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Abstract

We consider reinforcement learning in a discrete, undiscounted, infinite-horizon
Markov Decision Problem (MDP) under the average reward criterion, and focus on
the minimization of the regret with respect to an optimal policy, when the learner
does not know the rewards nor the transitions of the MDP. In light of their success
at regret minimization in multi-armed bandits, popular bandit strategies, such as
the optimistic UCB, KL-UCB or the Bayesian Thompson sampling strategy, have
been extended to the MDP setup. Despite some key successes, existing strategies
for solving this problem either fail to be provably asymptotically optimal, or suffer
from prohibitive burn-in phase and computational complexity when implemented
in practice. In this work, we shed a novel light on regret minimization strategies,
by extending to reinforcement learning the computationally appealing Indexed
Minimum Empirical Divergence (IMED) bandit algorithm. Traditional asymptotic
problem-dependent lower bounds on the regret are known under the assumption
that the MDP is ergodic. Under this assumption, we introduce IMED-RL and prove
that its regret upper bound asymptotically matches the regret lower bound. We
discuss both the case when the supports of transitions are unknown, and the more
informative but a priori harder-to-exploit-optimally case when they are known.
Rewards are assumed light-tailed, semi-bounded from above. Last, we provide
numerical illustrations on classical tabular MDPs, ergodic and communicating only,
showing the competitiveness of IMED-RL in finite-time against state-of-the-art
algorithms. IMED-RL also benefits from a light complexity.

1 Introduction

We study Reinforcement Learning (RL) with an unknown finite Markov Decision Problem (MDP)
under the average-reward criterion in which a learning algorithm interacts sequentially with the
dynamical system, without any reset, in a single and infinite sequence of observations, actions, and
rewards while trying to maximize its total accumulated rewards over time. Formally, we consider a
finite MDP M = (S,A,p, r) where S is the finite set of states, A = (As)s∈S specifies the set of
actions available in each state and we introduce the set of pairs XM = {(s, a) : s ∈ S, a ∈ As} for
convenience. Further1, p : XM → P(S) is the transition distribution function and r : XM → P(R)
the reward distribution function, with corresponding mean reward function denoted by m : XM → R.
An agent interacts with the MDP at discrete time steps t ∈ N∗ and yields a random sequence
(st, at, rt)t of states, actions, and rewards in the following way. At each time step t, the agent observes
the current state st and decides the action at to take based on st and possibly past information, i.e.
previous elements of the sequence. After playing at, it observes a reward rt ∼ r (st, at), the current
state of the MDP changes to st+1 ∼ p (·|st, at) and the agent proceeds sequentially. In the average-

1Given a set E, P (E) denotes the set of probability distributions on E.
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reward setting, one is interested in maximizing the limit, 1
T

∑T
t=1 rt, when T → ∞, providing it

exists. This setting is a popular framework for studying sequential decision making problems; it can
be traced back to seminal papers such as those of Graves and Lai [1997] and Burnetas and Katehakis
[1997] This theoretical framework allows to study the exploration-exploitation trade-off that arises
from the sequential optimization problem a learner is trying to solve while being uncertain about the
very problem it is optimizing.

In this paper, one is interested in developing a sampling strategy that is optimal amongst strategies
that aim at maximizing the average-reward, i.e. balancing exploration and exploitation in an optimal
way. To assert optimality, we define the notion of regret and state a regret lower bound with the
purpose of defining a theoretically sound notion of optimality that is problem-dependent. While
regret defines the discrepancy to optimality of a learning strategy, a problem-dependent regret lower
bound will formally assess the minimal regret that any learning algorithm must incur on a given
MDP problem by computing a minimal rate of exploration. Because this minimal rate of exploration
depends on the problem, it is said to be problem-dependent, as opposed to worst case regret study
that can exist in the MDP literature (e.g. Jaksch et al. [2010]). Regret lower bounds currently exist in
the literature when the MDP M is assumed to be ergodic2. Hence we hereafter make this assumption,
in order to be able to compare the regret of our algorithm to an optimal bound. Similarly, to ensure
fast enough convergence of the empirical estimate of the reward to the true mean, an assumption
controlling the rate of convergence to the mean is necessary.
Assumption 1 (Light-tail rewards). For all x ∈ XM, the moment generating function of the reward
exists in a neighborhood of 0: ∃λx> 0,∀λ ∈ R such that |λ| < λx,ER∼r(x)[exp(λR)] < ∞.

Policy Regret and ergodicity are defined using properties of the set of stationary deterministic poli-
cies Π(M) on M. On M, each stationary deterministic policy π : S → As defines a Markov
reward process, i.e. a Markov chain on S with kernel pπ : s ∈ S 7→ p (·|s, π(s)) ∈ P (S)
together with rewards rπ : s ∈ S 7→ r (s, π(s)) ∈ P (R) and associated mean rewards
mπ : s ∈ S 7→ m (s, π(s)) ∈ R. The t-steps transition kernel of π on M is denoted pt

π. We

denote pπ= lim
T→∞

1
T

T∑
t=1

pt−1
π : S → P(S) the Cesaro-average of pπ . A learning agent is executing a

sequence of policies πt∈Π(M), t⩾1, where πt depends on past information (st′ , at′ , rt′)t′<t. With
a slight abuse of notation, a sequence of identical decision rules, πt = π for all t, is also denoted π.

Gain The cumulative reward (value) at time T , starting from an initial state s1 of policy π = (πt)t
is formally given by

Vs1(M, π, T ) = Eπ,M,s1

[ T∑
t=1

rt

]
= Eπ,M,s1

[ T∑
t=1

m(st, at)

]
=

T∑
t=1

( t−1∏
t′=1

pπt′mπt′

)
(s1) . (1)

For π ∈ Π(M), the average-reward 1
T Vs1(M, π, T ) tends to (pπm) (s1) as T → ∞. The gain of

policy π ∈ Π(M), when starting from state s1 is defined by gπ(s1) = (pπm)(s1) and the optimal
gain is defined as g⋆(s1) = maxπ∈Π(M) gπ(s1). Os(M) = {π ∈ Π : gπ(s) = g⋆(s)} is the set of
policies achieving maximal gain on M starting from state s.
Definition 1 (Regret). The regret at time T of a learning policy π = (πt)t starting at state s on an
MDP M is defined with respect to any π⋆ ∈ Os (M), as

Rπ,s (M, T ;π⋆) = Vs(M, π⋆, T )− Vs(M, π, T ) . (2)

In this paper, we aim to find a learning algorithm with asymptotic minimal regret. The Lemma 1
will prove that for all optimal policies, π⋆, regrets are the same up to a bounded term that therefore
does not count in asymptotic analysis. Some authors such as Bourel et al. [2020] define the regret
as TgM(s) − Vs(M, π, T ) which is equal to the one we defined up to a bounded term (again by
Lemma 1). No stationary policy can be optimal at all time and the important fact is that all those
notions of regret induce the same asymptotic lower bound.

In the considered setting, the learning agent interacts with the MDP without any reset. The minimal
assumption would be to allow the agent to come back with positive probability from any initial

2We prefer the term ergodic over the more accurate one, irreducible as it is a standard abuse of terminology
in the MDP community. Mathematically, an MDP is ergodic if both irreducible, aperiodic and positive recurrent.
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mistake in finite time, so that the agent is not stuck in a sub-optimal area of the system. This is
assuming that the MDP is communicating, that is ∀s, s′,∃π, t ∈ N : pt

π(s
′|s) > 0. However, in the

literature, lower bounds on the regret are stated for MDPs satisfying a stronger assumption, ergodicity.
Since one is interested in crafting an algorithm matching a lower bound, we consider this stronger
assumption.

Assumption 2 (Ergodic MDP). The MDP M is ergodic, that is ∀s, s′,∀π,∃t ∈ N : pt
π(s

′|s) > 0.

Intuitively, this means that for all policies and all couples of states, there exists a finite trajectory of
positive probability between the states. Interestingly, the ergodic property can be assumed on the
MDP or on the set of policies in which we seek an optimal one. For instance, in any communicating
MDP all ε-soft policies3 are ergodic; more in the Experiment section 5 and Appendix E.

Related work Had the MDP only one state, it would be a bandit problem. Lower bound on the
bandit regret and algorithms matching this lower bound, sometimes up to a constant factor, are
well studied in the bandit literature. Therefore, bandit sampling strategies with known theoretical
guarantees have inspired RL algorithms. The KL-UCB algorithm (Burnetas and Katehakis [1996],
Maillard et al. [2011]), has inspired the strategy of the seminal paper of Burnetas and Katehakis [1997],
as well the more recent KL-UCRL strategy (Filippi et al. [2010] Talebi and Maillard [2018]). Inspired
by the UCB algorithm (Agrawal [1995], Auer et al. [2002]), a number of strategies implementing
the optimism principle have emerged such as UCRL (Auer and Ortner [2006]), UCRL2 (Jaksch et al.
[2010]) and UCRL3 (Bourel et al. [2020] (and beyond, Azar et al. [2017], Dann et al. [2017] for the
related episodic setup). The strategy PSRL (Osband et al. [2013]) is inspired by Thompson sampling
(Thompson [1933]).

Outline and contribution In this work, we build on the IMED strategy (Honda and Takemura
[2015]), a bandit algorithm that benefits from practical and optimal guarantees but has never been
used by the RL community. We fill this gap by proposing the IMED-RL algorithm which we prove
to be asymptotically optimal for the average-reward criterion. We revisit the notion of skeleton
(Equation 12) introduced in the seminal work of Burnetas and Katehakis [1997], with a subtle but key
modification that prevents a prohibitive burn-in phase (see Appendix G for further details). Further,
this novel notion of skeleton enables IMED-RL to remove any tracking or hyperparameter and mimic
a stochastic-policy-iteration-like algorithm. 4 Further, this skeleton scales naturally with the studied
MDP as it does not explicitly refer to absolute quantities such as the time. We prove that our proposed
IMED-RL is asymptotically optimal and show its numerical competitivity.

Building on IMED, we make an additional assumption on the reward that is less restrictive than the
common bounded reward hypothesis made in the RL community.

Assumption 3 (Semi-bounded rewards). For all x ∈ X , r(x) belongs to a subset Fx ⊂ P (R) known
to the learner.5 There exists a known quantity mmax(x)∈R such that for all x ∈ X , the support
Supp(r(x)) of the reward distribution is semi-bounded from above, Supp(r(x)) ⊂]−∞,mmax(x)],
and its mean satisfies m(x) < mmax(x).

Ergodic assumption While many recent works focused on worst-case regret bounds only (e.g.
Domingues et al. [2021], Zanette and Brunskill [2019], Jin et al. [2018] and citations therein), studying
problem-dependent optimal regret bounds has been somewhat overlooked. Being more general is
always more appealing but the restriction from communicating MDPs to ergodic MDPs allows us to
target exact asymptotic optimality ; not just bound, not just worst-case bound. Ergodic MDPs is the
only case in which explicit problem-dependent lower bounds are known and hence can be directly
used to build a strategy. Indeed, the main challenge towards problem-dependent optimality is that
existing lower bounds for exploration problems in MDPs are usually written in terms of non-convex
optimization problems. This implicit form makes it hard to understand the actual complexity of
the setting and, thus, to design optimal algorithms. Existing proof strategies for state-of-the-art
algorithms (UCRL, PSRL, etc) ensure a regret for communicating MDPs but fail to provide optimality
guarantees even in the ergodic case. We believe that deriving a sharp result in the ergodic case

3A policy π : S → P(As) is ε-soft if π(a|s) ⩾ ε/|As| for all s and a.
4The skeleton in Burnetas and Katehakis [1997] is sometimes empty at some states, when t is too small, this

causes the strategy to work well only after t is large enough to ensure that the skeleton contains at least one
action in each state.

5e.g. Bernoulli, multinomial with unknown support, beta, truncated Gaussians, a mixture of those, etc.
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might prove to be insightful to pave the way towards the communicating case. From a theoretical
standpoint, related to UCRL type strategy, modern analysis of KL-UCRL by Talebi and Maillard [2018]
also makes the ergodic assumption. This hypothesis has also been used in the theoretical work of
Tewari and Bartlett [2007] and the work of Ok et al. [2018] that concerns structured MDPs. Related
to this assumption are works that are interested in identification and sample complexity. Wang [2017]
introduced a primal-dual method to compute an ε-optimal policy and bound the number of sample
transitions to reach this goal. Jin and Sidford [2020] relaxed the ergodic hypothesis by using a mixing
hypothesis that implies the uniqueness of recurrent class for each policy. In this setting, the authors
also derive a bound on the number of samples to compute an ε-optimal policy.

2 Regret lower bound

In this section, we recall the regret lower bound for ergodic MDPs and provide a few insights about it.

Characterizing optimal policies Relying on classical results that can be found in the books of
Puterman [1994] and Hernández-Lerma and Lasserre [1996], we give a useful characterization of
optimal policies that is used to derive a regret lower bound. Under the ergodic Assumption 2 of MDP
M, for all policy π ∈ Π(M), the gain is independent from the initial state, i.e. gπ(s) = gπ(s

′) for all
states s and s′, and we denote it gπ . Similarly, the set of optimal policies O(M) is state-independent
since Os(M) = Os′(M). Any policy π satisfy the following fixed point property

(Poisson equation) gπ + bπ(s) = mπ(s) + (pπbπ)(s) , (3)

where bπ : S → R is called the bias function and is defined up to an additive constant by bπ(s) =( ∞∑
t=1

(pt−1
π − pπ)mπ

)
(s). We highlight that bias plays a role similar to the value function in the

discounted reward setting in which the gain is always zero and Equation 3 reduces to the Bellman
equation, giving a direction in which extend our results to this other RL setting. Interestingly, for any
communicating and a fortiori ergodic MDP, the span S(bπ) = max

s∈S
bπ(s)−min

s∈S
bπ(s) of the bias

function of any policy is bounded, which allows to decompose the regret in the useful following way.
Lemma 1 (Regret decomposition). Under the ergodic assumption 2, for all optimal policy ⋆ ∈ O(M),
the regret of any policy π = (πt)t can be decomposed as

Rπ,s1 (M, T ; ⋆) =
∑

x∈XM

Eπ,s1 [Nx(T )]∆x (M) +

([
T∏

t=1

pπt
− pt

⋆

]
b⋆

)
(s1)︸ ︷︷ ︸

⩽S(b⋆)

, (4)

where Ns,a(T ) =
∑T

t=1 1 {st = s, at = a} counts the number of time the state-action pair (s, a)
has been sampled and ∆s,a (M) is the sub-optimality gap of the state-action pair (s, a) in M,

∆s,a (M) = m (s, a) + pab⋆(s)−m⋆(s)− p⋆b⋆(s) = m (s, a) + pab⋆(s)− g⋆ − b⋆(s) (5)

with pa = p(·|s, a) by a slight abuse of notation. Action a ∈ As is optimal if and only if ∆s,a (M) =
0, otherwise, it is said sub-optimal.

This result can be found in Puterman [1994] and is rederived in Appendix C.

Under the ergodic Assumption 2 of MDP M, all optimal policies satisfy a Poisson equation while some
are also being characterized by the optimal Poisson equation (see Hernández-Lerma and Lasserre
[1996]), used to compute the optimal gain and a bias function associated to an optimal policy,

gM + bM(s) = max
a∈As

{
m(s, a) +

∑
s′∈S

p(s′|s, a)bM(s′)

}
. (6)

Lower bound To assess the minimal sampling complexity of a sub-optimal state action pair, one
must compute how far a sub-optimal state-action pair is from being optimal from an information
point-of-view. A sub-optimal state-action pair (s, a) ∈ XM is said to be critical if it can be made
optimal by changing reward r(s, a) and transition p (·|s, a) while respecting the assumptions on the
rewards and transitions. Formally, let φM : P (R× S) → R,

φM (ν ⊗ q) = ER∼ν [R] + qbM (7)
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denotes the potential function of ν ⊗ q in M, where ν ⊗ q is the product measure of ν and q. A pair
(s, a) ∈ XM is critical if it is sub-optimal and there exists ν ∈ Fs,a and q ∈ P (S) such that

φM (ν ⊗ q) > γs(M) where γs(M)
def
= gM + bM(s). (8)

Note that γs(M) = max
a∈As

φM(r(s, a)⊗ p(s, a)) by the optimal Poisson equation (6).

Definition 2 (Sub-optimality cost). The sub-optimality cost of a sub-optimal state-action pair
(s, a) ∈ XM is defined as Ks,a (M)

def
= Ks,a (M, γs(M)) where

Ks,a (M, γ) = inf
ν∈Fs,a

q∈P(S)

{KL (r(s, a)⊗ p(·|s, a), ν ⊗ q) : φM (ν ⊗ q) > γ} , (9)

and KL denotes the Kullback-Leibler divergence between distributions.

A lower bound on the regret may now be stated for a certain class of learner, the set of uniformly
consistent learning algorithm, i.e. those policies π = (πt)t such that Eπ,M (Ns,a(T )) = o (Tα) for
all sub-optimal state-action pair (s, a) and 0 < α < 1 (see Agrawal et al. [1989]).
Theorem 1 (Regret lower bound Burnetas and Katehakis [1997]). Let M = (S,A,p, r) be an MDP
satisfying Assumptions 1, 2, 3. For all uniformly consistent learning algorithm π,

lim inf
T→∞

Eπ,M [Ns,a(T )]

log T
⩾

1

Ks,a (M)
(10)

with the convention that 1/∞ = 0. The regret lower bound is

lim inf
T→∞

Rπ (M, T )

log T
⩾

∑
(s,a)∈C(M)

∆s,a (M)

Ks,a (M)
(11)

where C (M) =
{
(s, a) : 0 < Ks,a (M) < ∞

}
is called the set of critical state-action pairs. Those

are the state-action pairs (s, a) that could be confused for an optimal one if we were to change their
associated rewards and transitions distributions at the displacement cost of Ks,a (M).

3 The IMED-RL Algorithm
In this section we introduce and detail the IMED-RL algorithm, whose regret matches this fundamental
lower bound and extends the IMED strategy from Honda and Takemura [2015] to ergodic MDPs.
Indeed, for a single-state MDP, that is a multi-armed bandit, IMED-RL simply reduces to IMED.

Empirical quantities IMED-RL is a model-based algorithm that keeps empirical estimates of the
transitions p and rewards r as opposed to model-free algorithm such as Q-learning. We denote by
r̂t(s, a) = r̂(s, a;Ns,a(t)) and p̂t(s, a) = p̂(s, a;Ns,a(t)) the empirical reward distributions and
transition vectors after t time steps, i.e. using Ns,a(t) samples from the distribution r(s, a). Initially,
p̂(s, a; 0) is the uniform probability over the state space and p̂(s, a; k) = (1− 1/k)p̂(s, a; k − 1) +
(1/k)sk, where sk is a vector of zeros except for a one at index sk, the kth samples drawn from
p(·|s, a). This defines at each time step t an empirical MDP M̂t = (S,A, p̂t, r̂t). On this empirical
MDP, for each state, some actions have been sampled more than others and their empirical quantities
are therefore better estimated. We call skeleton at time t the subset of state-action pairs that can be
considered sampled enough at time t; it is defined by restricting As to As(t) for all state s ∈ S , with

As(t) =

{
a ∈ As : Ns,a(t) ⩾ log2

(
max
a′∈As

Nsa′(t)

)}
. (12)

Since x> log2 x, As(t) ̸= ∅, hence A(t) = (As(t))s contains at least one deterministic policy. We
note that the MDP M(A(t))

def
= (S,A(t),p, r) defined by restricting the set of actions to A(t) ⊆ A

is an ergodic MDP. The restricted empirical MDP M̂t(A(t))
def
= (S,A(t), p̂t, r̂t) also is ergodic

thanks to the ergodic initialization of the estimate p̂. Inspired by IMED, we define the IMED-RL index.

Definition 3 (IMED-RL index). For all state-action pairs (s, a) ∈ XM, let us define Ks,a(t)
def
=

Ks,a

(
M̂t(A(t)), γ̂s(t)

)
with empirical threshold γ̂s(t)

def
= max

a∈As

φM̂t(A(t)) (r̂(s, a)⊗ p̂(s, a))

Then, the IMED-RL index of (s, a) at time t, Hs,a(t), is defined as
Hs,a(t) = Ns,a(t)Ks,a(t) + logNs,a(t) . (13)

Note that γ̂s(t) ̸= γs(M̂t(A(t))) as the maximum is taken over all a∈As an not just a∈As(t).
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Known support of transitions Were the support of transition known, the infimum in
sub-optimality cost Ks,a defined by Equation 9 would be redefined as one over the set
{q∈P (S) : Supp(q) = Supp (p (·|s, a))}, modifying both the lower bound and IMED-RL index.

IMED-RL algorithm The IMED-RL algorithm consists in playing at each time step t, an action at of
minimal IMED-RL index at the current state st. The intuition behind the IMED-RL index is similar
to the one of the IMED index for bandits and stems from an information theoretic point-of-view of
the lower bound. At a given time t, the frequency of play Ns,a(t)

Ns(t)
of action a ∈ As in state s ∈ S,

should be larger than or equal to its posterior probability of being the optimal action in that state,
exp (−Ns,a(t)Ks,a (t)), that is to say Ns,a(t)

Ns(t)
⩾ exp (−Ns,a(t)Ks,a (t)). Taking the logarithm and

rearranging the terms, this condition rewrites Hs,a(t) ⩾ logNs(t) at each time step t. The action that
is the closest to violate this condition or that violates this condition the most is the one of minimal
IMED-RL index, argmina Hs,a(t), the one IMED-RL decides to play.

Algorithm 1 IMED-RL: Indexed Minimum Empirical Divergence for Reinforcement Learning
Require: State-Action space XM of MDP M, Assumptions 1, 2, 3
Require: Initial state s1

for t ⩾ 1 do
Sample at ∈ arg min

a∈Ast

Hs,a(t)

end for

Intuitions of the IMED-RL algorithm root to the control theory of MDPs and optimal bandit theory;
IMED-RL intertwines the two and the regret proof exactly follows from the following intuitions.

Control In control theory, we assume that both the expected rewards and transitions probabilities
of an MDP M are known. Policy iteration (see Puterman [1994], Bertsekas and Shreve [1978]) is an
algorithm that computes a sequence (πn)n of deterministic policies that are increasingly strictly better
until an optimal policy is reached. In the average-reward setting and under the ergodic assumption,
a policy π is strictly better than another policy π′ if gπ (M) > gπ′ (M). The policy iteration
algorithm computes the sequence of policies recursively in the following way. Initially, an arbitrary
deterministic policy π0 is chosen. At step n + 1 ∈ N∗, it computes mπn

and bπn
then swipes

through the states s ∈ S in an arbitrary order until it reaches one state s such that there exists
a ∈ A(s) with m(s, a) + p(·|s, a)bπn

> mπn
(s) + pπ(s)bπn

. If such an s does not exist, then it
returns πn as an optimal policy. Otherwise, πn+1 is defined as πn+1(s

′) = πn (s
′) for all s ̸= s′

and πn+1(s) ∈ argmax {m(s, a) + p(·|s, a)bπn
}. Such a step is called a policy improvement step.

Policy iteration is guaranteed to finish in a finite number as the cardinal of Π(M) is finite. At each
step n ∈ N∗, φM(πn) is a local function that takes into account the whole dynamic of the MDP and
allows to compute, via an argmax, an optimal choice of improvement (or optimal action) based on
local information; φM(πn)(r(s, a) ⊗ p(·|s, a)) = m(s, a) + p(s, a)bπn . IMED-RL uses φ

M̂(A(t))

and improves the skeleton similarly to policy iteration as it can be seen in the analysis 4.

Bandit control A degenerate case of MDP would be one where there is only one state s with
φM(φ) (r(s, a)) = m(s, a) by choosing the bias function to be zero6. Playing optimally consists in
playing an action with largest expected reward at each time step t, at ∈ argmaxa∈As m(s, a).

Bandit Learning occurs when rewards are unknown; this is the bandit problem. In that case, a
lower bound on the regret similar to 1 exists. Under some assumptions on the reward distributions,
optimal algorithms whose regret upper bounds asymptotically match the lower bound can derived.
IMED Honda and Takemura [2015], KL-UCB Maillard et al. [2011], Cappé et al. [2013] are two
such examples that use indexes, i.e. computes a number Is,a(t) at each time step and play at ∈
argmin Is,a(t). Such indexes are crafted to correctly handle the exploration-exploitation trade-off.

RL in Ergodic MDPs The delayed rewards caused by the dynamic of the system is the main source
of difficulty arising from having more than one state. IMED-RL combines control and bandit theory

6recall that the bias function is defined up to an additive constant
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in the following way. At each time step t, a restricted MDP M̂t(A(t)) is built from the empirical one
M̂t. If the condition to belong to the skeleton is selective enough, then the potentials on the restricted
empirical MDP M̂t(A(t)) may become close to those of the restricted true MDP M(A(t)), that is
∥φ

M̂t(A(t))
− φM(A(t))∥∞ is small. We want to make policy improvements by finding, at each state

s an action a′ ∈ argmaxφM(A(t))(r(s, a)⊗p(·|s, a)), play it enough that it belongs to the skeleton
which will modify φ and repeat until φM(A(t)) = φM. Using φ, the global dynamic is reduced to a
local function so that at each state, the agent is presented a bandit problem. This bandit problem is
well estimated if ∥φ

M̂t(A(t))
− φM(A(t))∥∞ is small. As opposed to the control setting, the learning

agent cannot choose the state in which to make the policy improvement step and it may be possible
that no policy improvement step is possible at state st. However, thanks to the ergodic assumption 2
the agent is guaranteed to visit such a state in finite time, if it exists. There is a trade-off between the
adptativity of the skeleton, i.e. how quickly one can add an improving action to define a new φ, and
concentration of statistical quantities defined on the restricted MDP.

Related work Our notion of skeleton is built on the work of Burnetas and Katehakis [1997]. We
improve on their original notion of skeleton by correcting some troubles happening in the small
sample regime. In particular, this forces the authors to introduce some forcing mechanism. The issues
of the original definition and improvement induced by ours are listed in Appendix G. One key point
of our definition is that the skeleton is defined using only empirical quantities, the number of samples,
and does not depends on some arbitrary reference, such as the absolute time.

4 Regret of IMED-RL

In this section we state the main theoretical result of this paper, which consists in the IMED-RL regret
upper bound. We then sketch a few key ingredients of the proof.
Theorem 2 (Regret upper bound for Ergodic MDPs). Let M = (S,A,p, r) be an MDP satisfying
assumptions 1, 2, 3. Let 0 < ε ⩽ 1

3 min
π∈Π(M)

min
(s,a)∈XM

{|∆s,a (M(π)) | : |∆s,a (M(π)) | > 0}. The

regret of IMED-RL is upper bounded,

RIMED-RL (M, T ) ⩽

 ∑
(s,a)∈C(M)

∆s,a (M)

Ks,a (M)− εΓs (M)

 log T +O(1), (14)

where Γs (M) is constant that depends on the MDP M and state s; it is made explicit in the proof
detailed in Appendix D. A Taylor expansion allows to write the regret upper bound as

RIMED-RL (M, T ) ⩽

 ∑
(s,a)∈C(M)

∆s,a (M)

Ks,a (M)

 log T +O
(
(log T )

10/11
)
. (15)

Were the semi-bounded reward assumption changed to a bounded reward one with known upper and
lower bound, the O

(
(log T )

10/11
)

could be made a O(1) as explained in Appendix E.

Theorem 3 (Asymptotic Optimality). IMED-RL is asymptotically optimal, that is,

lim
T→+∞

RIMED-RL (M, T )

log T
⩽

∑
(s,a)∈C(M)

∆s,a (M)

Ks,a (M)
. (16)

The proof of Theorem 3 is immediate from Theorem 2 by first dividing Equation 14 by log T , then
by taking the limit T → ∞, and finally taking the limit ε → 0.

Remark While the regret lower bound, Theorem 1, is asymptotic by nature, our main Theorem 2
states a finite time upper bound on the regret of IMED-RL. Indeed, both Equations 14 and 15 are valid
for all time T . The term O(1) appearing in Equation 14 does not depend on time T and is a constant
that depends on both the MDP M and ε. This dependency is hard to be made explicit as this term is
computed as limits of convergent series that are derived in the proof, see Appendix D. In Equation 14,
the constant

∑
(s,a)∈C(M)

∆s,a(M)
Ks,a(M)−εΓs(M) in front of log T does not exactly match the asymptotic

7



upper bound
∑

(s,a)∈C(M)
∆s,a(M)
Ks,a(M) because of the ε-term in the denominators. Equation 15 states

that using a bounded reward hypothesis, instead of semi-bounded, allows the constant in front of the
leading log T term to exactly match the asymptotic one, even in the finite time regret upper bound. In
both cases, Theorem 3 states that asymptotic optimality is achieved.

This Theorem proves the optimality of IMED-RL since the upper bound on the regret matches the
lower bound of Theorem 1. Such a bound was asymptotically matched by the algorithm proposed by
Burnetas and Katehakis [1997] and we recall that this algorithm and its problems are discussed in
Appendix G. On the other hand, the current state-of-the-art algorithms UCRL3 and PSRL, while having
some theoretical guarantees, have not been proved to match the regret lower bound. On the practical
side, Q-learning is often used without much theoretical guarantee because of its usually strong
practical performances. In the experiments, we will compare IMED-RL to those three algorithms.

Related work Theorems 2 and 3 prove that IMED-RL is achieving the optimal rate of exploration
(in the exploitation-exploration tradeoff sense) for ergodic MDPs. Its theoretical guarantees are
problem-dependent rather than worst-case/min-max. Comparing to the log T bound derived for
UCRL in Theorem 4 of Jaksch et al. [2010], less known than the

√
T bound, shows the benefit of our

analysis for each instance, as we improve the constant factors in the leading terms: their dependency
is 34D2S2A/∆, where ∆ is a sub-optimality gap and D the diameter of the MDP.

Sketch of proof Though a full proof is given in Appendix D, we sketch here the main proof ideas
that follow directly from the intuitions behind the IMED-RL conception. The regret is decomposed into
two terms, the bandit term when the local bandit problems defined by φ

M̂t(A(t))
is well estimated,

and the skeleton improvement term that controls the probability that the local bandit problem is not
well estimated. This second term is managed by controlling the number of policy improvement steps
and using concentration properties of empirical quantities defined on the skeleton.

The main Theorem 2 follows from the following proposition that is proved in Appendix D. Recall
from Lemma 1 that for all state-action pair x ∈ XM, Nx(T ) =

∑T
t=1 1 {(st, at) = x} counts the

number of time the state-action pair x has been sampled.
Proposition 1. For all state-action pair x ∈ XM, for all ε > 0,

Nx(t) ⩽ Bx(T ) + S(T ), (17)

where we introduced the bandit term, Bx(T ), and the skeleton improvement term, S(T ),

Bx(T ) =

T∑
t=1

1

{
xt = x,O

(
M̂t (A(t))

)
⊆ O (M) , ∥bM̂t(A(t)) − bM∥∞ ⩽ ε

}
, (18)

S(T ) =

T∑
t=1

1

{
O
(
M̂t (A(t))

)
⊆ O (M) , ∥bM̂t(A(t)) − bM∥∞ ⩽ ε

}
. (19)

Furthermore, E (S(T )) = O(1), E (Bx(T )) = O(1) for a non-critical state-action pair, while for a
critical state-action pair x,

E (Bx(T )) ⩽
∆x (M)

Kx (M)− εΓs (M)
log T +O(1)

5 Numerical experiments

In this section, we discuss the practical implementation and numerical aspects of IMED-RL and extend
the discussion in Appendix F. Source code is available on github7.

Computing IMED-RL index At each time step, we run the value iteration algorithm on M̂t(A(t))
to compute the optimal bias and the associated potential function φ

M̂t(A(t))
. This task is standard.

Once done, one must compute the value of the optimization problem Ks,a (t) which belongs to the
category of convex optimization problem with linear constraint. Such problems have been studied

7Plain text URL is https://github.com/fabienpesquerel/IMED-RL
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under the name of partially-finite convex optimization, e.g. in Borwein and Lewis [1991]. It is
possible to compute Ks,a (t) by considering the Legendre-Fenchel dual and one does not need to
compute the optimal distribution to know the value of the optimization problem.
Proposition 2 (Index computation, Honda and Takemura [2015] Theorem 2). Let (s, a) be in XM,
M = mmax(s, a) + max

s′∈S
bM(s), and γ > φM(r(s, a)⊗ p(·|s, a)), then

Ks,a (M, γ) =

{
max

0⩽x⩽ 1
M−γ

E R∼r(s,a)
S∼p(·|s,a)

[
log
(
1−

(
R+ bM(S)− γ

)
x
)]

if M > γ

+∞ otherwise
. (20)

If γ ⩽ φM(r(s, a)⊗ p(·|s, a)), then Ks,a (M, γ) = 0.

In particular, this Proposition 2 sometimes allows to write Ks,a (t) almost in close form, e.g. when
Fs,a defined in Asumptions 3 is a set of multinomials with unknown support (and only the upper
bound mmax is known). In Appendix F, we discuss this numerical computation further.

Computational complexity In terms of state and actions spaces sizes, the complexity of IMED-RL
at each time step scales as O(S2A), the complexity of value iteration. Indeed, at each time step,
IMED-RL runs value iteration using actions available in the skeleton, then computes the indexes of the
available actions at the current state, and finally pick an argmin. The complexity of value iteration
is O(S2A), the complexity of computing the A necessary indexes is O(SA), and the complexity of
picking an argmin amongst those A indexes is O(A). Therefore, the per-time-step complexity of
IMED-RL scales as O(S2A). However, this scaling is mainly an upper-bound as value iteration is run
with actions that are within the skeleton. By design of the skeleton, we experimentally observe that,
after some time, the skeleton contains one action per state (the optimal one). We provide more details
in Appendix F, Lazy update paragraph.

Practical comparison In practice, most of the complexity of IMED-RL is in the analysis rather
than in the algorithm: compared to PSRL and UCRL3, IMED-RL does not take a confidence parameter
nor any hyperparameter. Also, IMED-RL uses value iteration as a routine, which is faster than the
extended value iteration used in UCRL3. Q-learning technically takes an exploration parameter
(ε-greedy exploration) or exploration scheme when it is slowly decreased with time.

Environments In different environments, we illustrate in Figure 2 and Figure 3 the performance
of IMED-RL against the strategies UCRL3 Bourel et al. [2020], PSRL Osband et al. [2013] and Q-
learning (run with discount γ = 0.99 and optimistic initialization). As stated during the introduction,
any finite communicating MDP can be turned into an ergodic one, since on such MDPs, any
stochastic policy π : S → P (As) with full support Supp (π(s)) = As is ergodic. Hence by
mixing its transition p with that obtained from playing a uniform policy, formally pε(·|s, a) =
(1− ε)p(·|s, a) + ε

∑
a′∈As

p(·|s, a′)/|As|, for an arbitrarily small ε > 0 one obtain an ergodic MDP.

In the experiments, we consider an ergodic version of the classical n-state river-swim environment,
2-room and 4-room with ε = 10−3, and classical communicating versions (ε = 0).

sLsL−1

0.6
(r = 0.999)0.6

0.35

1

0.35

0.05

1

0.4

s1

0.4

0.6

0.05

1

0.6

1
(r = 0.05)

s2

0.35

0.05

1

s3

0.6

0.35

0.05

1

Figure 1: The ergodic n-state RiverSwim MDP. In each of the n states, there are two actions RIGHT
and LEFT. The left action is represented with a dashed line and the RIGHT with plain line. Rewards
are located at the extremities of the MDP.
n-states RiverSwim environment As illustrated by Figure 2, the performances of IMED-RL are
particularly good and the regret of IMED-RL is below the regrets of all its competitors, even when the
MDP is communicating only. This numerical performance grounds numerically the previous theoret-
ical analysis. While using IMED-RL in communicating MDPs is not endorsed by our theoretically
analysis, it is interesting to see how much this hypothesis amounts in the numerical performances of
IMED-RL. We therefore ran an experiment on another classical environment, 2-rooms.
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Figure 2: Average regret and quantiles (0.1 and 0.9) curves of algorithms on a standard communicating
6-states RiverSwim (left) and an ergodic 6-states RiverSwim (right).

0 1 2 3 4 5 6
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Figure 3: Average regret and quantiles (0.1 and 0.9) curves of algorithms (right) corresponding to
learning on a 4-room (left) grid-world environment, with 20 states: the starting state is shown in red,
and the rewarding state is shown in yellow. From the yellow state, all actions bring the learner to the
red state. Other transitions are noisy as in a frozen-lake environment.

n-rooms environment As illustrated by Figure 3, the performances of IMED-RL are particularly
good, even surprisingly good, in this communicating only environment. Those experiments are a
clue that the IMED-RL strategy may still be reasonable, although not necessarily optimal in some
communicating MDPs. All experiments take less than an hour to run on a standard CPU.
Future work Although not intended for non-ergodic MDPs, IMED-RL exhibits state-of-the-art
numerical performances in communicating only MDPs (see Appendix F.2 for additional experiments).
Hence, IMED-RL might prove to be insightful to pave the way towards the communicating case
as it seems possible to get a controlled regret also in the case of communicating MDPs. Both the
problem-dependent and worst-case regret bounds are interesting in this regard. Another direction we
intend to explore is the adaptation of IMED-RL main ideas to function approximation frameworks,
such as neural networks and kernel methods.

Conclusion
In this paper, we introduced IMED-RL, a numerically efficient algorithm to solve the average-reward
criterion problem under the ergodic assumption for which we derive an upper bound on the regret
matching the known regret lower bound. Further, its surprisingly good numerical performances in
communicating only MDPs open the path to future work in MDPs that are communicating only.
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