
A Detailed justifications for the checklist questions
1.(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and

scope?[Yes] We believe our experiments provide an extensive study to our problem statement, comparing
multi-task pretraining and finetuning with meta-RL. The empirical results are comprehensive and clearly
supports our stated contributions.

(b) Did you describe the limitations of your work? [Yes] Yes, see section 8
(c) Did you discuss any potential negative societal impacts of your work?[Yes] Yes, see section 8
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?[Yes]

2. If you are including theoretical results...[N/A]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either
in the supplemental material or as a URL)? [Yes] Please refer to the code scripts provided in the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
Please refer to both main text and appendix for experiment details.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple
times)?[Yes]
All adaptation experiments in Procgen and RLBench are run for 3 seeds. In Atarim all adaptation
experiments are run for 10 seeds due to the high variance during RL training.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal
cluster, or cloud provider)? [Yes]
As stated in section 2, we use RTX A5000 GPUs each with 24GB memory. Procgen experiments are all
done on single-GPU: it took 10 hours for training each multi-task agent for 100M environment steps,
and 10 minutes for each finetuning/adaptation run on each of the 20 test levels. RLBench experiments
use 4 GPUs for each run; training each multi-task agent took 24 hours, and finetuning/adaptation on
each test task for each of the 3 seeds takes 9 hours. Atari experiments are done on single GPUs; training
each agent takes 24hrs for 1 million steps, and finetuning/adaptation on each test game took 1 hours
for each of the 10 seeds.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]

We use the Procgen RL environment released by OpenAI under MIT lisence [13]; the RL training code
is built on the open-source RL framework implementation from Stable-baselines3 [65]
We use the RLBench simulated robotic manipulation environment [8] released under MIT license. Our
C2F-ARM algorithm and training framework are built based on the original author’s implementation
and open-sourced code under MIT license.
We use The Arcade Learning Environment [15, 14] (under MIT license) for simulated RL environments
in our Atari experiments. The code for RainbowDQN is built on the open-source implementation [66]

(b) Did you mention the license of the assets? [Yes] See described above, all used assets are released under MIT
license.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] Yes, please see the
supplemental material for all the code for reproducing our experiments.

(d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable information or
offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects... [N/A]

B Additional Procgen Remarks

B.1 Experiment Details

Hyperparameters See Table 1 for hyperparameter settings used for RL training on Procgen. The base PPO
training parameters are shared across all compared algorithms. Our code is built off the PPO training code
implemented in Stable-baselines 3 [65].

Task settings See Figure 9 for additional visualizations of the training levels. We show 10 levels from each
training set, note that each smaller training set is a subset of levels from the bigger training sets. All 20 test
levels are shown under “test levels”. Note the high diversity of color themes and layouts across different levels.
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Figure 9: Visualization of all 20 test levels and a subset of training levels from game Coinrun in
Procgen.

B.2 Training Results for Procgen Experiments

The results on training levels for all compared methods are reported in Table B.2, where each column corresponds
to training each agent with a different size of training set, i.e. the number of training-levels used. Each cell
reports the final reward for a single agent that was trained for 100M environment steps, averaged over all training
levels.

Method Average Reward Average Reward Average Reward
on 100 levels on 1000 levels on 10000 levels

MT-PPO 9.7 8.0 7.5
RL2-PPO 4.7 7.7 7.8
Reptile-PPO 9.5 5.8 5.3

C Additional RLBench Remarks

C.1 Coarse-to-fine Attention Driven Robotic Manipulation (C2F-ARM)

A core component of C2F-ARM is the coarse-to-fine Q-attention [19] module, which takes as input a coarse 3D
voxelization of the scene, and learns to attend to interesting areas within the coarse voxelization. The module
then ‘zooms’ into that area and re-voxelizes the scene at a higher spatial resolution. This ‘attend-and-zoom’
procedure is applied iteratively and results in a near-lossless discretization of the 3D space. This 3D space
discretization is combined with a rotation discretization to give a continuous next-best pose output. C2F-ARM
takes this next-best pose and uses a motion planner to take the robot to the goal pose. In this work, we use the
original C2F-ARM algorithm, and do not include any of its subsequent extensions, e.g., learned path ranking [67]
and tree expansion [68].

As mentioned above, a small number of demonstrations are used to overcome the exploration problem within
these sparse-reward environments. The predecessor to C2F-ARM, ARM [31], introduced two demonstration
pre-processing procedures: (1) keyframe discovery, which assists the Q-attention at the initial phase of training by
suggesting meaningful points of interest; and (2) demo augmentation, which takes demo episodes and produces
many sub-episodes with different starting points, thereby increasing the initial number of demos in the replay
buffer. All C2F-ARM results use both pre-processing procedures.
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Table 1: Hyperparameters for Procgen Experiments

PPO Value

Environment steps (pretraining) 100,000,000
Environment steps (testing) 2,000,000
Mini batch size 2048
Learning rate 5e-4
Number of epochs 3
Discount factor � 0.99
GAE coefficient � 0.95
Clip Range Constant 0.2
Entropy coefficient 0.01
Value function coefficient 0.5
Gradient clipping norm 0.5
Target KL divergence 0.01
Reptile-PPO Value

Number of inner-loop iterations 3
Soft parameter update schedule ✏ Linear 0-1

RL2-PPO Value

LSTM hidden state dimension 256
LSTM number of hidden layers 2

C.2 Training Results for RLBench Experiments

We report results on training tasks for all compared methods in Table C.2, where each row corresponds to
training with one task held-out and using only the remaining 10 tasks. Each cell reports the final success rate for
a single agent on all training tasks, each evaluated 10 episodes and results are averaged across tasks.

Held-out Task MT-C2FARM PEARL-C2FARM Reptile-C2FARM
Avg. Success Rate Avg. Success Rate Avg. Success Rate

Lid off Saucepan 64.64 ± 9.89 49.88 ± 11.45 71.91 ± 10.58
Push Button 60.93 ± 12.29 62.86 ± 9.73 55.97 ± 13.58
Pick and Lift 65.30 ± 10.15 51.19 ± 12.99 68.84 ± 12.67
Pick up Cup 67.30 ± 9.40 53.17 ± 11.00 47.74 ± 11.70
Turn on Lamp 68.63 ± 10.78 57.80 ± 11.21 54.97 ± 12.85

C.3 Single-task, Multi-variation Experiments

As a sanity check for whether the meta-RL algorithms are able to generalize to an easier, multi-variation setup,
we experiment with the multi-variation push_button task from RLBench, where the task is to push a button on
the tabletop but different variations differ in button colors. Each method is trained on 10 variations and average
test-time performance on 5 unseen variations. Results are reported in 10: all compared methods can perform an
unseen variation in a zero-shot manner, and PEARL is able to adapt despite the lack of gradient updates.

C.4 Properties of fine-tuning Q-attention

Earlier in the paper, we have shown that multi-task pre-training, followed by fine-tuning, can perform equally
as well as meta-RL. In the following set of experiments, we explore fine-tuning in more detail, focusing on:
(1) zero-shot performance on test tasks (no test-time gradient updates); (2) investigate whether it is better to
fine-tune an unseen task in isolation, or together with other tasks (in a multi-task setup); and (3) inspecting the
role of each Q-attention depth on fine-tuning performance.

We begin by evaluating zero-shot task performance on held-out test tasks when pretrained with multi-task
pretraining and evaluated on 30 episode rollouts. Results in Table 2 show that multi-task pretraining, even on a
small number of tasks, can allow the Q-attention to begin to learn an intuition of ‘objectness’, which can be
useful for zero-shot performance on some tasks.

The next set of experiments aims to investigate whether it is better to fine-tune an unseen task in isolation, or
together with other tasks (in a multi-task setup). The intuition for the former is that train-time tasks (where we
have access to demos), can be used to learn good representations and exploration strategies; while the latter
intuition is that mixing with train-task data can act as auxiliary tasks, and the test-time task is treated as the main
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Figure 10: Adaptation result on unseen variation of the “push button" task on RLBench. Each method
is trained on 10 variations and average test-time performance on 5 unseen variations. All compared
methods can perform an unseen variation in a zero-shot manner, and PEARL is able to adapt despite
the lack of gradient updates.

Figure 11: Is it is better to fine-tune an unseen task in isolation, or together with other tasks? We
perform a “cross-validation" style evaluation, where from a set of 11 RLBench tasks, 1 is held out for
test-time evaluation (and given 0 demos), while the other 10 are used for pretraining (and are given 5
demos). This is done for each of the 3 tasks above. Each color bar represents the average evaluation
over 30 episodes while the error bars represent the standard deviations.

task. As shown in Figure 11, fine-tuning in isolation is superior to training in a multi-task setting. The hypothesis
here is that the agent can keep the representations and skills that are useful to the fine-tune task, while forgetting
non-useful ones; whereas training with other tasks requires that the network have the capacity to remember all
skills.

Table 2: Zero-shot task performance on held-out test
tasks, when pretrained with multi-task pretraining. In
column “Success Rate (Train)”, we report the final train-
ing performance averaged across evaluating 30 episodes
for each of the 10 training tasks. In column “Success
Rate (Unseen Task)”, we report zero-shot direct evalu-
ation performance of the trained agent on the held-out
unseen task.

Held-out Task Success Rate Success Rate
(Train) (Unseen Task)

Lid off Saucepan 64.64 ± 9.89 0 ± 0
Push Button 60.93 ± 12.29 63.33 ± 8.80
Pick and Lift 65.30 ± 10.15 0 ± 0
Pick up Cup 67.30 ± 9.40 36.43 ± 8.83
Turn on Lamp 68.63 ± 10.78 3.33 ± 3.28

The final set of experiments aim to inspect the
role of each Q-attention depth on fine-tuning
performance. Figure 12 shows a comparison
of three different fine-tuning strategies: (1) up-
dating only the first (coarse) Q-attention depth,
(2) updating only the second (fine) depth, and
(3) updating both depths. Unsurprisingly, up-
dating both depths gives the best performance,
however, fine-tuning only the second depth
(while leaving the first depth fixed) performs al-
most equally as well. This suggests that during
pretraining, the Q-attention learns a good un-
derstanding of ‘objectness’ at the coarse level
(i.e., what object to interact with), while the
“fine" level is more concerned with how to inter-
act with the object, which is more task-specific,
and therefore has the most benefit from fine-
tuning.
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Figure 12: A deeper look at the role of Q-attention when fine-tuning on 3 unseen tasks. Top: we
compare how performance for 3 different fine-tuning strategies: (1) updating only the first Q-attention
depth, (2) updating only the second depth, and (3) updating both depths. Bottom: visualization of
the scene information captured by the Q-attention; whole image represents Q-attention depth 0 which
captures global, whole-scene information, while white square represents Q-attention depth 1 which
captures local, fine-grained information.

Figure 13: Adaptation results on all 5 test-time Atari games using two different training setups:
meta-training or pretraining using 5 tasks (top row) and 10 tasks (bottom row). Each game’s scores are
normalized by the final converged result for each corresponding game as reported in RainbowDQN
[20]. We plot the normalized scores averaged over 10 seeds for each method.

D Additional Atari Remarks

D.1 Full adaptation results

See Figure 13 for separate adaptation results on all 5 test games. For each training method (either training
from scratch, adaptation or finetuning), we run 10 seeds on every test game. Because we use the data-efficient
benchmark [35] which does not train RainbowDQN to full coverage, we normalize the scores on each game by
the corresponding final RainbowDQN result, as reported in [20]. We then plot the normalized reward averaged
over all 10 seeds. The first and second row shows adaptation performance from two different training sets:
meta-training or pretraining using 5 tasks (top row) versus 10 tasks (bottom row).

Hyperparameters for training base RainbowDQN (data-efficient version) are shared across all compared algo-
rithms, see Table 3 for details. Our code is built on the popular open-source implementation from [66].

18



Figure 14: Training performance of the compared method on Atari. Results are reported separately
on each training game.

Figure 15: Finetuning the entire network versus finetuning with a partially-loaded (only convolutional
layers) agent. Averaged performance across all 5 test-time Atari games shows little difference
between the two settings, and shows similar trend when pretrained with different number of tasks
(5 v.s. 10). When additionally compared with training from scratch, the results suggest that the
transferability between Atari games is likely to be too low for pretraining

D.2 Training Results for Atari Experiments

We report the performance of the three compared method during training in 14 : each method is trained on the
same set of 10 Atari games, and rewards are normalized in the same way as the adaptation results, i.e. normalized
by the per-game results reported in RainbowDQN [20] (since our setup follows the data-efficient setup in
[35], the results are lower than reported in [20]). Notice that, the overall performance of all three methods
(MT-Rainbow, Reptile-Rainbow, and PEARL-Rainbow) are similar across each training game, which suggests
that their corresponding adaptation performances are not particularly held-back or aided by the performance on
training tasks.

D.3 Additinal Finetuning Experiments

We compare two ways of finetuning a multi-task agent: finetune all network parameters, versus finetune only
the convolutional layers and re-initialize the MLP layers. Results are reported in Figure 16 We note again the
small difference between the two sets of results and between finetuning and training from scratch, which further
suggests the possibility that there is little shared knowledge between Atari games that can be transferred.

D.4 Finetuning PEARL-Rainbow Experiments
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Figure 16: Can PEARL adapt to the new unseen games via finetuning? We finetune a PEARL agent,
which was pretrained on 10 Atari games, on 3 separate test-time games. In contrary to gradient-free
adaptation (shown in red), finetuning the PEARL-Rainbow agent (shown in green) allows it to adapt
to the unseen games, and achieves similar performance to finetuning the multi-task agent and the
Reptile agent.

Table 3: Hyperparameters for Atari Experiments

RainbowDQN Value

Environment steps (pretraining) 1,000,000
Environment steps (testing) 100,000
Batch size 32
Learning rate 1e-3
Minimum of value distribution support -10
Maximum of value distribution support 10
Multi-step return 20
MLP hidden dimension 256
Action dimension 18
Reptile-Rainbow Value

Number of inner-loop updates 5
Soft parameter update schedule ✏ Linear 0-1
PEARL-Rainbow Value

Context embedding dimension 32
KL loss coefficient 1
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