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Abstract

Interestingly, recent experimental results [2, 26] have identified a robust fairness
phenomenon in adversarial training (AT), namely that a robust model well-trained
by AT exhibits a remarkable disparity of standard accuracy and robust accuracy
among different classes compared with natural training. However, the effect of
different perturbation radii in AT on robust fairness has not been studied, and one
natural question is raised: does a tradeoff exist between average robustness and
robust fairness? Our extensive experimental results provide an affirmative answer
to this question: with an increasing perturbation radius, stronger AT will lead to
a larger class-wise disparity of robust accuracy. Theoretically, we analyze the
class-wise performance of adversarially trained linear models with mixture Gaus-
sian distribution. Our theoretical results support our observations. Moreover, our
theory shows that adversarial training easily leads to more serious robust fairness
issue than natural training. Motivated by theoretical results, we propose a fairly
adversarial training (FAT) method to mitigate the tradeoff between average robust-
ness and robust fairness. Experimental results validate the effectiveness of our
proposed method.

1 Introduction

Deep neural networks (DNN) have achieved impressive performance on numerous challenging tasks
ranging from computer vision [10, 16] and natural language processing [9, 11] to autonomous driv-
ing. Despite this success, it turns out that DNN is vulnerable to adversarial examples. In other words,
very small and even imperceptible perturbations are sufficient to deceive DNN models, resulting in
erroneous predictions [7, 8, 12, 19]. As one of the most popular methods against adversarial exam-
ples, adversarial training (AT) can effectively improve model’s robustness [17, 21, 24, 29].

Recently, numerous authors [2, 26] have identified an interesting robust fairness phenomenon in
AT, specifically that a robust model well-trained by AT exhibits a remarkable disparity of standard
accuracy and robust accuracy among different classes compared with natural training. Usually, the
performance of a naturally trained model is similar across classes. However, adversarially trained
models tend to perform well in some classes and poorly in others, which will lay serious hidden
dangers for some applications. For example, an autonomous driving system may achieve a satisfying
average robust accuracy for recognizing objects in the road. Nevertheless, this system is robust to
the classes of inanimate objects (high robust accuracy) but vulnerable to some important classes
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(c) WRN-32-10

Figure 1: The variance of class-wise robust accuracy for Madry using ResNet18, ResNet50 and
WRN-32-10 on CIFAR-10. The perturbation radii for AT are chosen from ϵtrain =
{4/255, 8/255, 12/255, 16/255}. The adversarial testing examples are generated by FGSM with
testing perturbation radius ϵtest = 16/255.
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(b) ResNet50
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Figure 2: The average robust accuracy for Madry using ResNet18, ResNet50 and WRN-32-10 on CIFAR-10.
The perturbation radii for AT are chosen from ϵtrain = {4/255, 8/255, 12/255, 16/255}. The
adversarial testing examples are generated by FGSM with testing perturbation radius ϵtest = 16/255.

such as human (low robust accuracy), which is a “snake” in the grass for drivers and pedestrians in
the road. Additionally, in many sensitive fields related to social ethics, it is crucial to ensure that
the models have no discriminatory behaviors toward certain classes (groups or populations). It is
therefore imperative to conduct in-depth study on the robust fairness issue. Notably, the effect of
different perturbation radii in AT on robust fairness has not been studied. When further considering
the robust fairness phenomenon in AT, one natural question arises:

Is there a tradeoff between average robustness and robust fairness; specifically,
as the perturbation radius increases, will stronger adversarially trained models lead
to a larger class-wise disparity of robust accuracy among different classes?

This paper attempts to provide an understanding of the robust fairness phenomenon in AT and study
the tradeoff between average robustness and robust fairness. Following [5, 18], we use the variance
of class-wise robust accuracy to quantitatively measure model’s robust fairness. Our experimental
results in Figures 1 and 2 provide an affirmative answer to this question, suggesting that there is
a tradeoff between average robustness and robust fairness: with the increasing perturbation radius,
AT is able to improve the average robust accuracy of models over classes, but AT also leads to a
larger variance of class-wise robust accuracy. Theoretically, we analyze the class-wise performance
of adversarially trained linear models with mixture Gaussian distribution. Our theoretical results
support our observations. Moreover, our theory shows that AT easily results in more serious fairness
issue compared with natural training. Motivated by our theoretical results, we propose a variance-
based regularized method to mitigate the tradeoff between average robustness and robust fairness.
Our core contributions can be summarized as:

• We empirically find the relation between the variance of class-wise robust accuracy and
perturbation radius in AT, namely that AT with larger perturbation radius will lead to larger
variance of class-wise robust accuracy while average robust accuracy is improved, which
suggests that there exists a tradeoff between robustness and fairness;

• We theoretically analyze this new phenomenon above and provide a potential explanation
for it through linear model with mixture Gaussian distribution. Additionally, we theoreti-
cally prove that AT can lead to severer robust fairness issue compared with natural training;
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• We propose FAT to mitigate the tradeoff between robustness and fairness, and experimental
results validate the effectiveness of our proposed method.

2 Related Work

Adversarial training Madry [17] proposes adversarial training (AT) to improve the robustness of
the model against adversarial examples. Some variants of AT have also been presented. For example,
[21, 29] propose different regularization terms. [4, 22] add unlabeled data to the training set. [25]
propose an algorithm to accelerate training process. A large number of works [6, 14, 23] have
studied the tradeoff between robustness and accuracy. Among these, TRADES [29] is one of the
most popular methods due to its promising experimental results. We take the two classical methods,
Madry and TRADES, as our benchmarks.

Robust fairness Recently, [2, 20, 26] have identified the phenomenon of class-wise disparity of
robustness and describe it as a robust fairness problem. [26] point out that AT can lead to larger
class-wise disparity of standard accuracy compared with natural training and focus on adversarial
training algorithms. Different from [2, 20, 26], this paper focuses on exploring the relation between
the perturbation radius in AT and class-wise disparity of robust accuracy, and further studies whether
there is a tradeoff between average robust accuracy and class-wise disparity of robust accuracy. We
provide an affirmative answer to this question by comprehensive experiments and rigorous theoreti-
cal analysis.

3 Notation and Definition

We donote by X ⊆ Rd the feature space and Y = {1, 2, 3, . . . , L} the label space with unknown
joint distribution D, and X has marginal distribution Dx. Let (x, y) be the feature-label pair, where
instance x ∈ X and label y ∈ Y . We denote the transpose of vector/matrix by the superscript ′.
Denote by fθ : X → Y the classifier (or hypothesis) which is parameterized by θ ∈ Θ, where
Θ is the parameter space and maps x to a certain label y. For simplicity, we denote ℓ(θ, x, y) =
ℓ(fθ(x), y) where ℓ(·) is a certain loss function.

Natural training. Recall that for natural training in the canonical classification setting, the primary
goal is to maximize the standard accuracy of models on the unseen examples from the underlying
distribution. Concretely, we hope to find the classifier fnat with the smallest natural risk:

Rnat(fnat) = min
θ∈Θ

E(x,y)∼Dℓ (θ, x, y) .

Adversarial training. AT [17, 21, 29] aims to build models that are robust against adversarial ex-
amples by solving a robust optimization problem. Specifically, the task of AT is to find the classifier
fadv with the smallest adversarial/robust risk:

Radv(fadv) = min
θ∈Θ

E(x,y)∼D[ sup
z∈U(x,ϵ)

ℓ (θ, z, y)]

where U(x, ϵ) represents the perturbation set. This paper focuses on the set U(x, ϵ) = {z ∈ X :
||z − x||∞ ≤ ϵ}, where || · ||∞ is the l∞-norm. Such type of set is also called l∞-attack in AT.

4 Empirical Exploration

This section explores the relations between the perturbation radius in AT and the variance of class-
wise robust accuracy, and studies whether there is a tradeoff between average robust accuracy and
class-wise disparity of robust accuracy through a series of experiments. We use Madry [17] with var-
ious perturbation radii ϵtrain = {4/255, 8/255, 12/255, 16/255} to train ResNet18, ResNet50 [13]
and Wide ResNet-32-10 (WRN-32-10) [28] on the CIFAR-10 and CIFAR-100 datasets [15]. The
evaluation metrics are the average robust accuracy and the variance of class-wise robust accuracy.
The adversarial testing examples are generated by FGSM [12], PGD-20 [17] and C&W [3] with
different testing perturbation radii ϵtest = {16/255, 20/255}, respectively. The experimental set-
tings(including optimizer, epoch, learning rate and so on) are same as Section 7.1 Here, we present
only the experimental results of Madry on CIFAR-10.
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Table 1: The average robust accuracy (%) and variance of class-wise robust accuracy (10−2) for Madry us-
ing ResNet18, ResNet50 and WRN-32-10 on CIFAR-10. The perturbation radii for AT are chosen
from ϵtrain = {4/255, 8/255, 12/255, 16/255}. The adversarial testing examples are generated by
FGSM, PGD-20 and C&W with different testing perturbation radii ϵtest = {16/255, 20/255}. We
use var and rob.acc to denote the variance of class-wise robust accuracy, and average robust accuracy,
respectively.

attack algorithm FGSM PGD-20 C&W
ϵtest 16/255 20/255 16/255 20/255 16/255 20/255

model ϵtrain var rob.acc var rob.acc var rob.acc var rob.acc var rob.acc var rob.acc

ResNet18

4/255 1.90 29.04 1.31 21.71 0.10 3.54 0.02 1.12 0.11 3.61 0.02 1.05
8/255 2.34 39.00 1.99 32.13 0.50 11.23 0.16 4.96 0.61 12.14 0.19 5.35
12/255 3.12 41.99 2.53 35.71 0.98 19.43 0.35 10.03 1.09 19.39 0.42 10.53
16/255 3.52 42.94 2.99 37.34 1.28 22.50 0.48 12.86 1.38 22.03 0.60 12.65

ResNet50

4/255 1.24 28.89 0.84 21.14 0.07 3.34 0.01 1.13 0.07 3.47 0.01 1.08
8/255 2.36 37.74 1.81 30.68 0.56 13.13 0.22 6.10 0.68 14.06 0.29 6.90
12/255 3.15 39.28 2.78 33.95 1.07 20.88 0.38 11.59 1.16 20.19 0.48 11.70
16/255 3.89 41.26 3.20 35.95 1.54 23.92 0.66 14.44 1.61 22.56 0.75 14.11

WRN-32-10

4/255 2.30 39.21 0.16 5.15 0.16 5.15 0.02 1.79 0.09 3.97 0.01 1.10
8/255 2.46 40.68 0.93 13.62 0.93 13.62 0.43 7.91 0.74 12.76 0.25 6.58
12/255 2.58 41.51 0.97 15.95 0.96 15.63 0.48 9.09 0.96 15.69 0.46 8.87
16/255 2.73 43.36 1.04 17.05 1.04 17.05 0.65 9.87 1.00 17.09 0.53 9.76

The results in Figures 1 and 2 show that with increasing ϵtrain, the average robust accuracy for
Madry using three neural network models on CIFAR-10 monotonously increases; moreover, their
variance of class-wise robust accuracy monotonously increases as well, which leads to severer robust
fairness issues. For example, when ϵtrain = 4/255, the average robust accuracy and the variance of
class-wise robust accuracy are 29.04% and 0.019 respectively for Madry using ResNet18 on CIFAR-
10 under FGSM attack. When ϵtrain = 16/255, Madry using ResNet18 achieves 42.94% average
robust accuracy, while the variance of class-wise robust accuracy of ResNet18 increases to 0.035
on CIFAR-10. Additionally, the detailed testing results in Table 1 reveal that this trend consistently
exists under different networks, attack algorithms and testing perturbation radii.

The results of Madry on CIFAR-100 are presented in Appendix A. We also use TRADES [29] with
various perturbation radii ϵtrain to train ResNet18, ResNet50 and WRN-32-10 on CIFAR-10 and
CIFAR-100. These results are presented in Appendix A. From these results, we can observe the
same trend above. These observations suggest that the phenomenon in Figure 1, Figure 2 and Table
1 can be generalized to more AT algorithms, model architectures, datasets and adversarial attacks.
From the above empirical analysis, we find that higher average robust accuracy is accompanied by a
larger variance of class-wise robust accuracy, suggesting that there exists a tradeoff between average
robustness and robust fairness.

Table 2: The robust accuracy (%), average robust accuracy (%) and variance of class-wise robust accuracy
(10−2) of some classes for Madry using ResNet50 on CIFAR-10. The perturbation radii for AT are
chosen from ϵtrain = {4/255, 8/255, 12/255, 16/255}. The adversarial testing examples are gen-
erated by FGSM with testing perturbation radius ϵtest = 16/255. We use var and rob.acc to denote
the variance of class-wise robust accuracy, and average robust accuracy, respectively. Moreover, diff
means the difference between testing results where ϵtrain is 16/255 and 4/255, respectively.

ϵtrain cat deer horse ship var rob.acc.
4/255 12.0 17.5 39.9 34.2 1.24 28.89
8/255 10.9 16.7 49.6 53.5 2.36 37.74

12/255 8.9 13.7 50.4 60.4 3.15 39.42
16/255 7.8 13.7 51.4 62.4 3.89 41.26

diff -4.2 -3.8 11.5 28.2 2.65 12.37

Why does AT results in this phenomenon? Table 2 presents the robust accuracy of some classes,
average robust accuracy and variance of class-wise robust accuracy for Madry using ResNet50 on
CIFAR-10. The results in Table 2 may reveal the underlying rationale for our findings. From Table 2,
we can observe that model’s robust accuracy on classes “cat” and “deer” is significantly lower than
that on classes “horse” and “ship” for various values of ϵtrain. Additionally, with the increasing of
ϵtrain, the robust accuracy of the model on the classes “cat” and “deer” monotonously decreases;
while the robust accuracy of the model on classes “horse” and “ship” monotonously increases. This
observation indicates that, to further improve the robustness of models, AT prefers to “sacrifice”
model’s robust accuracy on relatively vulnerable classes (like “cat” and “deer”) and pay more atten-
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tion to learning the distribution of examples of more robust classes (like ‘horse” and “ship”). This
preference of AT increases the variance of class-wise robust accuracy and leads to a tradeoff be-
tween average robustness and robust fairness, although the average robustness of the model can be
improved. The following section presents a theoretical analysis of this phenomenon.

5 Theoretical Analysis

Following [4, 22, 26], we study a concrete mixture Gaussian distribution. Inspired by the results
in Table 2, our motivation is to design two classes, “+1” and “−1” and then we analyze the perfor-
mance of natural training and AT on each class. We begin with the following definition.
Definition 5.1. (Mixture Gaussian Distribution). Let µ+, µ− > 0 be the per-class mean parameter
and σ+, σ− > 0 be variance parameter of two classes. The (µ+, µ−, σ+, σ−)-Gaussian mixture
distribution D∗ can be then defined by the following distribution over (x, y) ∈ Rd × {±1}:

y =

{
+1, p = α

−1, p = 1− α,
x ∼

{
N

(
µ+, σ2

+I
)

if y = +1

N
(
−µ−, σ2

−I
)

if y = −1
(1)

where α is the prior probability of class “+1” and µ+ = µ+1, µ− = µ−1, 1 = (

dim d︷ ︸︸ ︷
1, . . . , 1)

′
, I is a

d- dimension identity matrix.

In this section, we focus on studying the performance of the linear model on the distribution D∗ as
follows:

f(x) = sign (⟨w, x⟩+ b) (2)
where the parameters w ∈ Rd, b ∈ R, and sign(t) evaluates to 1 if scalar t ≥ 0 and to -1 otherwise.

5.1 Naturally Trained Linear Model

In this subsection, we analyze the performance of a naturally trained linear model on distribution
D∗. For simplicity, we denote

R+1
nat(f) = E(x,y)∼D∗(1(f(x) = −1)|y = +1)

R−1
nat(f) = E(x,y)∼D∗(1(f(x) = +1)|y = −1)

where 1(·) is the indicator function that takes 1 when the statement in the braces is true and 0
otherwise.
Theorem 5.2. For the naturally trained linear classifier fnat that minimizes the natural risk:

fnat(x) = argmin
f

E(x,y)∼D∗(1(f(x) ̸= y)), (3)

if σ+ ̸= σ−, the class-wise natural risk can be expressed as follows:

R+1
nat(fnat) = Φ

(
−η∗ − dµ+√

dσ+

)
R−1

nat(fnat) = Φ

(
η∗ − dµ−√

dσ−

)
(4)

where Φ(·) is the cumulative distribution function (c.d.f.) of standard Gaussian distribution N (0, 1)
and

η∗ =
A+ σ+σ−(µ+ + µ−)

√
1 + 2K

σ2
−−σ2

+

(µ++µ−)2

σ2
− − σ2

+

where A = −d(µ+σ
2
− + µ−σ

2
+) and K is a positive constant. If σ+ = σ− = σ, the class-wise

natural risk can be expressed as follows:

R+1
nat(fnat) = Φ

(
−d2(µ+ + µ−)

2 − 2Kσ2

2d3/2σ(µ+ + µ−)

)
(5)

R−1
nat(fnat) = Φ

(
−d2(µ+ + µ−)

2 + 2Kσ2

2d3/2σ(µ+ + µ−)

)
. (6)

A proof of Theorem 5.2 can be found in Appendix B.1. Because Φ(·) is a monotonously increasing
function, Theorem 5.2 shows that if the variances of two classes are same, the naturally trained
model performs better on class “+1” than class “−1”; namely:

R+1
nat(fnat) < R−1

nat(fnat).
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5.2 Adversarially Trained Linear Model

This subsection studies the performance of the adversarially trained linear model on distribution
D∗. Without loss of generality, we consider the l∞-attack in adversarial training and testing. In this
case, the perturbation set can be expressed as U(x, ϵ) = {z : ||z − x||∞ ≤ ϵ}. The radius ϵ of the
perturbation set can be used to adjust the level of attack. Obviously, larger ϵ means that adversary
can generate stronger adversarial examples which can easily trick the trained model into making
incorrect predictions.

We use ϵtrain and ϵtest to represent the radius of the perturbation set in the training and testing
phases, respectively, and we further assume ϵtrain ≤ ϵtest. For simplicity, we denote

R+1
adv(f) = E(x,y)∼D∗ [ sup

z∈U(x,ϵ)

1(f(z) = −1)|y = +1]

R−1
adv(f) = E(x,y)∼D∗ [ sup

z∈U(x,ϵ)

1(f(z) = +1)|y = −1].

Theorem 5.3. For the adversarial trained linear classifier fadv that minimizes the adversarial risk:

fadv(x)=argmin
f

E(x,y)∼D∗ [ sup
z∈U(x,ϵ)

(1(f(z) ̸= y)], (7)

if σ+ ̸= σ−, the class-wise adversarial risk can be expressed as follows:

R+1
adv(fadv)=Φ

(
−γ∗ − d(µ+−ϵtest)√

dσ+

)
R−1

adv(fadv)=Φ

(
γ∗ − d(µ−−ϵtest)√

dσ−

)
(8)

where Φ(·) is the c.d.f. of standard Gaussian distribution N (0, 1) and

γ∗=
B+σ+σ−(µ++µ−−2ϵtrain)

√
1+

2K(σ2
−−σ2

+)

(µ++µ−−2ϵtrain)2

σ2
− − σ2

+

where B = −d(µ+σ
2
− + µ−σ

2
+ − ϵtrain(σ

2
+ + σ2

−)) and K is a positive constant. If σ+ = σ− = σ,
the class-wise adversarial risk can be expressed as follows:

R+1
adv(fadv)=Φ

(
−C−2Kσ2

2d3/2σ(µ++µ−−2ϵtrain)

)
R−1

adv(fadv)=Φ

(
−C+2Kσ2

2d3/2σ(µ++µ−−2ϵtrain)

)
where C = d2(µ+ + µ− − 2ϵtrain)(µ+ + µ− − 2ϵtest).

The proof of Theorem 5.3 can be seen in Appendix B.2. Theorem 5.3 demonstrates that if the
variances of two classes are the same, we have

R+1
adv(fadv) < R−1

adv(fadv),

which indicates that the examples in class “−1” are more vulnerable than those in class “+1”. In
the following, we will present our core theoretical results based on Theorems 5.2 and 5.3.

5.3 Tradeoff between Average Robustness and Robust Fairness

Following [5, 18], we use variance of class-wise robust accuracy (VCRA) to quantitatively measure
the model fairness. The definition of VCRA is presented below.

Definition 5.4. (VCRA). Given a classifier f : X → Y where Y = {1, 2, 3, . . . , L}, the variance of
class-wise robust accuracy of f is defined as

V CRA(f) =
1

L

L∑
i=1

(padv(i)− p̄adv)
2 (9)
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where padv(i) = P{∀z ∈ U(x, ϵ), f(z) = i|y = i} and p̄adv = 1
L

∑L
i=1 padv(i). Additionally, we

have

padv(i) = 1− P{∃z ∈ U(x, ϵ), f(z) ̸= i|y = i} (10)
= 1− E(x,y)∼D[ sup

z∈U(x,ϵ)

1(f(z) ̸= i)|y = i].

When calculatinng the variance of class-wise accuracy of f : V CA(f), we just need to replace
padv(i) with p(i) where p(i) = P(f(x) = i|y = i). To obtain more concise analytical results, we
focus on the situation in which σ+ ≤ σ−. However, our results can be generalized to other settings
under some mild conditions.
Theorem 5.5. Given an adversarially trained linear model fadv in Equation (7), the variance of
class-wise robust accuracy V CRA(fadv) is increasing with respect to ϵtrain if σ− ≥ σ+.

The proof of Theorem 5.5 can be found in Appendix B.3. A large radius ϵtest of the perturbation set
U(x, ϵtest) in the testing phase enables adversary to generate strong adversarial examples that can
easily trick the trained model into making wrong predictions. To defend against these adversarial
examples, we usually increase the radius ϵtrain of U(x, ϵtrain)(ϵtrain ≤ ϵtest) to generate strong
adversarial examples in the training phase, which has been proved to effectively improve the aver-
age robust accuracy of models. However, Theorem 5.5 shows that the variance of the class-wise
robust accuracy of the adversarially trained model fadv increases monotonically with respect to the
radius ϵtrain. In other words, a larger radius ϵtrain will lead to a larger variance of class-wise robust
accuracy of the adversarially trained model even though the average robust accuracy of the model
might be improved. Therefore, there exists a tradeoff between average robust accuracy and robust
fairness. This provides an confirmative answer to our question in Section 1 and explains our exper-
imental findings in Section 4. Notably, when perturbation radius ϵtest = 0, Theorem 5.5 suggests
that AT(ϵtrain > 0) results in larger class-wise disparity of standard accuracy compared with natural
training(ϵtrain = 0). Hence, the results in [26] is a special case of Theorem 5.5.

Why does AT lead to this phenomenon? For simplicity, we just consider the situation in which
σ− = σ+. In this setting, R+1

adv(fadv) is monotonically decreasing, but R−1
adv(fadv) is monotoni-

cally increasing with respect to ϵtrain. Therefore, improving model’s average robust accuracy by
increasing ϵtrain will result in a smaller R+1

adv(fadv) and larger R−1
adv(fadv), meaning larger class-

wise disparity of robust accuracy. Moreover, the examples in class “−1” are more vulnerable than
those in class “+1”. These analysis suggests that, to further improve average robust accuracy, AT
will “sacrifice” model’s robust accuracy on relatively vulnerable class “−1” and pay more attention
to learning the distribution of examples in more robust class “+1”, which explains our observations
in Table 2. This preference of AT will lead to a tradeoff between average robust accuracy and robust
fairness.

Previous works [2, 26] empirically find that a robust model well-trained by AT exhibits a remarkable
disparity of standard accuracy and robust accuracy among different classes compared with natural
training. We will theoretically prove this phenomeno. First, we give following theoretical result.
Theorem 5.6. Given an adversarially trained linear model fadv in Equation (7), and suppose σ+ =
σ−. The variance of class-wise robust accuracy of fadv can be expressed as follows:

V CRA(fadv)=
1

πd3
exp(−ξ2)

(
Kσ

µ++µ−−2ϵtrain

)2

where ξ is a constant and K is a positive constant.

The proof of Theorem 5.6 can be found in Appendix B.3.
Theorem 5.7. Given an adversarially trained linear model fadv in Equation (7) and a naturally
trained linear model fnat in Equation (3), and suppose σ+ = σ−. If ϵtrain < µ++µ−

e and ϵtest <
µ++µ−

2 − eK3σ3

d4(µ++µ−) , we have

V CRA(fadv)

V CRA(fnat)
= e(ζ

2
2−ζ2

1 )

(
µ+ + µ−

µ+ + µ− − 2ϵtrain

)2

≥ 1

where K is a positive constant and ζ1, ζ2 are two constants.
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The proof of Theorem 5.7 can be found in Appendix B.3. From Theorem 5.7, we can find
V CRA(fnat) < V CRA(fadv). Similar to Theorem 5.7, we also demonstrate V CA(fnat) ≤
V CRA(fadv) in Theorem B.6 of Appendix B.3. The results of Theorems 5.7 and B.6 suggest that
AT easily leads to severer robust fairness issue than natural training.

6 Fairly Adversarial Training

In this section, we will propose a novel fairly adversarial training (FAT) to mitigate the tradeoff
between average robustness and robust fairness. The analytical results in Section 5 and Equation (10)
show that we can control the variance of class-wise robust accuracy by controlling the variance of
class-wise adversarial risk. Theorem 6.1 provide a theoretical guarantee for using the variance of
class-wise adversarial risk to trade off average robustness against robust fairness.

Denote ℓ̃(θ, x, y) = supz∈U(x,ϵ) ℓ (θ, z, y) and the corresponding empirical adversarial risk
R̂adv(f) = 1

n

∑n
i=1 ℓ̃(θ, xi, yi). In addition, we denote the variance of class-wise adversarial risk

(VCAR) as

VCAR(f) =
1

L

L∑
i=1

(Radv(f, i)− R̄adv(f))
2

where Radv(f, i) = E(ℓ̃(θ, x, y = i)) and R̄adv(f) =
1
L

∑L
i=1 Radv(f, i).

Theorem 6.1. Let (x1, y1), (x2, y2), . . . ,(xn, yn) be drawn independent and identically distributed
(i.i.d.) from the unknown distribution D. Under appropriate conditions on the loss ℓ(·), parameter
space Θ, with probability of at least 1− δ, the following holds for all θ ∈ Θ:

Radv(f) ≤ R̂adv(f) +

√
VCAR(f) 1δ

n
+

C

n

The proof of Theorem 6.1 can be found in Appendix B.4. Theorem 6.1 shows that the variance of
class-wise adversarial risk can control the robust risk of classifiers and the class-wise disparity of
robustness. Inspired by Theorem 6.1, we propose to minimize the following object:

min
f

[ Radv(f)︸ ︷︷ ︸
for robustness

+λVCAR(f)︸ ︷︷ ︸
for disparity

] (11)

where the parameter λ in Equation (11) captures the tradeoff between average robustness and robust
fairness.

We use R̂adv(f, i) to estimate Radv(f, i) where R̂adv(f, i) = 1
ni

∑ni

j=1 ℓ̃(θ, xj , i) and ni is the
number of examples that belong to class i. The estimator of VCAR(f) can be expressed as follows:

V̂CAR(f) =
1

L

L∑
i=1

(R̂adv(f, i)− ¯̂
Radv(f))

2

Usually, V̂CAR(f) is a biased but consistent estimator of V CAR(f). FAT can thus be formulated
as follows:

min
f

[R̂adv(f) + λV̂CAR(f)] (12)

7 Experiments

In this section, we present the experimental results to validate the effectiveness of FAT for mitigating
the tradeoff between average robustness and robust fairness.

7.1 Experimental Settings

We conduct our experiments on the benchmark datasets CIFAR-10 and CIFAR-100 [15]. Based
on ResNet18 [13], we compare our proposed FAT with Madry [17] on two datasets with different

8



Table 3: The variance of class-wise robust accuracy (10−2) for Madry and FAT using ResNet18 on CIFAR-10.
The perturbation radii are chosen from ϵtrain = {4/255, 8/255, 12/255, 16/255}. The adversarial
testing examples are generated by FGSM, PGD-20 and C&W with different testing perturbation radii
ϵtest = {16/255, 20/255}.

attack algorithm FGSM PGD-20 C&W
ϵtest 16/255 20/255 16/255 20/255 16/255 20/255
ϵtrain PGD FAT PGD FAT PGD FAT PGD FAT PGD FAC PDG FAT
4/255 1.90 1.76 1.31 1.28 0.10 0.07 0.02 0.01 0.11 0.08 0.02 0.01
8/255 2.34 2.18 1.99 1.69 0.50 0.46 0.16 0.12 0.61 0.52 0.19 0.14

12/255 3.12 2.99 2.53 2.47 0.98 0.84 0.35 0.35 1.09 0.90 0.42 0.38
16/255 3.52 3.32 2.99 2.90 1.28 1.06 0.48 0.40 1.38 1.22 0.60 0.51

Table 4: The average robust accuracy (10−2) for Madry and FAT using ResNet18 on CIFAR-10. The per-
turbation radii are chosen from ϵtrain = {4/255, 8/255, 12/255, 16/255}. The adversarial test-
ing examples are generated by FGSM, PGD-20 and C&W with different testing perturbation radii
ϵtest = {16/255, 20/255}. We use bold to denote higher robust accuracy.

attack algorithm FGSM PGD-20 C&W
ϵtest 16/255 20/255 16/255 20/255 16/255 20/255
ϵtrain PGD FAT PGD FAT PGD FAT PGD FAT PGD FAC PDG FAT
4/255 29.04 29.33 21.74 22.65 3.54 3.11 1.12 1.31 3.61 3.23 1.05 0.99
8/255 39.00 38.57 32.13 32.26 11.23 11.29 4.96 5.26 12.14 12.32 5.35 5.48
12/255 41.99 42.77 35.71 36.71 19.43 19.74 10.03 10.97 19.39 19.88 10.53 11.48
16/255 42.97 43.40 37.34 37.98 22.50 22.79 12.86 13.11 22.03 22.21 12.65 12.99

perturbation radii ϵtrain ∈ {4/255, 8/255, 12/255, 16/255}. The maximum PGD step and step
size are set to 20 and ϵtrain/10, respectively. For optimization, we use SGD with 0.9 momentum
for 120 epochs. The initial learning rate is set to 0.1 and is divided by 10 at epoch 60 and epoch
80, respectively. The adversarial testing examples are generated by FGSM [12], PGD-20 [17] and
C&W [3] with different testing perturbation radii ϵtest = {16/255, 20/255}, respectively. Here, we
present only the experimental results on CIFAR-10 in Tables 3 and 4. The experiment results of FAT
and Madry on CIFAR-100 can be found in Appendix C.1. Besides, the sensitivity analysis of the
regularization hyperparameter λ in FAT is presented in Appendix C.2. Our code can be found on
GitHub at https://github.com/wzekai99/FAT.

7.2 Experimental Results

Under the attack of FGSM, PGD-20 and C&W with different ϵtest, Table 3 presents the variance
of class-wise robust accuracy for FAT and Madry using ResNet18 on CIFAR-10. From table 3, we
can observe that FAT significantly reduces the variance of class-wise robust accuracy of Madry for
various perturbation radii ϵtrain. The results from Tables 3 and 4 further show that with increasing
ϵtrain, the average robust accuracy and the variance of class-wise robust accuracy of FAT increase,
which is consistent with our theory in Section 5. However, compared with Madry, FAT consistently
obtains smaller variance of class-wise robust accuracy while achieving comparable average robust
accuracy on different ϵtrain and attack algorithms. For example, with the increasing of ϵtrain from
4/255 to 16/255, FAT reduces the variance of class-wise robust accuracy of Madry by around 16%
under the C&W attack with ϵtest = 16/255. These experimental results suggest that FAT can effec-
tively suppress the growth of variance of class-wise robust accuracy while achieving an competitive
average robust accuracy compared with Madry with the increasing of ϵtrain. The results of FAT and
TRADES in Appendix C.1 also present conclusions consistent with those drawn here. Therefore,
FAT can alleviate the robust fairness problem and mitigate the tradeoff between average robustness
and robust fairness.

8 Conclusion

In this work, we empirically find that there is a tradeoff between average robustness and robust
fairness: higher average robust accuracy of models is accompanied by severer robust fairness issues
with the increasing of training perturbation radius. Our theoretical results explain our observations.
We then theoretically demonstrate that AT indeed leads to severer robust fairness issue compared
with natural training. Moreover, a novel method is proposed to mitigate the tradeoff between average
robustness and robust fairness. Our experimental results verify the superiority of our proposals.
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