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Abstract

Selecting subsets of features that differentiate between two conditions is a key
task in a broad range of scientific domains. In many applications, the features of
interest form clusters with similar effects on the data at hand. To recover such
clusters we develop DiSC, a data-driven approach for detecting groups of features
that differentiate between conditions. For each condition, we construct a graph
whose nodes correspond to the features and whose weights are functions of the
similarity between them for that condition. We then apply a spectral approach to
compute subsets of nodes whose connectivity pattern differs significantly between
the condition-specific feature graphs. On the theoretical front, we analyze our
approach with a toy example based on the stochastic block model. We evaluate
DiSC on a variety of datasets, including MNIST, hyperspectral imaging, simulated
scRNA-seq and task fMRI, and demonstrate that DiSC uncovers features that better
differentiate between conditions compared to competing methods.

1 Introduction

Detecting variables or features that separate between two or more conditions is a critical task in many
scientific domains. Often, the separation between conditions is caused by a large number of strongly
dependent features that form one or more differentiating clusters. Recovering those clusters can
provide insights into the data and its underlying mechanisms.

Strongly dependent differentiating features are common, for example, in transcriptome analysis,
where the data consists of the gene expression of multiple cells. Often, the cells correspond to two or
more biological conditions, such as various cell types, the existence of a particular disease, response
to medical treatment, or two-time points in an evolutionary process [48].

Uncovering groups of differentiating genes (also known as pathways) may significantly contribute to
our understanding of biological processes happening in one condition and not in the other. Differential
feature grouping has various other interesting applications in neuroscience [43], computer vision
and machine learning [6]. In all applications, detecting groups that are significant for differentiating
between conditions adds interpretability to the otherwise black box models.

Due to its importance in various domains, the feature selection task has been the focus of intensive
research. Often, methods for feature selection are designed to yield a sparse output, for example, by
selecting only a small number of features out of a large correlated group. One example is the best
subset selection approach, where features are iteratively added or removed until a predetermined
criterion is met. Another popular approach is to achieve a sparse output by adding regularization terms
to a linear (or general linear) model that predicts a function over the data points, e.g., class label. For
example, classical LASSO relaxes the l0 norm of the coefficient vector with its convex surrogate l1 [13,
37]. Alternatively, a recent approach aims to approximate the l0 regularizer via stochastic gates [44].

To address the case of correlated features, various extensions of LASSO were developed. Clustered
LASSO [33] promotes sparsity among the coefficients and equal significance to non-zero coefficients
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in the same group. Ordered Weighted L1 regularization (OWL) [4] penalizes the coefficients in the
order of their magnitude, i.e., the higher the absolute value of the coefficient, the higher the penalty
that will be imposed. This induces equal coefficients to the correlated features [14]. Elastic Net
[49] uses a combination of l1 and l2 regularizers which creates a feature grouping effect. Cluster
Elastic Net [42] assumes that each feature belongs to one of k-distinct clusters and uses a clustering
penalty, along with LASSO, which minimizes the sum of pairwise distances between the associations
of features with the prediction within each cluster. A method that combines feature selection and
grouping was also developed in [5]. A few methods explicitly use the correlation between the features
in the regularization terms. [25] estimates the covariance between features from which they form a
graph. The graph Laplacian matrix is then used as a quadratic regularizer function.

This line of work typically addresses a linear regression model. However, in many settings the
dependency on the important features is highly non-linear. This is typically the case, for example, in
most discrete settings such as classification and clustering. Furthermore, most of these methods do
not separate different groups of correlated features that are significant in a classification or regression
problem. In many settings, such a separation is important to gain insight into different sources of the
variability in the data.

A different approach related to this work is feature selection via discriminant subspace analysis
methods such as linear discriminant analysis [36, 32] and the Fukunaga-Koontz transform [17, 31].
Here, the primary goal is to identify the subspace that best discriminates the classes according to a
given criterion. For example, the classic Fischer criterion [16] maximizes the ratio between inter-class
variance and intra-class variance. Recent works applied similar methods in the context of non-negative
and Boolean matrix factorization [20, 21] . Some metric learning approaches [28], which take into
account triplet relationships between points, learn a linear transform on the features so that the
distance in the projected space better separates the classes. [7] introduces a Riemannian geometry
based composite kernel for differential feature extraction. However, these approaches do not explicitly
perform feature selection to identify different groups of correlated features that separate the classes.

In this paper we develop a data-driven method to detect and group relevant features that does not rely
on a specific model. We consider the classification setting, where our aim is to identify class-specific
information in the feature space that distinguishes between different conditions. To that end, we
develop DiSC, a data-driven method to reveal groups of differential features. Our approach consists
of two main steps: first, for each class, we compute a class-specific graph, whose nodes correspond
to the features of that class separately. Next, we apply a spectral approach to obtain an embedding
of the features that identifies groups of features whose connectivity differs between the graphs. Our
contributions in this paper are:

1. We develop a data-driven spectral approach on the feature space to identify groups of
correlated features that distinguish between datasets

2. Our solution is non-symmetric such that we identify class-specific differential features

3. We provide theoretical analysis in the setting of a stochastic block model underlying the
features

Our spectral approach is related to recent papers that address the challenges of multiview and data
fusion. Here, data samples are observed by multiple sets of sensors, and the goal is to identify latent
representations of the samples that are shared for all sets. The shared information can be recovered
via the shared latent space between multiple sources. Alternating Diffusion Maps (ADM) [24] is a
nonlinear manifold learning approach to reveal shared latent variables. Shnitzer et al. [35] extend
this to identifying both common structures and the differences between the manifolds underlying
the different modalities. In an alternative solution, [26] proposes a kernel and distance metric for
diffusion maps on multiview datasets. There are numerous other data fusion techniques [27], [10]
and applications [22]. Most of these techniques require one-to-one correspondence between data
samples from different views, e.g., simultaneous recordings from different sources, and they mainly
focus extracting a shared subspace or a shared hidden variable of the samples. In contrast, in our
setting the correspondence is between features in two datasets, and not between samples. Our goal is
to uncover connectivity patterns that are condition specific.
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2 Problem formulation

We begin with a formal description of our problem, followed by relevant notation. We consider
two datasets XA ∈ RnA×p and XB ∈ RnB×p where the rows in each matrix are high-dimensional
samples and the columns are the features, see illustration in Fig. 1a. Both datasets have the same p
features, such that the feature column in A, denoted XA

·i ∈ RnA corresponds to the feature column
in B, denoted XB

·i ∈ RnB . Our goal in this work is to detect one or more subsets of features that
together differentiate between the two states A and B. These subsets can be, for example, groups of
genes that form a biological pathways, or a subset of brain parcels in fMRI data with similar blood
oxygen level dependent (BOLD) activity.

In our approach, we compute two graphs, denoted GA, GB with p nodes that correspond to the
features of the given data (Fig. 1b). We denote by WA,WB the weight matrices of the two graphs,
whose elements are functions of the similarity between features, as computed by two kernel functions,

KA(X
A
·i , X

A
·j ) : RnA × RnA → R and KB(X

B
·i , X

B
·j ) : RnB × RnB → R. (1)

These for example can be the RBF kernel K(x, x′) = exp{−∥x − x′∥2/ϵ2}. Our underlying
assumption is that differences between the two states A,B are expressed as differences in connectivity
patterns between the two graphs GA and GB . For example, a pair of features i, j may be insignificant
in state A and highly significant and dependent in B. This will imply,

KA(X
A
·i , X

A
·j ) ≈ 0 and KB(X

B
·i , X

B
·j ) > 0.

If there is a subset of l features i1, . . . , il that are strongly dependent in B but not in A, the resultant
nodes in GB will form an independent component with dense connections among the nodes. However,
this independent component will not exist in GA, see illustration in Figure 1. Thus, the task of
obtaining sets of significant features boils down to identifying the independent components that
appear in one graph but not the other.

3 DiSC

3.1 A graph cut perspective

Given a graph G with n nodes and its associated weight matrix W ∈ Rn×n, the minimum-cut of G is
the minimum, over all possible partitions α and β, of the sum of the edge weights

∑
i∈α,j∈β W (i, j).

This task is strongly related to the spectral clustering algorithm. For completeness, we begin with a
brief description of this relation. For a more thorough review see [41].

A variation of the minimum-cut, designed to avoid highly imbalanced partitions, is the ratio-cut

Rcut(α, β) =
∑

i∈α,j∈β

Wij

(
1

|α|
+

1

|β|

)
, (2)

where |α|, |β| denote the subset size. This can be formulated as

Rcut(α, β) = fTLuf, where fi =


√

|β|
|α| i ∈ α

−
√

|α|
|β| i ∈ β,

(3)

and Lu is the unnormalized graph Laplacian matrix given by D −W , where D is a diagonal the
degrees of each node in its diagonal. Note that f is a non-binary indicator vector where each elemnt of
f, represented by fi only takes one of the two different values as given in Eq.(3). If α, β are non-empty,
then f is orthogonal to the constant vector with ∥f∥22 = n. Minimizing Eq. (3) over all partitions is
a discrete optimization problem. To avoid it, one can relax the discrete requirement over the elements
of f in Eq. (3), while still maintaining the constraints fT 1 = 0 and ∥f∥22 = n. This relaxation
yields a simple spectral solution, where the nodes are partitioned according to the sign of the graph
Laplacian eigenvector corresponding to the second smallest eigenvalue (a.k.a Fiedler vector).

The minimum-cut criterion is designed to attain densely connected components that have low
connectivity with the rest of the graph. In our work, however, densely connected components that
appear in both graphs are of no interest, as they do not differentiate between the two states. Rather,
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Figure 1: DiSC overview. a) Datasets A and B share the same p features. b) Constructing graphs GA

and GB on the feature space for each dataset, we aim to find which nodes have different connectivity
pattern between the two datasets. c) The weight matrices each follow a stochastic block model, where
in B a subset of of the nodes form a separate block. d) Subspaces spanned by the eigenvectors of PA

and PB , and the differential feature between B and A.

we would like to detect a partition (α, β), say on GB , that has two properties: 1) Rcut(α, β), on GB

is minimized, which indicates that α and β are independent connected components in GB; 2) To
avoid detection of components that exist both in GA and GB , Rcut(α, β) on GA is lower bounded by
some constant. This double objective can be formulated by

min
f

fTLBf s.t. fTLAf ≥ γ, ∥f∥ = 1. (4)

The constraint ∥f∥ = 1 is added for uniqueness, since LA, LB are rank deficient. Relaxing the
discrete requirement in Eq. (3), the solution to Eq. (4) is given by the generalized eigenvalue problem
LBf = µLAf . Since LA is not invertible, one numerical trick is to strengthen the diagonal of LA

to make it a full rank matrix. Relaxing the discrete requirement in (3), the solution is given by the
eigenvalue problem,

(LA + ϵI)−1LBf = µf. (5)

Motivated by the above derivation, in the next section we present our spectral approach for group
feature discovery. In the appendix we present a similar derivation that is based on the normalized cut,
whose relaxation relates to the eigenvectors of the random walk graph Laplacian.

3.2 Spectral approach for group differential feature extraction

Our proposed approach for detecting differences between graphs is motivated by the solution of
the double objective criterion given in Eq. (5). However, due to the instability and computational
complexity of the matrix inversion of the graph Laplacians LA, LB , we make the following two
changes. First, we replace the unnormalized graph Laplacian matrices LA and LB with the normalized
random walk Laplacians

PA = D−1
A WA PB = D−1

B WB ,

where DA, DB are the degree matrices of GA, GB , respectively. The random-walk Laplacian is the
basis of diffusion maps, which have been shown to be connected to spectral clustering in [29, 30].
Let UB ∈ Rp×dB be a matrix containing the dB leading right eigenvectors of PB . These vectors,
scaled by their corresponding eigenvalues, are the diffusion vectors of the graph GB [9]. A vector
containing the i-th element of the columns of UA is defined as the diffusion map representation of the
i-th node.

The second change we make is to replace the inverse operation with the following projection operator,

QA = I − UA(U
T
AUA)

−1UT
A , QB = I − UB(U

T
BUB)

−1UT
B . (6)

The matrices QA, QB are projection operators to the subspace complementary to the diffusion vectors
in UA, UB .
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We compute the differential vectors of GA, denoted (VA)i and their significance level (σA)i by
solving the following optimization problem

(σA)i = min
dimE=n−i+1

max
v∈S(E)

||PAQBv||2, (7)

where E is a subspace in Rp, S(E) denotes unit Euclidean sphere in E, (σA)i is the optimal value
of (7) and (VA)i is the vector v at which optimal value of (7) is attained. Note that the operator
PAQB whose singular vectors are used to attain differential features is not symmetric in A and B.
The differential vectors in VA highlight components that are significant in A but not in B. Similarly,
the differential vectors VB that are equal to the singular vectors of PBQA highlight components
that are significant in B but not in A.

The relation between the diffusion vectors UA and the differentiating vectors VA is similar in nature
to the relation between the outcome of the min-cut criterion in Eq. (3) and the double objective in
Eq. (4). The diffusion vectors in UB capture significant processes that underlie state B. However,
we are only interested in processes that differentiate between state A and B. These are highlighted
in the differential vectors VB . In the experimental results in Sec. 4, we compare the diffusion maps
representation to the differential vectors to illustrate this difference.

Differential vectors for downstream analysis The differential vectors VA, VB and their scores
σA, σB can be used in several ways. Here, and in the experimental section, we use the vectors in one
of two applications: (i) Detecting of differential subsets of features. This can be done by performing
k-means clustering over the rows of the matrices VA, VB ; (ii) Computing differential meta-features
via V T

A XA and V T
B XB . In section 4 and supplementary material we provide several examples for

using both options in downstream analysis (e.g., clustering, classification). In the next section we
derive a theoretical justification for application (i) that is motivated by the stochastic block model.
Algorithm 1 summarizes the steps of the DiSC algorithm. Further details about the computation of
the graph and discussion on choice of hyperparameters is given in App. A.

Algorithm 1 DiSC
Input: Datasets XA and XB

Two kernel functions KA(·, ·) and KB(·, ·)
Output: Subsets of differentiating features VA, VB

1: Compute two graphs GA and GB on the columns of XA and XB with weights given by (1).
2: Compute the random walk matrix, PA = D−1

A WA, PB = D−1
B WB .

3: Calculate UA, UB , the leading right eigenvectors of PA, PB .
4: Compute the projection matrices QA, QB via Eq. (6).
5: Compute differential vectors VA and VB via Eq. (7).
6: Compute significance levels σA and σB via Eq. (7).
7: optional: Perform k-means over the rows of VA, and VB .

Computational Complexity Naively computing a graph based on a kernel function is of order
O(p2). For some cases, this can be prohibitively large. However, there are simple ways to reduce the
complexity to be close to linear. For example, a common approach is to compute the kernel function
only for the closest k-nearest neighbors, and not for all the O(p2) pairs of features. Computing
k-nearest neighbors for all features can be done effectively with structures such as KD-trees, with
an average complexity (for each feature) of k log(p). Thus the total complexity of computing such
a graph is O(kplog(p)). More efficient graph construction is possible with approximate nearest
neighbors. A second advantage of this approach is that the Laplacian matrix is sparse, with only kn
non zero elements. Thus, the computation of the eigenvectors can be done efficiently as well with
complexity O(kp).

3.3 Two stochastic block models

The stochastic block model (SBM) has received a lot of attention due to its significant role in obtaining
theoretical guarantees for community detection. In this setting, the individual community members
are modeled as nodes in a random graph G. The edge weights Wij are sampled according to a
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Bernoulli distribution, with

Pr(Wij = 1) =

{
p if i, j belong to the same community
q otherwise.

(8)

Usually, one assumes p > q such that the connectivity within a block is stronger than the connectivity
between blocks, See [1] for further details.

In our setting, we model the features in both states by two random graphs GA and GB . We consider
a toy problem in which the features that differentiate two states A and B have different graph
connectivity in GA and GB . In graph GA the nodes are partitioned into two communities of sizes
l and l + s, with s < l. In contrast, the graph GB has three communities, denoted α, β and γ.
Community α is equal to the first community in GA, while β, γ are a partition of the second into two
groups of size l and s.

Our goal is to detect the elements in γ via a spectral approach whose steps are similar to Algorithm 1.
For simplicity of exposition, instead of using the graph Laplacian matrix as in step 2 of the algorithm,
we use the symmetric weight matrices WA,WB . Our goal in this analysis is to provide insight into
our ability to recover differentiating groups such as γ via Algorithm 1. Our main parameters of
interest are the size of the differentiating group γ, and the ratio between the size of γ and the size of
the original block. Elements that depend on other parameters of the model (e.g. p and q) are referred
to as constants. Our derivation consists of three main steps. The proofs of our results are given in
Appendix B. In addition, appendix E.6 presents numerical results that validate the bound in lemma 2
and test its optimality. We note that all matrix norms (i.e. ∥X∥) in the following section and relevant
appendices are the spectral norm.

Step 1: Here we address the non-random matrix E[WB ] where E[·] is the expectation operator.
Let vα, vβ , vγ be the leading three eigenvectors of E[WB ] and by eγ a binary indicator vector with
elements (eγ)i = 1 if i ∈ γ.
Lemma 1. The distance between vγ and 1√

s
eγ is bounded by∥∥∥vγ − 1√

s
eγ

∥∥∥ ≤ C1(p, q)

√
s

l
.

The eigenvalue corresponding to vγ is larger than (p− q)s.

Lemma 1 shows that if the ratio s/l is small enough, one can recover the elements in γ by applying a
threshold to vγ . However, in practice we only have access to WB and WA. In the next step we bound
the difference between vγ and the eigenvector we compute by our spectral approach.

Step 2: Let uα, uβ be the two leading eigenvectors of the random weight matrix WA, and let
QWA

= I − uαu
T
α − uβu

T
β . In this step we address the leading eigenvector of QWA

WBQWA
.

Lemma 2. Let ṽγ denote the leading eigenvector of QWA
WBQWA

. Then,

∥ṽγ − vγ∥ ≤ C2(p, q)

√
l

s
+ C3(p, q)

√
s

l
. w.p 1− exp(−l).

Step 3: Observing the two lemmas, we see that there is a tradeoff concerning the size s of the
differentiating group γ. On the one hand, Lemma 1 shows that having a small value for s makes the
element more distinguishable in vγ and thus easier to detect. On the other hand, if s <

√
l then the

computed vector ṽγ might be too noisy to actually detect the relevant features.

Combining the two lemmas, we conclude with the following theorem.
Theorem 1. We assume that s, l are large s.t. s, l ≫ maxi(Ci), and s = lα with 0.5 < α < 1.
We apply a threshold to ṽγ to determine the elements of γ. The relative number of errors Nϵ/s is
bounded by {

C2(p, q)l
1−2α 0.5 < α ≤ 2/3

C3(p, q)l
α−1 2/3 < α < 1

. w.p 1− exp(−l).

Proof of Theorem 1. Let C4(p, q) = C1(p, q) + C3(p, q). combining Lemmas 1, 2 with the triangle
inequality, and assuming s = lα yields the inequality∥∥∥ṽγ − 1√

s
eγ

∥∥∥2 ≤ C2(p, q)
2l(1−2α) + C4(p, q)

2l(α−1) + C2(p, q)C4(p, q)l
−α/2.
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For 0.5 < α < 2/3, the dominant term is C2(p, q)
2l1−2α. We recover the elements in γ by setting

a threshold of 1
2
√
s

to ṽγ . Each misclassified element contributes at least 1/(4s) to the squared l2

distance between 1√
s
eγ and ṽγ . Thus, for 0.5 < α ≤ 2/3 the relative number of errors Nϵ/s is

bounded with high probability by

Nϵ

s
≤

∥∥∥ṽγ − 1√
s
eγ

∥∥∥2 × (4s)/s ≤ 4C2(p, q)
2l1−2α

A similar derivation can be done for 2/3 < α < 1.

4 Experiments 1

4.1 Toy problems

We demonstrate the usefulness of our methodology in three toy datasets which present different scenar-
ios of feature correlation patterns: 1) a subset of features that is uncorrelated in one dataset becomes
correlated in the second 2) a subset of features that are correlated in one dataset are divided into two
correlated groups in the second. 3) The third problem demonstrates generalizing DiSC to more than
two datasets. In all experiments the kernels KA,KB are the RBF kernel with an adaptive bandwidth.
The choice of the all the hyperparameters (bandwidth, dA and dB) are discussed in Appendix A.

Figure 2: a) Random samples from XA and XB . b) Feature correlation matrices of XA (left) and
XB (right). c) Significance of the differential vectors of XA (blue) and XB (orange). d) Top two
differential vectors. e) Top four diffusion maps of the features of XA (blue) and XB (orange).

Identifying newly connected features We generated two datasets XA and XB with p = 250
features and nA = nB = 10, 000 samples from a Gaussian mixture model (Fig. 2(a)), whose feature
correlation is shown in Fig. 2(b). In the two datasets, the first 100 features are i.i.d samples from a
normal distribution and the next 50 features are sampled from two Gaussian distributions with low
rank covariance matrices. Features 151-200 in XA are sampled from two other Gaussian distributions
with low rank covariance matrices, whereas in XB , they are independent noise. Features 201-250 in
XA are independent noise, whereas in XB , they are sampled from two other Gaussian distributions
with low rank covariance matrices.

Our goal is to identify the features 151-200 as the features that distinguish XA from XB , and vice
versa for features 201-250. We apply DiSC with dA = dB = 20. The first two significance values of
the differential features are high and then significance drop drastically (Fig. 2(c)), indicating that the
first two differential vectors are important in each dataset. These top two differential features for XA

and XB are shown in Figure 2(d). Clearly, (VA)1 and (VA)2 highlight the features between 151-200
and more precisely, the two Gaussian mixtures are separately represented in each of these vectors.
Similarly, (VB)1 and (VB)2 highlight the features between 201-250 and these represent the other two
Gaussian mixtures. On the other hand, the diffusion maps eigenvectors, UA and UB , captures all the
connected components and not just the differential features as unique groups, as shown in Fig. 2(e).

Identifying subsets of connected features We generated two datasets XA and XB with p = 200
features and nA = nB = 10, 000 with correlation between the features as shown in Fig. 3(a). In both

1Code to reproduce the results for Sections 4.1 and 4.2 is available in https://github.com/Mishne-Lab/
DiSC

7

https://github.com/Mishne-Lab/DiSC
https://github.com/Mishne-Lab/DiSC


Figure 3: a) Correlation matrices. b) Significance levels. c) Differential features. d) Diffusion maps.

the datasets, the first 100 features are correlated. In XA, all the remaining features form a second
correlated group, yielding two connected components in the feature space. In XB the remaining
features are composed of two groups of correlated features, namely, feature indices 101-125 and
126-200.

Here the goal is to identify these smaller subsets of correlated features in XB , as this signifies an
increase in the dimensionality of correlation structure compared to XA. This also means that XB

has richer feature information than XA, therefore we have to identify that there are no differential
features in XA.

We use the significance level associated with the differential vectors to determine if the differential
vectors are meaningful. We apply DiSC with dA = dB = 20. Fig. 3(c) shows the differential
vectors of XA and XB and the corresponding significance levels are shown in Fig. 3(b). The
significance level associated with the differential vectors of XA is negligible compared to that of XB ,
indicating that feature information in XA is contained in XB . In addition, the difference between
the significance of the first two differential vectors of XB is large. Therefore, the first differential
vector of XB captures the major difference, and it groups feature indices 101-125 and 126-200 with
positive and negative values respectively (Fig. 3(c)). In contrast, diffusion maps captures the two
connected components in XA and three connected components in XB , and not just the differential
components (Fig. 3(d)).

4.2 MNIST

The MNIST dataset [23] consists of images of hand written digits from 0 to 9, each of dimension
28× 28 pixels. It has 60k training samples and 10k testing samples. We used Algorithm 2, DiSC
on multiple datasets, on the MNIST dataset to extract differential features for each of the digits:
features present in a single digit but are not present in each of the other digits. To have a quantitative
metric to measure the significance of these differential features, we develop a classifier for a 10-class
classification problem. For this, we use K-means clustering on the differential features for each digit
(K=10) thus deriving clusters of pixels that together differentiate between digits. We then compute a
meta-feature by averaging pixel values for each cluster. Logistic regression is performed on these
meta features to distinguish between the 10 classes.

We compare our approach with Diffusion maps, Elastic Net (EN) and Elastic Net - logistic. For
diffusion maps, we replaced the differential features with diffusion maps and followed the same
procedure. For EN and EN-logistic, we obtained the feature importance vectors by training a classifier
to distinguish between the 10-classes. K-means clustering is performed on these feature importance
vectors. This cluster information is further used to compute meta-feature and finally for classification.
Additionally, the entire data (784 features) is used to obtain the clusters using K-means clustering
which are further used to compute classification accuracy following the procedure mentioned above.
We consider this as a baseline. The results are tabulated below in Table 1.

We can see that our proposed method has the best performance, as it can capture the important
differential information needed for classification. Since diffusion maps capture both shared and
differential features, and entire data has all the information, their performance is poor compared to
DiSC. Elastic Net has the least accuracy because it is designed for a regression setup but this is a
classification problem. Elastic Net-logistic has better performance over Elastic Net as we use a cross
entropy loss function – the one used for classification setup. Further, DiSC has better performance
than Entire Data as it is designed to capture the differential features. However, DiSC outperformed
EN-logistic as it is designed to extract groups of differential features unlike EN-logistic which just
extracts all the differential features as a single group, especially when those features have similar
effect on the classification problem. Note in App. E we include an additional experiment on pairwise
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Figure 4: Hyperspectral imaging averaged across channels (a). Three clusters of features (white, red
and blue) formed from DiSC (b) and Diffusion Maps for changing data (c).

classification of MNIST digits which also includes more details about the choice of hyper-parameters
for each of these methods.

Entire Data Diffusion Maps EN EN-logistic DiSC (Ours)
Test Accuracy(% ) 76.23 87.42 69.96 82.42 89.75

Table 1: Classification performance on MNIST using DiSC and other competitive approaches.
4.3 Hyperspectral imagery

We apply DiSC to a hyperspectral imagery change detection dataset [12], consisting of hyperspectral
images of a particular scene that were captured during different weather conditions, lighting con-
ditions, and across four different months of the year (August, September, October and November).
Each hyperspectral image is captured at a resolution of 100 × 100 pixels and 124 different bands.
We denote these by Xaug, Xsep, Xoct and Xnov. These images consist of a metal frame, grass and
trees in the background, as shown in Fig. 4. An additional hyperspectral image, referred to as
‘October-change’ and denoted Xoct-c, was captured in October, in which an added object, a tarp, was
included in the scene, see Fig. 4. The goal is to detect the tarp as an added object, albeit various other
aforementioned different conditions during which the image is captured.

We consider XA ∈ {Xaug, Xsep, Xoct,Xnov} and XB = Xoct-c and compute the differential vectors
for these four pairs of datasets. Note that this is similar to the toy problem presented in Sec. 4.1 and
the theoretical analysis in Sec. 3.3, where a group of correlated features in XA (the pixels belonging
to the grass) are divided into two groups of correlated features in XB (grass and tarp). With the
addition of the tarp, the pixels belonging to the tarp remain correlated but their connectivity with the
other pixels in the grass is lost. The differential features of XB identify the tarp, see App. E Fig. 8.

We pick the top four significant differential vectors of XB and perform k-means clustering on these
with k=3. Figure 4(b) shows these three feature clusters for the four pairs of datasets. The tarp
is revealed as a dominant cluster in all months. We compare our results with Diffusion maps for
changing data (DM-changing data) [8], a spectral approach designed to capture differences between
two conditions, which introduces a distance metric that measures the distance between diffusion
maps calculated on a dataset that changes over time. We compute this pixel-wise distance between
XA and XB and cluster the pixels into 3 groups based on this distance. These clusters are illustrated
in Figure.4(c). This approach is much more affected by the acquisition conditions, For example:
weather and lighting, than our approach, as it groups additional objects that have not changed along
with the tarp. Finally, DiSC performs better than DM-changing data in the presence of added noise
(see Appendix E).

4.4 fMRI

We assess the performance of DiSC in identifying groups of brain parcels with correlated BOLD
activity in a working memory task from the Human Connectome Project [39], where subjects executed
interleaved blocks of 0-back and 2-back working memory tasks. In these tasks, subjects are instructed
to monitor a sequence of visual items and to respond whenever a presented item is the same as
the one previously presented 2 items ago (2-back) or a predetermined item (0-back). This fMRI
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dataset consists of 515 subjects (subjects with high motion or incomplete data were removed), and
a whole-brain, functional atlas [34] was used to extract time-courses from p = 268 brain parcels.
Dataset XA is composed of all blocks from the 0-back task and XB is composed of all blocks from
the 2-back task.

Figure 5: Canonical correlations of subject-
averaged diffusion maps and differential features
with 10 canonical brain networks for fMRI data
of a 0-back (task A) and 2-back (task B) working
memory tasks.

For each subject we calculated the top 2 dif-
fusion maps eigenvectors as well as the top 2
differential features for each dataset, and aver-
age these across all subjects. Fig. 5 displays
the correlation of each of the averaged vectors
with indicator vectors for 10 canonical brain net-
works [15]. Results show that diffusion maps is
mainly correlated with visual networks, while
the differential vector for the 0-back task being
most correlated with the visual II network. On
the other hand, the differential vector for the
2-back task is most correlated with the frontal-
parietal network, which has been shown to be
predictive of working memory performance [2].
Thus, as opposed to diffusion maps, DiSC re-
veals that the 2-back task incorporates more
high-level cognitive regions (e.g., prefrontal)
compared to the 0-back task which has lower
cognitive load [18, 19].

5 Discussion and future work

In this paper we introduced DiSC, a spectral approach for finding differential features between two or
more datasets. We demonstrate the results of our model on various synthetic and real-world datasets
and show that DiSC extracts better differential features as compared to the competing techniques.
We also show the experimental results on more than two datasets. One limitation of our method is
that it addresses only differences in “connectivity", or correlation, between features, not the feature
values themselves. Another limitation is the choice of the hyperparameters, dA and dB . High values
would result in extracting noise or nuisance features as the differential features, and low values might
not detect the essential differential features. Finally, the problem of "redundant" eigenvectors [11]
arising in spectral clustering and manifold learning may further complicate choosing the correct
dimensionality. This can be mitigated by using non-redundant eigenvectors [3] which we will explore
in future work.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 2 , We assume

that difference between the two datasets are represented in the differences in their
connectivity.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work
does not have any direct potential negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We will include
the code in the supplemental material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] Our algorithm is not computation
expensive.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] We used open source data
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] We are using publicly available and vastly used
datasets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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