, we need a geometric regularity assumption over the trajectory of the multiscale
perturbed gradient flow, which is common for random fractal processes given as solutions to stochastic
differential equations; see [HSKM21||. This assumption ensures that the box-counting (Minkowski)
dimension coincides with the Hausdorff dimension of the trajectory.

For any = € R, let (X;);¢[0,1) be a solution to the stochastic differential equation (T2) started from

x, and let A be the infinitesimal generator of (X¢).c[0,1) (let us take it for granted that it exists)
defined by

_ o Eaf[u(Xy)] — u(z) o0 (Tod
Au(z) = th_% . for any u € C°(R?).
Let ¢ : R™ x R™ — C be the symbol of A such that Au(z) = — [, e% x, §)a(&)dE,

(informally saying, —q(z, D)u(x)), where @(§) = [o. e~ "&%) y(x)dz is the Fourier transform of .
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Assumption 2. For almost every X, there exists a finite Borel measure p on X and p > 0 such that

C, = infocrcprex % > 0 for pu-almost every .

If (X¢)>0 is a solution with X = 0 to dX; = b o dL$ for fixed b € R4*? and a symmetric d-
dimensional Lévy process L*, then (X;);>0 is also a a-stable Lévy process with symbol independent

of :
Ux(€) = €7 0]

We also need the following statistical regularity assumption, as discussed in the paragraph before
Theorem 4.2
Assumption 3. There exists z* € R? such that a(z*) = 0. Let (X;);>0 to the solution of dX; =
b(x*) o dL¢ and write (x, &) := q(z,£) — ¥ x~(§). For almost-every Sy,:

* b(x*) is positive definite;

o |2G(z,8)] < @5(z)(1 + kol€|*) with j € NI, [j| < m + 1 for some &; € L*(R™);

* ¢(x,0) = 0and || Pl < 0.

Some remarks on Assumption [3|are now in place. It is natural to assume the existence of z* such that
a(z*) = 0 (since a = —VR(x, S,,) in our MPGD setup). For the first point, the positive definiteness
of b(z*) can be satisfied by simply choosing b to be the identity map. For the second point, recall
that §(z,€) = q(z,£) — ¥+ (£) and we require that: |3.g(z,&)| < ®5(x)(1 + ko|¢|¥) withj €
Np*, |j| < m + 1 for some ®; € L' (R™).

Here X* is an a-stable Lévy process, and its characteristic function .« (£) is given by [£7b(2*)|*
(see Eq. {@)). Moreover, q(z, £) is nothing but (@) with the b, >, 1 depending on z. It is not hard to
see that the above assumption holds if the b, ¥, x depend smoothly on . The third point is equivalent
to saying that the solution to the SDE exists almost surely on infinite time interval (see [Sch98b]),
which is the case for the perturbed gradient flow with respect to second differentiable loss.

With all these ingredients in place, we now prove Theorem 4.2

Proof. We observe that the ellipticity condition holds since b(x*) is positive definite.:

1+ ¢¥x«(&) > 71+ kol&]®) for some 71, ko > 0.

One can also check that o := inf{\ > 0 : lim¢|, ‘%I?I*(g)‘ = 0}. Under Assumption it follows
from [Sch98a, Theorem 4] that

dimyg(X) <«  almost surely,

where dimy; denotes the Hausdorff dimension.

Then, under Assumption 2} the result follows from [HSKM21| Theorem 1] and [HSKM21| Corollary
1]. This completes the proof. O

E Implicit Regularization: Proof of Theorem [4.3]

In this section, we provide proof to Theorem [E]

Let r; = 1, 7o = d as assumed in Theorem[4.3] Upon the rescalings p = poe and o = ope with
€ > 0 a small parameter, the MPGD recursion Eq. (8) becomes:

iy = o™+ Faf™) + egl@™ u u), 1)
fork=0,1,2,..., where

m 1 S m m
@) = ——VR"™) = ", 22)
m o m 0 m
9@y ) = = (g )2l + s (yY) = g™, (23)
m 1 m «2
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with the y(*) satisfying ka FO Y fori = 1,2.

Consider the followmg hierarchy of recursive equations. For k = 0,1,2,...:

) =T - VR( (m)y, (24)
o = Jém’¢>£’”) + g,i " (25)
ol = A 4 % S Il o Y 4 Z % e,
o (26)
with the initial conditions f((] 7= (m) qb(m) ™) — 0, and
JmM =1+ f’(fkm y=1- %v%@m)). 27)

Informally, the processes Z("), ¢(") and (™) constitute the zeroth-, first- and second- order terms in
a pathwise Taylor expansion of ("™ about € = 0, i.e., for k = 0,1,2, .. (m) m oy eqb(m
62g0,(€m) + O(€?), as € = 0.

Now we are going to compute a second-order Taylor expansion of ﬁ(wlgm)) about € = 0. This is the
content of the following lemma, which is adapted from Theorem 9 in [LEHM21] to our setting.

Lemma E.1. Under the assumptions of Theorem[.3) we have:
R™) = RE™) + eVRE™)T o™ 4 & (R( ()7 m) . 1 ( HNTY2R (20 ¢(m)>
+O(e%), (28)

as € — 0, where the (T, (m) g(m) (m)) satisfy Eq. 2%)-26).
We now prove Theorem [4.3]

Proof of Theorem[d-3] Let us fix the m and S,,. To prove Theorem we need to compute
Eﬁ(x,&m)), where the expectation is with respect to the randomness in the yoz). Since, E[vy (yl))] =
E[vg (y,(f))} = 0 for all k£ by assumption, we have E(b;m) = 0 for all k, and applying Lemma

E?A%(xém)) _ ﬁ(f;m)) 4+ e <7%(x§€m))TESDI(€m) + %E {(¢]gm))Tv27é(f§€m)) (m) }) +O(e )

(29)
It remains to compute the Egp,(gn) and E {(qﬁém))TVzﬁ(f;m))gb,(gm)} in the above expansion.
Iterating Eq. 23] we obtain
ko k=1
SEDINIEA (30)
i=1 \ j=i
for k = 1,2,.... Similarly, iterating Eq. 26} we obtain:
d 2 p(m) d (m)
(m) _ m | |1 g~ Dict mysomigp @) )
P Z HJ [ al,paxq( 1— )[¢ Z 1— 1 — ]
i=1 = p,g=1 =1
(3D
99" (—(m) u &
Now, we compute: —5+(7;" ) = ——%wv1(y,_;) for all [, and
m"‘l
L 1 VR _m)
L (gm)y = - = 2 (gm)y 32
0xPOxd (@i-1) m OxPOxd (@i=1) (32)



Substituting the above formula into Eq. (3I)) and then taking expectation, we obtain, using the fact
that Eus (y\",) = 0 for all i:

(m) L~ (77 j0m | s~ 9*VR (m)1p14(m)1q NGO
" = - Z HJ’” 1 oepamr T Bl P[0 = A, (33)
i=1 \ j= pg=
with the /th component of:
Ir
Eod k-1 d B
1 m PVIR]" _(m m m
5o |15 oo @) Bl (34)
i=1r=1 | j=1 P,q=
Now, for k = 0,1, 2,..., one can compute, using the assumption that y( ) and y( ) are independent
(and thus E[vl(yfjll)[vg] (yl(z) )] =0forallr,iy, i),
2
m m m)ipr m H 1 m m
PO = 30 3 et (Bl O en )] e
i1,i0=17r,s=1
2
o (2 sqo (2
+ 2Bl 02 e 0], (35)

where the <I>§m> = H?;l( — 1 VzR( m))), with the empty product taken to be the identity by
convention.

(m)

The /th component of A}, can thus be written as:

k d
A 7%22 o™i (CVAVREM))Y), (36)
i=1 j=1

where the Cz(inl) are covariance matrices with the (p, ¢)-entry of E[[¢; m)] [¢(m1)]q ] whose expression
is given in Eq.
Lastly, we compute:

d
E [(¢f™) V2R o™ | = l > [qb;’“)]p[v%é(xgm))]mw;mnq] G7)
p,q=1
d A
= 3 BP0 [ RE 6
p,q=1
= tr (CVPR@E™)) (39)
Substituting (36) and (39) into Eq. (29), we arrive at Eq. (I6) in Theorem 4.3] O

F Additional Empirical Results and Details

In this section, we provide additional empirical results, as well as the details and additional results for
the experiments considered in the main paper, to strengthen the support for our theory.

F.1 Electrocardiogram (ECG) Classification

We consider the Electrocardiogram (ECG) binary classification task that aims to discriminate between
normal and abnormal heart beats of a patient that has severe congestive heart failure [GAG™00].
We use 500 sequences of length 140 for training, and 4000 sequences for testing. We use a fully
connected shallow neural network of width 32 with sigmoid activation and train for 1000 epochs,
with the binary cross-entropy as the loss. We choose 7 = 0.05. For the MPGD and the Gaussian
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Figure 3: Mean test accuracy obtained under various GD schemes over 1000 epochs for the ECG
classification task. Here we choose the learning rate = 0.05. MPGD refers to the scheme (8),
whereas MPGD variant refers to (T1)), both using 4 = o = 0.2. The MPGDs considered in the
left plot use v = 0.55, 8 = 0, whereas those in the right plot use v = 0.55, 3 = 0.5. We see that
applying the MPGD schemes in the first 500 epochs helps to boost the test accuracy significantly
when compared to the other two schemes.

Table 3: Shallow neural networks trained on the ECG5000 Data Set for 1000 epochs. The results in
parenthesis are achieved with the variant of MPGD (TT). All the results are averaged over 5 models
trained with different seed values. Here std denotes sample standard deviation. We use 7 = 0.05,
and u = o = 0.2 for the perturbation schemes.

Scheme mean test accuracy in %  std(test accuracy) in %

Baseline full batch GD 58.38 0.0

Gaussian 65.68 16.34

MPGD, v = 0.55, 3 = 0 93.48 (88.65) 1.17 (9.16)
MPGD, v = 0.6, 5 =0 94.87 (90.52) 0.78 (6.69)
MPGD, v = 0.65, 5 =0 92.61 (91.72) 0.99 (4.28)
MPGD, v = 0.55, 8 = 0.5 88.22 (93.13) 13.99 (2.20)
MPGD, v = 0.6, 5 = 0.5 94.27 (91.77) 1.06 (2.85)
MPGD, v = 0.65, 8 = 0.5 94.63 (83.87) 1.13 (23.69)

scheme, we inject the perturbations in the first 500 epochs instead, and stop injecting after that to
allow the algorithm to converge. We use the perturbation level ;. = ¢ = 0.2. The experimental setup
is implemented in PyTorch, and all experiments are run on Google Colab.

Table [3|shows the average test accuracy (evaluated for 5 models that are trained with different seed
values) for this task. We see that overall MPGD improves the test accuracy when compared to the
vanilla GD and Gaussian perturbations. In fact, the vanilla GD gets stuck in the loss landscape. While
Gaussian perturbations can help to mobilize the GD iterates in the landscape, MPGD is more effective
in steering the iterates to achieve higher test accuracy (see Figure[3), which is the main goal of the
learning task. This illustrates that adding the perturbations of MPGD can help improve the outcome
of the optimization process in situations where the vanilla GD and Gaussian perturbations fail to
make meaningful progress.

Note that the higher values of the perturbation levels used in the MPGD schemes lead to instabilities
and fluctuations of large magnitudes in the earlier epochs. These are necessary to boost the test
accuracy; see the jump in the improvement of the test accuracy after epoch 500 in Figure 3] The
instabilities and fluctuations could be reduced if lower perturbation levels were used, but this would
lower the test accuracy (which would still be higher than the baseline and the Gaussian results)
obtained. Again, we emphasize that we are not going after competitive test performance here, but
rather demonstrating the effectiveness of MPGD in improving the test performance in situations when
other training schemes fail to make substantial progress in optimization.

F.2 Details and Additional Results for the Airfoil Self-Noise Prediction Task

The experimental setup is implemented in PyTorch, and all experiments are run on 4x NVIDIA
Tesla T4 GPUs with 16 GB VRAM belonging to an internal SLURM cluster. Table ] reports the
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Table 4: Statistics for the results obtained in Table [I} We report the sample standard deviation,
denoted std, of the test RMSE and RMSE gap. The values in parenthesis refer to the sample standard
deviation results for the MPGD (TT).

Scheme std(test RMSE)  std(RMSE gap)
Baseline 0.0595 0.0110
Gaussian 0.0980 0.0136

MPGD, v = 0.55 0.1035 (0.0629) 0.0201 (0.0162)
MPGD, v =0.6  0.0375(0.1266) 0.0083 (0.0092)
MPGD, v = 0.65 0.0720 (0.0340) 0.0295 (0.0083)
MPGD, v = 0.7  0.1091 (0.0094) 0.0162 (0.0076)

Table 5: Mean and standard deviation of RMSE gap under the setting used for obtaining the results in
Tablebut with 8 = 0 (left) and 8 = 0.25 (right) for the MPGDs instead. The values in parenthesis
refer to the corresponding results for the MPGD (TT)). Here std denotes sample standard deviation,
and 7, o and o are the same as the ones used for obtaining the results in Table|[T]

Scheme mean std Scheme mean std

MPGD, v = 0.55 0.2308 (0.2325)  0.0091 (0.0107) MPGD, v = 0.55 0.2264 (0.2238) 0.0189 (0.0157)
MPGD, v = 0.6  0.2274 (0.2339) 0.0151 (0.0167) MPGD, v=0.6  0.2267 (0.2247) 0.0127 (0.0152)
MPGD, v = 0.65 0.2273 (0.2373)  0.0113 (0.0173) MPGD, v = 0.65 0.2330(0.2267)  0.0207 (0.0045)
MPGD, v = 0.7  0.2362(0.2333)  0.0092 (0.0093) MPGD, v = 0.7  0.2393 (0.2270)  0.0139 (0.0058)

Table 6: Statistics for the results obtained in Table 2] We report the sample standard deviation (in %),
denoted std, for the validation accuracy and the accuracy gap. The values in parenthesis refer to the
sample standard deviation results for the MPGD variant (TT).

Scheme std(val. accuracy) std(accuracy gap)
Baseline 1.75 1.97
Gaussian 1.13 0.53
MPGD, v = 0.55 2.52(2.55) 2.45(2.21)
MPGD, v = 0.6 1.52 (2.44) 1.65 (2.00)
MPGD, v = 0.65 1.09 (2.86) 1.22 (3.00)
MPGD, v = 0.7 4.40 (1.57) 3.55(1.10)

sample standard deviation for the results obtained in Table[T} Table [5|shows the corresponding results
when different values of 5 are used instead, illustrating the trade-offs induced by the selection of the
stability parameter -y and the skewness parameter 3 for this particular setting. Here, we see that using
the MPGD variant (T1)) with v = 0.6 and 3 = 0.5 (see Table[I)) leads to the lowest RMSE gap.

F.3 Details for the CIFAR-10 Classification Task

We use the implementation of ResNet18 and modify the implementation of the full-batch GD training
provided at https://github.com/JonasGeiping/fullbatchtraining to set up MPGD and
GD with Gaussian perturbations. Please refer to Section and [GGPT21] for the relevant details.
The experimental setup is in PyTorch, and all experiments are run on an NVIDIA A100-SXM4 GPU
with 40 GB VRAM belonging to an internal SLURM cluster. Table [2]reports the mean validation
accuracies over runs of 5 models trained with different seed values, whereas Table E] reports the
sample standard deviation for the results in Table [2]
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