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Abstract

Recent studies have shown that gradient descent (GD) can achieve improved gener-
alization when its dynamics exhibits a chaotic behavior. However, to obtain the
desired effect, the step-size should be chosen sufficiently large, a task which is
problem dependent and can be difficult in practice. In this study, we incorporate
a chaotic component to GD in a controlled manner, and introduce multiscale per-
turbed GD (MPGD), a novel optimization framework where the GD recursion is
augmented with chaotic perturbations that evolve via an independent dynamical
system. We analyze MPGD from three different angles: (i) By building up on re-
cent advances in rough paths theory, we show that, under appropriate assumptions,
as the step-size decreases, the MPGD recursion converges weakly to a stochastic
differential equation (SDE) driven by a heavy-tailed Lévy-stable process. (ii) By
making connections to recently developed generalization bounds for heavy-tailed
processes, we derive a generalization bound for the limiting SDE and relate the
worst-case generalization error over the trajectories of the process to the parame-
ters of MPGD. (iii) We analyze the implicit regularization effect brought by the
dynamical regularization and show that, in the weak perturbation regime, MPGD
introduces terms that penalize the Hessian of the loss function. Empirical results
are provided to demonstrate the advantages of MPGD.

1 Introduction

Many important problems in supervised learning can be expressed by the following population risk
minimization problem:

min
x∈Rd

{
R(x) := Ez∼D[`(x, z)]

}
, (1)

where x ∈ Rd denotes the learnable parameter, z ∈ Z denotes a data sample coming from an
unknown data distribution D, Z denotes the space of data points, and ` : Rd ×Z → R+ is the loss
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function, measuring the quality of the parameter x. Since the data distribution D is not known, as a
proxy for solving (1), we consider the empirical risk minimization (ERM) problem, given as follows:

min
x∈Rd

{
R̂(x, Sn) :=

1

n

n∑
i=1

`(x, zi)
}
, (2)

where Sn := {z1, . . . , zn} denotes a training set of n points that are independently and identically
distributed (i.i.d.) and sampled from D. To solve the ERM problem, typically gradient-based
optimization algorithms are being used in practice.

In this study, we will consider the gradient descent (GD) algorithm [C+47], which is based on the
following deterministic recursion:

xk+1 = xk − ηk∇R̂(xk, Sn), k = 0, 1, 2, . . . . (3)

Here, k represents the iteration number, ηk > 0 is the step-size (learning rate), and x0 ∈ Rd is
the initialization. Even though stochastic counterparts of GD (e.g., stochastic GD [BCN18]) have
been more popular due to their reduced computational requirements, the GD algorithm has attracted
increasing attention in the past few years, as it has been illustrated that GD can achieve similar
generalization performance, as measured by the generalization error |R̂(xk, Sn)−R(xk)|, as long
as certain design choices are implemented [GGP+21]. These design choices mainly include using
large and/or oscillating learning rates and using explicit regularization of the empirical risk.

Contrary to the wisdom of optimization theory, which typically suggests using smaller learning rates,
the fact that large learning rates often provide better generalization performance in modern non-
convex optimization problems has opened up several research directions. In this context, [CKL+21]
showed that large learning rates drive the GD dynamics towards the ‘edge of stability’, meaning that
the learning rate should be chosen large enough to make the algorithm diverge. Recently, the large
learning rates have been extended to exotic learning rate schedules (i.e., non-trivial evolution of ηk),
such as fractal scheduling [AGZ21] and cyclic scheduling [Oym21, Smi17].

It has been shown that the use of large learning rates introduces a chaotic behavior in the GD dynamics
[KT20]. Hence, a possible explanation for the improvements brought by large learning rates can be
partially attributed to such chaotic behavior, since chaotic systems exhibit a stochastic-like evolutions
(even though they are fully deterministic), which might be an underlying cause of the improvements
in generalization obtained in non-convex settings. However, achieving the desired chaotic dynamics
is a problem-dependent task and can be often difficult in practice.

In this paper, we develop a novel optimization framework, coined multiscale perturbed gradient de-
scent (MPGD), where a chaotic component is introduced to GD in a controlled manner. Our approach
is based on extending the GD recursion via generic regularization terms, where the regularization
coefficients are modulated by using external deterministic dynamical systems that exhibit chaotic
characteristics. Our main contributions are as follows.

• We build up on recent advances in rough paths theory and homogenization techniques [GM13,
CFK+16, CFKM20], and show that, under appropriate assumptions, as the step-size decreases,
the MPGD recursion converges weakly to a stochastic differential equation (SDE) driven by a
heavy-tailed Lévy-stable process (Theorem 4.1; see also Theorem C.1 in Appendix).

• We draw connections to the recent theoretical links between heavy-tailed processes and generaliza-
tion [SSG19, ŞSDE20, HŞKM21], and under certain topological regularity assumptions, we derive
a generalization bound (Theorem 4.2) for the limiting SDE and relate the worst-case generalization
error over its trajectories to the parameters of MPGD.

• We show that MPGD exhibits a natural form of implicit regularization by deriving an appropriate
explicit regularizer in the weak perturbation regime (Theorem 4.3). Our analysis shows that, in this
regime, the derived regularizer introduces terms that penalize the Hessian of the loss function.

• We empirically demonstrate the advantages of MPGD on different settings and provide further
support for the developed framework and the theory (see Section 5).

We emphasize that our primary goal is to understand the behavior of deterministic GD in a chaotic
setting. In this respect, we shall underline that, at this stage, our goal is not to develop a competitive
algorithm that would outperform SGD, but rather to provide a solid theoretical analysis for how
stochastic behavior can emerge from GD with suitable deterministic components, as well as their
implication in terms of generalization error.
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2 Preliminaries and Technical Background

Notation. For a vector v ∈ Rd, we denote its ith component by either vi or [v]i and the Euclidean
norm by |v| (or ‖v‖). diag(v) denotes the diagonal matrix with ith diagonal entry of vi. 〈·, ·〉 denotes
the dot product of two vectors. U(d) denotes uniform distribution on d dimension, tr denotes trace,
and the superscript T denotes transposition. ◦ and � denote composition and Hadamard product

respectively. ∇ and ∇2 denote gradient and Hessian respectively. E denotes expectation.
(d)
= and

(d)→
denote equivalence and convergence in the sense of distribution respectively. I denotes the identity
matrix, and 1A denotes indicator function of the set A.

Stable distributions. Let α ∈ (0, 2] be a stability parameter and d ≥ 1. A random variable X ∈ Rd

is α-stable if X1, X2, . . . are independent copies of X , then n−1/α
∑n
j=1Xj

(d)
= X for all n ≥ 1

[Sam17]. Stable distributions appear as the limiting distribution in the generalized central limit
theorem (CLT) [GK54]. The case α = 2 corresponds to the Gaussian distribution, while α = 1
corresponds to the Cauchy distribution. The p-th moment of a stable random variable is finite if and
only if p < α. Here we are interested in the case α ∈ (1, 2), such that E[|X|] <∞ and E[|X|2] =∞.
If X is symmetric, then there exists a scale parameter c > 0 and the characteristic function of X is
given by E [exp(i〈ξ,X〉)] = exp(−|cξ|α) for all ξ ∈ Rd. If X is a random vector with independent
components, then there exists a scale vector c = (c1, . . . , cd) ∈ Rd+ and the characteristic function of
X is given by E [exp(i〈ξ,X〉)] = exp(−

∑d
j=1 |cjξj |α).

Lévy processes. Lévy processes are stochastic processes (Lt)t≥0 with independent and stationary
increments, and are defined as follows [App09]:

1. For N ∈ N and t0 < t1 < . . . < tN , the increments (Lti − Lti−1
) are independent for all i.

2. For any t > s > 0, (Lt − Ls) and Lt−s have the same distribution.
3. Lt is continuous in probability, i.e., for all δ > 0 and s ≥ 0, P(|Lt − Ls| > δ)→ 0 as t→ s.

Typical examples of Lévy processes include Brownian motion and the α-stable processes. By the
Lévy-Khintchine formula, a Lévy process (Lt)t≥0 with L0 = 0 is determined by a triplet (b,Σ, ν)
for some b ∈ Rd, Σ ∈ Rd×d positive semi-definite and a measure ν on Rd \ {0} such
that

∫
x 6=0

min{1, |x|2}ν(dx) < ∞. The characteristic function of Lt is therefore exp(−tΨ(ξ)),
with the characteristic exponent Ψ : Rd → C defined by

Ψ(ξ) = −i〈b, ξ〉+
1

2
〈ξ,Σξ〉+

∫
Rd

[
1− ei〈x,ξ〉 + i〈x, ξ〉1|x|<1

]
ν(dx). (4)

In the Lévy–Itô decomposition of a Lévy process, b denotes a constant drift, Σ is the covariance
matrix of a Brownian motion and ν characterises a Lévy jump process, which is modified to be càdlàg
(right-continuous and has left limits everywhere) with countably many jumps. In particular, if b = 0Rd ,
Σ = 0Rd×d and ν(dx) = |x|−α−1dx for some α ∈ (0, 2), then the triplet (0Rd , 0Rd×d , |x|−α−1dx)
gives a symmetric α-stable process, denoted by (Lαt )t≥0.

Marcus differential equations. Passing to the limit of the driving processes with jumps in an SDE
is not trivial, as one needs to be careful with the meaning of integration [CP14]. Unfortunately,
the common Itô and Stratonovich integration (which are based on Riemann-Stieltjes sums with the
integrand evaluated at the left end point and the midpoint of the partition intervals respectively) fail
to provide the desired convergence. To this end, we resort to Marcus differential equations [Mar81],
which in their basic form are given by:

dXt = b(Xt) � dLt,

where � denotes integration in the Marcus sense. Marcus integrals involve sums over infinitely many
jumps and transform under the usual laws of calculus [App09], and thus play a similar role for Lévy
processes as the Stratonovich integral for Brownian motion. The solution map of Marcus differential
equations is continuous with respect to the driving process under certain variants of the Skorokhod
topology. Note that if b(Xt) is constant in Xt, then there is no difference in the solutions of the SDE
in the sense of Marcus, Itô and Stratonovich. We refer to Appendix B for more details on these.

Generating stable laws using the Thaler map. Let γ := 1/α. It was shown in [GM21] that
α-stable laws with α ∈ (1, 2) can be generated using a deterministic dynamical system whose states
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yk are obtained by iterating the Thaler map T : [0, 1]→ [0, 1] [Tha80]:

T (y) = (y1−γ + (1 + y)1−γ − 1)1/(1−γ) mod 1 , yk+1 = T (yk), (5)

with any source of randomness coming solely from the initial condition y0 ∈ [0, 1]. The map has the
following properties. Let y∗ ∈ (0, 1) be the unique solution to the equation

(y∗)1−γ + (1 + y∗)1−γ = 2.

There are two increasing branches on the intervals [0, y∗], [y∗, 1]. For γ ∈ [0, 1), there exists a unique
invariant probability density h(y) = 1−γ

21−γ (y−γ + (1 + y)−γ). Moreover, the density defines a finite
measure. For γ ∈ (0, 1), the map is nonuniformly expanding with a neutral fixed point at y = 0
and correlations decay algebraically with rate 1/kα−1 (which is sharp) [GM21]. Heuristically, the
trajectory spends prolonged period of times near y = 0 (laminar dynamics near the fixed point),
slowing down the decay of correlation as α decreases.

Let the observable v : [0, 1]→ R be a Hölder function with zero mean with respect to the invariant
measure of T , i.e., dν = hdy, and consider the sequence of random variables (v ◦ T k(y0))k≥0,
with the randomness coming from the initial state y0. When γ ∈ (1/2, 1), the correlations are not
summable and CLT breaks down if v(0) 6= 0 (it ”sees” the fixed point at y = 0). Heuristically, the
Birkhoff sum

∑k−1
j=0 v ◦ T j is ballistic with almost linear behavior near x = 0 and the small jumps of

size v(0) accumulate into a single large jump, contradicting CLT [GM21]. Instead, if v is properly

normalized, then it was shown in [Gou04] that the one-sided stable limit law 1
kγ

∑k−1
j=0 v ◦ T j

(d)→
Xα,β as k → ∞, with β = sign(v(0)), holds instead, where Xα,β denotes the stable law whose
characteristic function is given by:

E[eitXα,β ] = exp(−|t|α(1− iβ sign(t) tan(απ/2))). (6)

In this paper, we focus on MPGD with chaotic components whose limiting behavior at each time
is described by the class of stable laws Xα,β whose characteristic function is given by (6) with the
stability parameter α ∈ (1, 2) (i.e., γ ∈ (1/2, 1)) and the skewness parameter β ∈ [−1, 1]. The Xα,β

is centered (i.e., EXα,β = 0), totally skewed (or one-sided) if β = ±1, and symmetric if β = 0.

3 Multiscale Perturbed Gradient Descent (MPGD)

In full generality, we start by considering the following family (parametrized by m > 0) of determin-
istic fast-slow dynamical systems on Rd × Y , with Y a bounded metric space:

x
(m)
k+1 = x

(m)
k +

1

m
am(x

(m)
k ) +

q∑
i=1

1

m1/αi
b(i)m (x

(m)
k )vi(y

(i)
k ),

y
(i)
k+1 = Ti(y

(i)
k ), i = 1, 2, . . . , q,

(7)

for k = 0, 1, 2, . . . , where the αi ∈ (1, 2), am : Rd → Rd, b(i)m : Rd → Rd×ri , vi : Y → Rri , and
Ti : Y → Y . The initial conditions x(m)

0 , y
(i)
0 are independent random variables. One important

example of recursions of the form (7) is the GD defined in (3). Other than GD, the above family of
recursions (7) includes various variants of GD as special cases upon specifying suitable choices of
the am, b(i)m , vi, Ti, and the dimensions.

Of particular interest are new algorithms that can be studied within the above framework. To this end,
we introduce multiscale perturbed gradient descent (MPGD), whose dynamics are described by the
following recursion:

x
(m)
k+1 = x

(m)
k − 1

m
∇R̂(x

(m)
k , Sn)− µ

m
1
α1

v1(y
(1)
k )� x(m)

k +
σ

m
1
α2

v2(y
(2)
k ),

y
(1)
k+1 = T (y

(1)
k ), y

(2)
k+1 = T (y

(2)
k ), k = 0, 1, 2, . . . ,

(8)

where T is the Thaler map (5) with γ = α−1 ∈ (1/2, 1), the v1, v2 are observable maps, µ ≥ 0 and
σ ∈ R are tunable parameters. The above recursion is of the form (7), with q = 2, r1 = r2 = d,
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Figure 1: A realization of the Thaler iterates (left) and the observable v (middle) for γ = 0.6, β = 0.1.
Empirical distribution of the corresponding Birkhoff sum 1

kγ

∑k−1
j=0 v

(j) with k = 1000 (right).

am(x) = −∇R̂(x, Sn), b(1)
m (x) = −µ diag(x), and b(2)

m (x) = σI independent of m. Another class
of algorithms that falls within this framework is when m is set to n, the number of training data
points, in which case the empirical risk converges to the population risk as m = n→∞.

To complete the description of MPGD, it remains to specify the choice for the observables vi(y
(i)
k )

in (8) whose rescaled version can be shown to generate stable laws Xα,β , with α ∈ (1, 2) and
β ∈ [−1, 1], in the limit m→∞. Following [GM21], we take them to be independent realizations
of the observable v(k) described as follows. Let dα = αα(1−γ)Γ(1−α) cos(απ/2)

21−γ−1 , and δ0, δ1, . . . be
independent copies of the random variable δ where P(δ = ±1) = 1

2 (1± β). The observables v(k)

are then defined to be: v(k) = χ(k)v ◦ T k, where v : [0, 1]→ R is the mean zero observable given by
v(y) = d−γα (1− 2γ−1)−γ ṽ(y), with

ṽ(y) =

{
1 if y ≤ y∗,
(1− 21−γ)−1 if y > y∗,

χ(k) = χk−1 · · ·χ0 ∈ {±1} with χj =

{
1 if T jy ≤ y∗,
δj if T jy > y∗.

In particular, the random variables χ(k) get updated only when the trajectory visits (y∗, 1] and are not
changed during the phase in [0, y∗].

The initial condition can be, in theory, equally well chosen using the invariant probability measure ν
or the uniform Lebesgue measure. Empirically, convergence of the probability density is faster if it
is drawn using ν. Hence, we consider initial conditions drawn using ν. Therefore, for MPGD we
propagate uniformly distributed initial conditions y′0 ∈ [0, 1] under 10,000 iterations of the Thaler
map and take the initial condition as y0 = T 10000y′0. Figure 1 illustrates the dynamics of a realization
of the Thaler iterates and the observable (perturbations used in MPGD), as well as the asymmetry
and heavy tail nature of the distribution of the corresponding Birkhoff sum.

4 Theoretical Analysis

In this section, we analyze MPGD via three different angles. We start by presenting results on
superdiffusive limit (homogenization [PS08]) for a class of fast-slow deterministic systems that
include MPGD as a special case in Subsection 4.1. We then study generalization properties of MPGD
by deriving a generalization bound for the limiting dynamics in Subsection 4.2. Lastly, we study the
regularizing effects of MPGD via the lens of implicit regularization in Subsection 4.3.

4.1 Superdiffusive Limits for the Fast-Slow Systems and MPGD

Without loss of generality, we set q = 1 in (7) and consider the following family of recursions:{
x

(m)
k+1 = x

(m)
k +m−1am(x

(m)
k ) +m−

1
α bm(x

(m)
k )v(yk),

yk+1 = T (yk),
(9)

where T is the Thaler map and v is the observable constructed in Section 3.

The following result shows that stochastic dynamics emerges in the above family of deterministic
dynamical systems in the limit m → ∞. Moreover, the limiting dynamics are described by a
stochastic differential equation (SDE) driven by a heavy-tailed Lévy-stable process.
Theorem 4.1 (Superdiffusive Limit – Informal). Let α ∈ (1, 2) and assume that the coefficients am,
bm and the initial condition x(m)

0 of (9) are well-behaved as m→∞. Then, under certain regularity
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conditions on the am, bm, the process (x
(m)
bmtc)t≥0 converges in distribution to the solution (Xt)t≥0

of the SDE:
dXt = a(Xt)dt+ b(Xt) � dLα,βt with X0 = x0 ∈ Rd,

as m→∞, where a = lim
m→∞

am, b = lim
m→∞

bm, x0 = lim
m→∞

x
(m)
0 , � denotes the Marcus integration,

defined in Section B.2.1, and (Lα,βt )t≥0 is a Lévy process with the characteristic exponent

Ψ(ξ) = |ξ|α(1− iβ sign(ξ) tan(απ/2)). (10)

In particular, Theorem 4.1 implies convergence in distribution of x(m)
bmtc to Xt at fixed t. It is a special

case of Theorem C.1, which covers a large class of the maps T and observables v, and extends the
results in [GM21, CFKM20] to the case where the coefficients are dependent on m. We provide
technical details on the topology used for the convergence and the proof in Appendix B-C.

Specializing Theorem 4.1 (extended to the case of q = 2) to the MPGD recursion (8), we see that the
rescaled MPGD iterate process, (x

(m)
bmtc)t≥0, converges in distribution to the solution (Xt)t≥0 of the

following SDE:

dXt = −∇R̂(Xt, Sn)dt− µ diag(Xt) � dLα1,β1

t + σdL̃α2,β2

t , X0 = lim
m→∞

x
(m)
0 ,

in the limit m→∞, which is equivalent to sending the step-size, η := 1/m, in the MPGD to zero.
Here (Lα1,β1

t )t≥0 and (L̃α2,β2

t )t≥0 are independent Lévy processes with characteristic exponent (10),
and β1, β2 ∈ [−1, 1] are the parameters appearing in the construction of the observables v1 and
v2 respectively. Therefore, we see that MPGD converges to a gradient flow driven by heavy-tailed
Lévy-stable processes in the considered scaling limit. The driving processes contain both additive and
multiplicative components. The multiplicative component can be interpreted as a dynamical version
of the weight decay, whereas the additive component can be viewed as gradient noise [NVL+15].

4.2 Generalization Properties of MPGD

In this section, we shift our focus to the generalization properties of MPGD. Our main roadmap will
be to consider the limiting SDE arising from Theorem 4.1 (with β = 0) and relate it to the recently
developed generalization bounds for heavy-tailed random processes [ŞSDE20, HŞKM21].

For mathematical convenience, we consider the following special case of (7)1:x
(m)
k+1 = x

(m)
k +m−1am(x

(m)
k ) +m−

1
α bm(x

(m)
k )

(
v(y

(1)
k )− v(y

(2)
k )
)
,

y
(1)
k+1 = T (y

(1)
k ), y

(2)
k+1 = T (y

(2)
k )

(11)

In the light of Theorem 4.1, the recursion (11) converges weakly to the following SDE:

dXt = a(Xt)dt+ b(Xt) � dLαt , (12)

where Lαt denotes the symmetric α-stable process in Rd (i.e., β = 0).

Following the previous work [ŞSDE20, HŞKM21], we are interested in bounding the worst-case
generalization error over the trajectories of (12). More precisely, let (Xt)0≤t≤1 denote the solution
of (12)2, and define the set X so that it contains all the points visited by the trajectory:

X := {x ∈ Rd : ∃t ∈ [0, 1], Xt = x}. (13)

Then, our goal is to analyze supx∈X |R̂(x, Sn)−R(x)|. Since we are mainly interested in the case
when a(x) = −∇R̂(x, Sn), the SDE (12) and hence the trajectory X will depend on the dataset Sn.
Therefore, in the generalization bound, we will need to control the statistical dependence of X on Sn,
through the notion of ρ-mutual information, defined as follows. Let X,Y be two random elements,
let PX,Y denote their joint distribution, and let PX ,PY denote their respective marginal distributions.
Then the ρ-mutual information between X and Y is defined as: Iρ(X,Y ) = Dρ(PX,Y ‖PX ⊗ PY ),

1We believe a similar result would hold for (9) without symmetrization, which we leave for future work.
2Here, the range [0, 1] is arbitrary and could be replaced with any range [0, T ] for 0 < T <∞.
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where Dρ is the ρ-Renyi divergence:3 Dρ(µ, ν) = 1
ρ−1 logE

[
dµ
dλ (Z)ρ dν

dλ (Z)1−ρ
]

, and dµ
dλ denotes

the Radon-Nikodym derivative.

Finally, we require two technical regularity assumptions (Assumptions 2 and 3, given in Appendix D)
for our generalization bound. Informally, Assumption 2 is a topological regularity condition over
the trajectory X , whereas Assumption 3 is a statistical regularity assumption and imposes that in the
neighborhood of a local minimum x? of R̂(x, Sn), the statistical behavior of the process Xt can be
approximated by the process solving the SDE dX̃t = b(x?)�dLαt . This requires b to be regular in the
neighborhood of x? and further imposes that a(x?) = 0, which is natural when a(x) = −∇R̂(x, Sn).
We now ready to present our generalization bound.

Theorem 4.2 (Generalization bound). Assume that Assumptions 2 and 3 given in Section D hold,
and that ` is bounded by B > 0 and L-Lipschitz continuous. There exists a constant K1 > 0 such
that with probability at least 1− δ,

supx∈X |R̂(x, Sn)−R(x)| ≤ K1 max{B,L}

(√
α

n
+

√
log(1/δ) + I∞(Sn,X )

n

)
, (14)

where I∞(X,Y ) := limρ→∞ Iρ(X,Y ). Furthermore, there exists K2 > 0 such that

E supx∈X |R̂(x, Sn)−R(x)| ≤ K2 max{B,L}

(√
α

n
+

√
I1(Sn,X )

n

)
. (15)

This result shows that the generalization error is mainly bounded by two terms: the tail exponent of
the limiting Lévy process Lαt , and the statistical dependence of X on Sn. The bound suggests that,
provided the mutual information between X and Sn is fixed, the generalization error can be reduced
by using a smaller α in MPGD. However, it has been illustrated that a smaller α can induce significant
error on R̂(x, Sn) [SZTG20, CWZ+21], hence a reasonable value of α should be chosen to balance
both the empirical risk and the generalization error. The algorithm parameters µ, σ interact with the
bound via the constant terms K1, K2 and the mutual information terms I1, I∞. Unfortunately, their
dependence is quite implicit and we are not able to provide quantitative estimations.

Finally, the main difference between Theorem 4.2 and [ŞSDE20, HŞKM21] is that, in our bounds
we have explicit access to the characteristic exponent of Lαt since we construct it manually through
our dynamics; whereas in the prior work generic processes were used as approximations for SGD,
hence their results are not as explicit.

4.3 Implicit Regularization of MPGD

To understand MPGD and its connection to the vanilla GD (3) better, we provide additional analysis
for the behavior of loss functions optimized under the recursion (8) via the lens of implicit regu-
larization [Mah12, LEHM21]. By this, we mean regularization imposed implicitly by the learning
strategy, without explicitly modifying the loss. We shall achieve this by deriving an appropriate
explicit regularizer through a perturbation analysis in the weak perturbation regime.

To this end, we work in the regime where the parameters µ, σ are small, keeping m fixed. We set
µ = µ0ε and σ = σ0ε, where ε > 0 is a small parameter, and analyze the loss optimized using the
recursion (8) in the small ε regime. In the sequel, we let x(m)

k denote the states of the unperturbed
GD, satisfying the recursion x(m)

k+1 = x
(m)
k − 1

mR̂(x
(m)
k , Sn), for k = 0, 1, . . . . To simplify notation,

we shall denote R̂(x) := R̂(x, Sn).

The following result relates the loss function, averaged over realizations of the injected perturbations,
evolved under training with MPGD to that of unperturbed GD in the weak perturbation regime.

Theorem 4.3 (Implicit regularization). Let m > 0, k ∈ N, and Sn be given. Assume that r1 = 1

and r2 = d in Eq. (8), and E[v1(y
(1)
k )] = E[v2(y

(2)
k )] = 0 for all k. Then, for a scalar-valued loss

function R̂ with∇R̂ having Lipschitz continuous partial derivatives in each coordinate up to order

3As ρ→ 1, Dρ tends to the Kullback-Leibler divergence.
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three (inclusive),

E[R̂(x
(m)
k )] = R̂(x

(m)
k ) +

ε2

2

(
tr
(
C

(m)
k ∇2R̂(x

(m)
k )

)
−∇R̂(x

(m)
k )Tλ

(m)
k

)
+O(ε3), (16)

as ε→ 0, where the expectation is with respect to the realization of the y(i), the λ(m)
k are the vector

with the lth component:

[λ
(m)
k ]l =

1

m

k∑
i=1

d∑
j=1

[Φ
(m)
i ]ljtr

(
C

(m)
i−1∇

2[∇R̂(x
(m)
i−1)]j

)
,

the Φ
(m)
i :=

∏k−1
j=i (I − 1

m∇
2R̂(x

(m)
j )), with the empty product taken to be the identity, and the

C
(m)
k are covariance matrices with the (p, q)-entry of

∑k
i1,i2=1

∑d
r,s=1[Φ

(m)
i1

]pr[Φ
(m)
i2

]qsθ
(m)
i1,i2,r,s

,
where

θ
(m)
i1,i2,r,s

=
µ2

0

m2/α1
E[v1(y

(1)
i1−1)v1(y

(1)
i2−1)] · [x(m)

i1−1]r[x
(m)
i2−1]s +

σ2
0

m2/α2
E[[v2]r(y

(2)
i1−1)[v2]s(y

(2)
i2−1)].

Theorem 4.3 implies that the loss function optimized under MPGD at a given iteration and
m is, on average, approximately equivalent to a regularized objective functional. Moreover,
∇R̂(x

(m)
k )T v

(m)
k

tr
(
C

(m)
k ∇2R̂(x

(m)
k )

) ≤ C
m for some constant C independent of m, suggesting that the trace term

is the dominant explicit regularizer for large m. This explicit regularizer is solely determined by
the discrete-time flow generated by the Jacobians I − 1

m∇
2R̂(x

(m)
j ), the covariances C(m)

k , and
the Hessian of the loss function, all evaluated along the dynamics of the unperturbed GD. We can
therefore expect the use of the perturbations in MPGD as a regularization mechanism should reduce
the Hessian of the loss function according to the perturbation levels (µ0, σ0) and the correlations

1
m2/α1

E[v1(y
(1)
i1−1)v1(y

(1)
i2−1)], 1

m2/α2
E[v2(y

(2)
i1−1)v2(y

(2)
i2−1)]. Reducing the Hessian of the loss func-

tion can lead to flatter minima in the loss landscape, which is widely believed to associate with better
generalization in deep learning [KMN+16, JNM+19].

Lastly, we observe that in the weak perturbation regime and for non-convex losses, MPGD is more
beneficial than GD in the sense that it reduces the Hessian of the loss, thereby promoting flatter
minima. Hence, in order to observe the benefits of our scheme, we suspect that the optimization
problem should be non-convex and local minima should have different curvatures.

5 Empirical Results

In this section, we illustrate the advantages of MPGD compared to other schemes on the tasks of
(1) minimizing the widening valley loss, (2) regression on the Airfoil Self-Noise Dataset, and (3)
classification on CIFAR-10. We also provide additional results and details in Appendix F.

5.1 Minimizing the Widening Valley Loss

We consider the problem of minimizing the widening valley loss, given by `(u, v) = v2‖u‖2/2. The
gradient of l is given by∇`(u, v) = (v2u, ‖u‖2v), and the trace of the Hessian is dv2 + ‖u‖2, where
d is the dimension of u. The trace of the Hessian measures the flatness of the minima, which is
monotonously changing in this case. The loss has a valley of minima with zero loss for all (u, v) with
v = 0. The smaller the norm of u, the flatter the minimum. Vanilla GD gets stuck when it first enters
this valley, and the intuition is that injecting suitable perturbations should help convergence to a flat
(with small ‖u‖) part of the valley. All (u, v) with v = 0 are minima, but we also need ‖u‖ to be
minimized in order to minimize the trace of the Hessian. In high dimension (large d), the GD path is
biased towards making v small and not optimizing u since the direction along v is the most curved.

For the experiments, we start optimizing from the point (u0, 0), where u0 ∼ 5 · U(d) with d = 10,
and use the learning rate η = 0.01. We study and compare the behavior of the following schemes: (i)
baseline (vanilla GD), (ii) GD with uncorrelated Gaussian noise injection instead, and (iii) MPGD.
Figure 2 demonstrates that MPGD can lead to successful optimization of the widening loss whereas
the baseline GD and GD with Gaussian perturbations lead to poor solutions. This is in agreement with
our analysis of implicit regularization for MPGD, showing that the injected perturbations effectively
favor small trace of the loss Hessian, thereby biasing the solution to flatter region of the loss landscape.
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Figure 2: Evolution of GD with Gaussian perturbations (left plot) vs. that of MPGD with γ = 0.7,
β = 0.5 (middle plot), using µ = 0.02, σ = 0.05, and η = 0.01 (m = 100). Here we see that MPGD
leads to successful optimization of the widening valley loss whereas that with Gaussian perturbations
fails to converge. Moreover, MPGD effectively reduces the trace of loss Hessian (see right plot),
steering the GD iterates to flatter region of the loss landscape.

5.2 Airfoil Self-Noise Prediction
Table 1: Shallow neural nets trained on the airfoil
data set. The results in parenthesis are achieved
with the variant (11). All the results are averaged
over 5 models trained with different seed values.

Scheme test RMSE RMSE gap

Baseline 0.4309 0.2411
Gaussian 0.4279 0.2354
MPGD, γ = 0.55 0.3916 (0.3865) 0.2256 (0.2305)
MPGD, γ = 0.6 0.3810 (0.4092) 0.2298 (0.2206)
MPGD, γ = 0.65 0.3829 (0.3891) 0.2407 (0.2307)
MPGD, γ = 0.7 0.4600 (0.3754) 0.2315 (0.2311)

We consider the Airfoil Self-Noise Dataset
[DG17] from the UCI repository. It comprises of
differently sized airfoils at various wind tunnel
speeds and angles of attack. This is a regression
problem aiming to predict scaled sound pres-
sure level, in decibels, of the airfoil based on the
the features: frequency, angle of attack, chord
length, free-stream velocity, and suction side
displacement thickness. We use 1202 samples
for training and 301 samples for testing.

For the training, we use a fully connected shal-
low neural network of width 16 with ReLU activation and train for 3000 epochs with the learning
rate η = 0.1, using mean square error (MSE) as the loss and choosing β = 0.5. Table 1 reports
the average root MSE (RMSE) and the RMSE gap (defined as test RMSE - train RMSE) evaluated
for models that are trained with 5 different seed values for this task. We can see that MPGD leads
to both lower test RMSE and RMSE gap when compared with vanilla GD (baseline) and GD with
uncorrelated Gaussian perturbations (see the results not in parenthesis in Table 1; here µ = 0.01,
σ = 0.02). Using the form of the perturbations in (11) instead can also give lower RMSE gap (see the
results in parenthesis in Table 1; here σ = µ = 0.01). Overall these results support our generalization
theory for MPGD. Lastly, we note that using larger values of γ naively does not guarantee better
test performance: one has to fine tune the parameters β, µ, σ, η appropriately to achieve favorable
trade-off between training stability and test performance.

5.3 CIFAR-10 Classification

We consider training a ResNet-18 classifier [HZRS16] on the CIFAR-10 data set [Kri09]. We follow
the setup used in [GGP+21], where a ResNet-18 is trained using batch size of 50K (the entire training
dataset). As in [GGP+21], we consider a standard ResNet-18 with the parameters in the linear layer
randomly initialized and the parameters in the batch normalization initialized with mean zero and
unit variance, except for the last in each residual branch which is initialized to zero. The default
random CIFAR-10 data ordering is kept as is, and every image is randomly augmented by horizontal
flips and random crops after padding by 4 pixels.

Using the setup of [GGP+21], the reference mini-batch SGD is trained using a batch size of 128
(sampling without replacement), Nesterov momentum of 0.9 and weight decay of 0.0005. The
learning rate is warmed up from 0.0 to 0.1 over the first 5 epochs and then reduced via cosine
annealing to 0 over the course of training for 300 epochs (resulting in 390x300=117,000 update
steps). The validation accuracy obtained in [GGP+21] is 95.7%. For the full-batch GDs, we replace
the mini-batch updates by full batches and accumulate the gradients over all mini-batches. For the
Gaussian scheme and MPGD, we inject the perturbations into the GD recursion for parameters of the
input layer of ResNet-18, choosing µ = 0.03, σ = 0.01 and β = 0.5 (for MPGD). In our experiments,
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Table 2: ResNet-18 trained on CIFAR-10 for 1000 epochs. Here, accuracy gap = training accuracy -
validation accuracy. The results in parenthesis are achieved with the variant of MPGD (11). All the
results are averaged over 5 models trained with different seed values.

Scheme val. accuracy in % accuracy gap in %

Baseline full batch GD 73.10 8.99
Gaussian 70.58 8.53
MPGD, γ = 0.55 75.97 (74.51) 6.08 (6.58)
MPGD, γ = 0.6 75.78 (74.60) 5.64 (6.15)
MPGD, γ = 0.65 74.39 (72.96) 6.41 (6.85)
MPGD, γ = 0.7 73.72 (73.27) 6.69 (6.04)

we fix the learning rate to 0.1 throughout training, and do not add momentum and weight decay. This
is in constrast to [GGP+21], where the additional tricks applied in the mini-batch SGD are also used
for the full-batch GD, leading to higher test accuracies (see Table 2 in [GGP+21]).

Table 2 shows that MPGD can lead to better test performance and lower accuracy gap when compared
to the baseline (full batch GD) and Gaussian noise-perturbed GD. Using the perturbations in (11)
instead can also achieve lower accuracy gap. Therefore, adding perturbations of MPGD can be
potentially a useful trick to improve training of deep architectures on benchmark data sets. Lastly,
we note that additional tricks, such as gradient clipping and tuning of optimization hyperparameters,
can be applied to improve our test accuracies and close the gap to results obtained with the reference
mini-batch SGD. However, our main focus here is not on competitive performance, but rather on
demonstrating the effects of the perturbations in MPGD when compared to full batch GDs and
Gaussian noise-perturbed full-batch GD to support our theory.

Lastly, we remark that we did not tune the step-size for any of the algorithms. Since our generalization
bound applies to the asymptotic SDE, which is obtained when the step-size goes to zero, in order to
stay close to the theory, we chose a small enough step-size to be both not far from the continuous
dynamics, and large-enough so that the algorithm converges in a reasonable amount of time. That
being said, we have tried a range of step-sizes for both algorithms, and we observed that the proposed
scheme consistently outperforms vanilla GD for smaller step-sizes. Whereas if we use a large step-
size, both algorithms perform similarly. In this regime, vanilla GD as well potentially emits a chaotic
behavior, which might also indicate the importance of the "implicit randomness". However, as we
indicated in the introduction, this regime is not easily controllable, and our purpose is to introduce a
controlled chaotic component, with a clear theoretical understanding.

6 Conclusion

In this paper, we introduce and study a class of slow-fast deterministic dynamical systems which
homogenize to a limiting SDE driven by a heavy-tailed Lévy-stable process in an appropriate scaling
limit as a rigorous framework for perturbed GDs. Within this framework, we introduce MPGD,
a novel version of perturbed GD, which we show to have good generalization and regularization
properties. We further demonstrate the advantages of MPGD empirically in various optimization
tasks. Our framework can provide useful tools for identifying implicit randomness in deterministic
optimization algorithms and inspire other promising algorithms. It would be interesting to investigate
the interactions of the chaotic perturbations in MPGD with the noise arising from mini-batch
sampling in SGD [WHX+20] and other optimization tricks. Since this is a theoretical paper studying
a framework for perturbed GDs, there are no potential negative societal impacts of our work.
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