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Abstract

The problem of monotone submodular maximization has been studied extensively
due to its wide range of applications. However, there are cases where one can
only access the objective function in a distorted or noisy form because of the
uncertain nature or the errors involved in the evaluation. This paper considers the
problem of constrained monotone submodular maximization with noisy oracles
introduced by [11]. For a cardinality constraint, we propose an algorithm achieving
a near-optimal

(
1− 1

e −O(ε)
)
-approximation guarantee (for arbitrary ε > 0) with

only a polynomial number of queries to the noisy value oracle, which improves
the exponential query complexity of [20]. For general matroid constraints, we
show the first constant approximation algorithm in the presence of noise. Our
main approaches are to design a novel local search framework that can handle the
effect of noise and to construct certain smoothing surrogate functions for noise
reduction.

1 Introduction

Consider the following problems in machine learning and operations research: (1) selecting a set
of locations to open up facilities with the goal of maximizing their overall user coverage [15]; (2)
reducing the number of features in a machine learning model while retaining as much information
as possible [23]; and (3) identifying a small set of seed nodes that can achieve the largest overall
influence in a social network [14]. Solving these problems all involves maximizing a monotone
submodular set function f : 2N 7→ R subject to certain constraints. Intuitively, submodularity
captures the property of diminishing returns. For example, a newly opened facility will contribute
less to the overall user coverage if we have already opened many facilities and more if we have
only opened a few. Although the general problem of monotone submodular maximization subject
to a cardinality or general matroid constraint is NP-hard [5], the greedy algorithm, which selects an
element with the largest margin at each step, can approximately solve this problem under a cardinality
constraint by a factor of 1−1/e, and this approximation ratio is tight [18]. Moreover, a non-oblivious
local search algorithm, which iteratively alters one element to improve an auxiliary objective function,
is guaranteed to achieve an approximation ratio of 1− 1/e for general matroid constraints [7].

In the literature, the submodular optimization problem usually assumes a value oracle to the objective
function f , which means one is allowed to query the exact value of f(S) for any S ⊆ N . However, in
many applications, due to the uncertain nature of the objective or the errors involved in the evaluation,
one can only access the function value in a distorted or noisy form. For example, Globerson and
Roweis [9] pointed out that selecting features to construct a robust learning model is particularly
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important in domains with non-stationary feature distributions or input sensor failures. It is known
that without any assumption on the noise, direct adaptions of the greedy and local search methods
mentioned above may yield arbitrarily poor performance [12]. To address this issue, Hassidim and
Singer [11] introduced and studied the following problem of monotone submodular maximization
under noise: For a monotone submodular function f , given a noisy value oracle f̃ satisfying
f̃(S) = ξSf(S) for each set S ⊆ N , where the noise multiplier ξS is independently drawn from
a certain distribution, the goal is to find a set S maximizing f(S) under certain constraints. Some
applications of this problem are provided in [20] such as revealed preference theory [3] and active
learning [6]. Hassidim and Singer [11] showed that under a sufficiently large cardinality constraint,
a variant of the greedy algorithm achieves a near-optimal approximation ratio of 1 − 1

e − O(ε)
for arbitrary ε > 0. The problem becomes more challenging when the cardinality constraint is
relatively small since there is less room for mistakes. In a subsequent work, Singer and Hassidim [20]
developed another greedy-based algorithm for small cardinality constraints and showed a near-tight
approximation guarantee.

Despite these encouraging results, we want to point out two directions along this line of monotone
submodular maximization under noise that still have room for improvements:

• In the algorithm from [20], the query complexity to the noisy value oracle is exponential in
ε−1, which is costly when a near-optimal solution is needed, i.e., when the parameter ε is
close to 0. Is it possible to obtain near-optimal approximations for monotone submodular
maximization under cardinality constraints with the number of queries polynomial in ε−1?

• All previous works in submodular maximization under noise consider only the cardinality
constraint, and no approximation guarantee is known under other constraints. 1 Is there any
algorithm that can achieve a constant approximation for submodular maximization under
noise for more general constraints, such as commonly studied matroid constraints [16, 26]?

In this paper, we provide answers to both questions above.

1.1 Our contributions

We study the problem of constrained monotone submodular maximization under noise (Problem 2.6).
Following prior works [11, 20], we assume generalized exponential tail noises (Definition 2.5) and
consider the solutions subject to cardinality constraints (Definition 2.2) and matroid constraints
(Definition 2.3). The main contribution of this work is to show that for optimizing a monotone
submodular function under a cardinality constraint,

(
1− 1

e −O(ε)
)
-approximations can be obtained

with high probability by querying the noisy oracle only Poly
(
n, 1

ε

)
times.

Theorem 1.1 (Informal, see Theorems 4.1 and 4.6). Let ε > 0 and assume n is sufficiently large.
For any r ∈ Ω

(
1
ε

)
, there exists an algorithm that returns a

(
1− 1

e −O(ε)
)
-approximation for

the monotone submodular maximization problem under a r-cardinality constraint, with probability
1− o(1) and query complexity Poly

(
n, 1

ε

)
to f̃ .

For a cardinality constraint, this paper and prior works [11, 20] all achieve near-optimal ap-
proximations. However, our result is applicable for a larger range Ω

(
1
ε

)
of cardinalities than

Ω
(
log log n · ε−2

)
in [11]. Moreover, we only require Poly

(
n, 1

ε

)
queries to the noisy value oracle,

which improves the query complexity Ω(n
1
ε ) of [20].

Our main idea to address this problem is to employ a local search procedure, whereas prior methods
are all variants of the greedy algorithm. Intuitively, local search is more robust than the greedy since
the marginal functions are more sensitive to noise than the value functions. To achieve a sufficient
gain in each iteration, the greedy algorithm must identify the element with maximum margin. In
contrast, local search only needs to estimate the sets’ values. This is why we can improve the query
complexity to Poly

(
n, 1

ε

)
for small cardinality constraints.

We present a unified framework (Algorithm 1) for enhancing the local search to cope with noise.
One of the main differences between our framework and the non-oblivious local search proposed
by [7] is that we use an approximation of the auxiliary function (Definition 3.2) rather than the exact

1Note that Singer and Hassidim [20] also provide an algorithm to deal with general matroid constraints.
However, we will argue in Section A that their algorithm fails to obtain the approximation guarantee they claim.
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one due to the presence of noise. We analyze the impact of the inaccuracies on the approximation
performance and query complexity of the local search (Theorem 3.3).

Another difference is the construction of the auxiliary functions used to guide the local search. We
construct the auxiliary function not based on the objective function but on smoothing surrogate
functions.

A surrogate function h needs to meet two properties: (i) h should depend on an averaging set of
size poly(n), such that h(S) and its noisy analogue h̃(S) are close for all sets S considered by
local search; (ii) h needs to be close to the original function f , such that optimizing h can yield a
near-optimal solution to optimizing f . However, a large averaging set is more likely to induce a large
gap between the surrogate and original function, making simultaneous fulfillment of both properties
non-trivial.

In this paper we carefully design the smoothing surrogate functions as follows. For a set with size
r ∈ Ω

(
1
ε

)
∩O

(
n1/3

)
, we define the smoothing surrogate function h as the expectation of f ’s value

when a random element in N is added to the set (Definition 4.2). This surrogate function is robust
for a relatively small cardinality as it is based on a rather large averaging set with size nearly n, but
too concentrated for a large cardinality close to n. Thus, we consider another smoothing surrogate
function hH for size r ∈ Ω

(
n1/3

)
, defined as the average value combined with all subsets of a

certain small-size set H (Definition 4.7). The auxiliary functions constructed on both smoothing
surrogates are shown to have almost accurate approximations (Lemma 4.4 and 4.9). Consequently,
we can apply our unified local search framework (Algorithm 1) in both cases (Algorithm 2 and 3),
and guarantee to achieve nearly tight approximate solutions (Theorem 4.1 and 4.6).

The other contribution of this paper is a constant approximation result for maximizing monotone
submodular functions with noisy oracles under general matroid constraints.
Theorem 1.2 (Informal, see Theorems 5.1 and 5.2). Let ε > 0 and assume n is sufficiently
large. For any r ∈ Ω

(
ε−1 log(ε−1)

)
, there exists an algorithm that returns a

(
1
2

(
1− 1

e

)
−O(ε)

)
-

approximation for the monotone submodular maximization problem under a matroid constraint with
rank r, with probability 1− o(1) and query complexity at most Poly

(
n, 1

ε

)
to f̃ .

To the best of our knowledge, this is the first result showing that constant approximation guarantees
are obtainable under general matroid constraints in the presence of noise. To cope with noise, one
common approach for cardinality constraints is to incorporate some extra elements to gain robustness
and include these elements in the final solutions. However, for a matroid, additional elements may
undermine the independence of a set. To address this difficulty, we develop a technique for comparing
the values of independent sets in the presence of noise, which allows us to select either the local
search solutions or the additional elements for robustness and leads to an approximation ratio of
1
2

(
1− 1

e

)
.

1.2 Related work

Research has been conducted on monotone submodular maximization in the presence of noise.
We say a noisy oracle is inconsistent if it returns different answers when repeatedly queried. For
inconsistent oracles, noise often does not present a barrier to optimization, since concentration
assumptions can eliminate the noise after a sufficient number of queries [21, 13]. When identical
queries always obtain the same answer, the problem becomes more challenging. Aside from the i.i.d
noise adopted in [11, 20] and this paper, Horel and Singer [12] study submodular optimization under
noise adversarially generated from [1− ε/r, 1 + ε/r], where the greedy algorithm achieves a ratio of
1− 1/e−O(ε). No algorithm can obtain a constant approximation if noise is not bounded in this
range.

2 The model

This section formally defines our model (Problem 2.6) of maximizing a monotone submodular
function (Definition 2.1) under a cardinality constraint (Definition 2.2) or a matroid constraint
(Definition 2.3), given access to a noisy value oracle (Definition 2.4). Let N be the ground set with
size |N | = n, and we use the shorthands S + x = S ∪ {x} and S − x = S\{x} throughout this
paper. We first review the definition of monotone submodular functions.
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Definition 2.1 (Monontone submodular functions). A function f : 2N → R≥0 is monotone
submodular if 1) (monotonicity) f(A) ≤ f(B) for any A ⊆ B ⊆ N ; 2) (submodularity) for any
subset A,B ⊆ N and x ∈ N : f(A+ x)− f(A) ≥ f(B + x)− f(B).

There are various examples of monotone submodular functions in optimization, such as budget
additive functions, coverage functions, cut functions and rank functions [1]. Since the description of
a submodular function may be exponential in the size N , we usually assume access of a value oracle
that answers f(S) for each S ⊆ N . Let I denote a collection of feasible subsets S ⊆ N . The goal of
a constrained monotone submodular maximization is to find a subset S ⊆ I to maximize f(S). The
objective f is further assumed to be normalized, i.e., f(∅) = 0. We consider two types of constraints
in our models: cardinality constraints and matroid constraints.
Definition 2.2 (Cardinality constraints). Given a ground set N and an integer r ≥ 1, a cardinality
constraint is of the form I(r) = {S ⊆ N : |S| ≤ r}.
Definition 2.3 (Matroids and Matroid constraints). Given a ground set N , a matroid M is
represented by an ordered pair (N, I(M)) satisfying that 1) ∅ ∈ I(M); 2) If I ∈ I(M) and I ′ ⊆ I ,
then I ′ ∈ I(M); 3) If I1, I2 ⊆ I(M) and |I1| < |I2|, then there must exist an element e ∈ I2 \ I1
such that I1 ∪ {e} ∈ I(M). Each I ∈ I(M) is called an independent set. The maximum size of an
independent set is called the rank ofM. We call the collection I(M) a matroid constraint.

Assume we are given a membership oracle of I(M) that for any set S ⊆ N answers whether S ∈
I(M). As a widely used combinatorial structure, there is an extensive study on matroids [28, 19, 27].
Common matroids include uniform matroids, partition matroids, regular matroids, etc. See [19] for
more discussions. Specifically, a uniform matroid constraint is equivalent to a cardinality constraint,
implying that cardinality constraints are a special case of matroid constraints.

Noisy value oracle. It is well known that given an exact value oracle to f , for any ε > 0, there exists
a randomized (1− 1/e− ε)-approximate algorithm for the submodular optimization problem under
a matroid constraint, i.e., maxS⊆I f(S) [2, 7]. However, as discussed earlier, the value oracle of
f may be imperfect, and we may only have a noisy value oracle f̃ instead of f . We consider the
following noisy value oracle that has also been investigated in [12, 11].

Definition 2.4 ((Multiplicative) noisy value oracle [11]). We call f̃ : 2N → R≥0 a (multiplicative)
noisy value oracle of f , if there exists some distributionD s.t. for any S ⊆ N , f̃(S) = ξSf(S) where
ξS is i.i.d. drawn from D.

Throughout this paper, we consider a general class of noise distributions, called generalized exponen-
tial tail distributions, defined in [20].
Definition 2.5 (Generalized exponential tail distributions [20]). A noise distribution D has a
generalized exponential tail if there exists some x0 such that for every x > x0 the probability density
function ρ(x) = e−g(x), where g(x) =

∑
i cix

γi for some (not necessarily integers) γ0 ≥ γ1 ≥
. . . , s.t.γ0 ≥ 1 and c0 > 0. If D has bounded support we only require that either it has an atom at its
supremum or that ρ is continuous and non-zero at the supremum.

W.l.o.g., we assume E[D] = 1.2 As mentioned in [20], the class of generalized exponential tail
distributions contains Gaussian distributions, exponential distributions, and all distributions with
bounded support that is independent of n.

The model. We are ready to propose the main problem, which has already been considered in [11, 20].
Problem 2.6 (Constrained submodular optimization under noise). Given a noisy value oracle
f̃ : 2N → R≥0 (with a certain generalized exponential tail distributionD) to an underlying monotone
submodular function f , and a cardinality constraint I = I(r) or a matroid constraint I = I(M),
the goal is to find S ⊆ I to maximize f(S).

3 Local search with approximate evaluation oracles to auxiliary functions

This section proposes a non-oblivious local search framework with a noisy value oracle (Algorithm 1),
and gives an analysis (Theorem 3.3) of its performance. This algorithm is a generalization of that

2Otherwise, we can scale D to be D′ = D/E[D] = 1.
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in [7] and will be used as a meta-algorithm for solving Problem 2.6 in Sections 4 and 5. Roughly
speaking, a local search framework first constructs a "good" initial solution via a standard greedy
algorithm and then iteratively improves the solution w.r.t. to an auxiliary function (Definition 3.1)
by swapping an element at each step. The following auxiliary function proposed by [7] is a linear
combination of the original function over all subsets.
Definition 3.1 (Auxiliary function [7]). Given a monotone submodular function h : 2N → R≥0,
its auxiliary function φh : 2N → R≥0 is defined as φh(S) =

∑
T⊆Sm|S|−1,|T |−1 · h(T ), where

ms,t =
∫ 1

0
ep(e− 1)−1pt(1− p)s−tdp for all s ≥ t ≥ 0.

We use h instead of f because we may do local search on certain smoothing surrogate function h of
f (see examples in Definitions 4.2 and 4.7). Note that φh is also a monotone submodular function.
Given an exact value oracle of φh and a matroid constraint I(M), Filmus and Ward [7] show that
there exists a local search algorithm that outputs a (1−1/e)-approximate solution for the optimization
problem maxS⊆I(M) h(S). However, as mentioned before, we do not have an exact value oracle of
h. Thus, it may not be possible to construct an exact value oracle of φh. To understand how these
inaccuracies can affect the performance of the local search algorithm, we introduce the following
approximation for the auxiliary function φh.
Definition 3.2 ((α, δ, I(M))-approximation of φh). Given an auxiliary function φh, a matroid
constraint I(M) and constants α, δ > 0, we say a randomized function φ̂h is an (α, δ, I(M))-
approximation of φh if for any independent set A ∈ I(M),

P
[
|φ̂h(A)− φh(A)| > α · max

S∈I(M)
φh(S)

]
≤ δ.

Intuitively, φ̂h is a randomized version of φh with an additive concentration guarantee, where the
randomness may come from noise of h or sampling error for estimating φh. As α, δ tend to 0,
φ̂h is a better approximation of φh. Specifically, when α = δ = 0 and I = 2N , φ̂h is exactly
equivalent to φh. Now we are ready to provide our local search framework (Algorithm 1), which is a
generalization of [7, Algorithm 2]. The main difference is that we use an approximation φ̂h instead
of φh for evaluation at each greedy step (Line 4) and local search step (Line 12). The performance of
Algorithm 1 is summarized in Theorem 3.3.

Algorithm 1: Noisy local search (NLS(φ̂h, I(M),∆))
Input : A matroid constraint I(M) of rank r ≥ 1, a value oracle to an

(α, δ, I(M))-approximation φ̂h of φh, a stepsize ∆ ∈ (0, 1/2).
1 Set I ←

⌈
log1+∆

(
2(1+α)

1−2(r+1)α

)⌉
2 Initialize: U0 ← ∅, i = 1
3 while i ≤ r do
4 ui ← argmaxe:Ui−1+e∈I(M) φ̂h(Ui−1 + e)

5 Ui ← Ui−1 + ui
6 i← i+ 1

7 S0 ← Ur ▷ Initial solution by greedy
8 for i = 0 to I − 1 do ▷ Local search for I iterations
9 for each element x ∈ Si and y ∈ N \ Si do

10 S′
i ← Si − x+ y

11 if S′
i ∈ I(M) then

12 if φ̂h(S′
i) ≥ (1 + ∆) · φ̂h(Si) then ▷ An improved solution S′

i was found
13 Si+1 ← S′

i
14 break and continue to the next iteration of i

15 return SI

Theorem 3.3 (Performance of noisy local search). Let I = log1+∆

(
2(1+α)

1−2(r+1)α

)
. With probability

at least 1− (I + 1)rnδ, the output SI of Algorithm 1 is a
(
1− 1

e

)
(1− r ln(er) ((2 + ∆)α+∆))-

approximate solution for problem maxS⊆I(M) h(S), with at most (I + 1) rn calls to φ̂h.
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We defer the proof to Section C. Roughly, given a nearly accurate approximation φ̂h, we can show
that the initial solution S0 is likely to be a constant approximation for maxS∈I(M) φh(S) (Lemma
C.1). This guarantees that we will reach a local optimal solution w.r.t. φh in I iterations with high
probability (Claim C.3). Then combining with basic properties of φh shown in [7] and the fact that
φ̂h is "close" to φh, we obtain Theorem 3.3.

Corollary 3.4. Assume n ∈ Ω
(
exp

((
1
ε

)O(1)
))

, if α,∆ = ε
4r log r , we have I ≤ 5r ln r

ε , and with

probability at least 1 − (I + 1)rnδ, the output SI of Algorithm 1 is a
(
1− 1

e − ε
)
-approximate

solution for problem maxS⊆I(M) h(S), with at most (I + 1) rn calls to φ̂h.

4 Our algorithms and main theorems for cardinality constraints

For different ranges of cardinalities, this section presents algorithms (Algorithm 2 and 3) that return a(
1− 1

e −O(ε)
)
-approximation for Problem 2.6 with only Poly

(
n, 1

ε

)
queries to the noisy oracle f̃ .

The analyses (Theorem 4.1 and 4.6) of the algorithms constitute a proof of Theorem 1.1.

4.1 Algorithmic results for cardinality constraints when r ∈ Ω
(
1
ε

)
∩O

(
n

1
3

)
We first present an algorithm (Algorithm 2) and its analysis (Theorem 4.1) that are applicable for all
r ∈ Ω

(
1
ε

)
∩O

(
n

1
3

)
when n is sufficiently large. All missing proofs can be found in Section D.

Theorem 4.1 (Algorithmic results for cardinality constraints when r ∈ Ω
(
1
ε

)
∩O

(
n

1
3

)
). Let

ε > 0 and assume n ∈ Ω
(
exp

((
1
ε

)O(1)
))

is sufficiently large. For any r ∈ Ω( 1ε ) ∩ O
(
n

1
3

)
,

there exists an algorithm that returns a
(
1− 1

e −O(ε)
)
-approximation for Problem 2.6 under a

r-cardinality constraint, with probability at least 1 − O
(

1
logn

)
and query complexity at most

O
(
r2 log2 r · n 3

2 ε−1 max{r, log n}
)

to f̃ .

The assumption that n is sufficiently large is necessary and has also been adopted in prior works on
noisy submodular optimization [11, 20]. We achieve a tight approximation ratio of 1− 1/e−O(ε).
Furthermore, we only require Poly (n, 1/ε) queries to f̃ , in contrast to Ω

(
n1/ε

)
for the prior greedy

algorithm [20].

4.1.1 Useful notations and useful facts for Theorem 4.1

Our algorithm and analysis are based on the following smoothing surrogate function h.
Definition 4.2 (Smoothing surrogate function I). For any set S ⊆ N , we define the smoothing
surrogate function h(S) as the expectation of f(S + e) over a random element e ∈ N , i.e., h(S) =
1
n

∑
e∈N f(S + e).

The surrogate function h(S) is robust to noise when |S| is relatively small since at this time h(S) is
based on a rather large averaging set with size nearly n. Note that h(S) becomes too concentrated on
f(S) as |S| ≈ n, and hence, we consider this surrogate h for the range r ∈ O

(
n

1
3

)
. We now show

that h shares some basic properties with f .
Lemma 4.3 (Properties of h). The smoothing surrogate function h is monotone and submodular.

Note that h is implicitly constructed since we only have a value oracle to f̃ instead of f . Hence, we
construct an approximation of its auxiliary function φh; summarized by the following lemma.
Lemma 4.4 (Approximation of φh). Let α, δ ∈ (0, 1/2) and assume n ∈ Ω(α−2 log(δ−1)). There
exists a value oracle O to an (α, δ, I(r − 1))-approximation φ̂h of φh, which answering O(A)

queries at most M = Θ
(
log r · n 1

2 max{r, log n}
)

times to f̃ for each set A ∈ I(r − 1).

The above lemma indicates that for a sufficiently large n, we can achieve an arbitrary accurate
approximation φ̂h of φh, which queries f̃ only Õ(rn

1
2 ) times for each φ̂h(A).
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More precisely, the relationship among α, δ and n can be expressed as α−2 ln(4δ−1) ≤ c · nκ−2

(See Lemma D.5), where κ is the sub-exponential norm (Definition D.2) of the noise distribution
D depending on the parameters ci, γi of density function, and c is an absolute constant. A small κ
indicates a concentrated noise distribution. Generally speaking, the more concentrated the noise is
(κ→ 0), the more accurate approximation we are able to obtain (α, δ → 0).

4.1.2 Algorithm for Theorem 4.1

Algorithm 2: Noisy local search under a small cardinality constraint

Input :a value oracle to f̃ , budget r ∈ Ω
(
1
ε

)
∩O

(
n

1
3

)
and ε ∈ (0, 1/2)

1 Let φ̂h be a
(
α = ε

4r ln r , δ = 1
(I+1)(r−1)n2 , I(r − 1)

)
-approximation of φh as in Lemma 4.4

2 SL ← NLS
(
φ̂h, I(r − 1),∆ = ε

4r ln r

)
▷ Local search phase

3 SM ← SL + argmaxe∈N\SL
f̃(SL + e) ▷ f̃-maximization phase

4 return SM

We present Algorithm 2 that contains two phases: a local search phase (Line 2) and a f̃ -maximization
phase (Line 3). We first run a non-oblivious local search procedure (Algorithm 1) under the (r − 1)-
cardinality constraint (Line 2). We set δ = 1

(I+1)(r−1)n2 by Corollary 3.4 when applying Algorithm 1

to obtain a
(
1− 1

e − ε
)
-approximation solution SL for h-maximization. At the f̃ -maximization

phase (Line 3), we obtain SM by selecting an additional element e ∈ N \ SL that maximizes
f̃(SL + e). This guarantees that f(SM ) ≥ (1− ε)h(SL) with high probability (Lemma 4.5), which
results in the approximation ratio 1− 1

e −O(ε) in Theorem 4.1.

Given the smoothing surrogate function h(S) (Definition 4.2), a natural idea is to simply apply local
search (Algorithm 1) to optimize it under the r-cardinality constraint. However, this idea does not
yield a provable approximation of maxS:|S|≤r f(S), since it is not easy to control the contribution of
the additional element e ∈ N to h(S) and it is possible that h(S)≫ f(S). To handle this difficulty,
Algorithm 2 first runs a local search procedure under the (r − 1)-cardinality constraint, and then
selects an additional element with a "large enough" margin at the f̃ -maximization phase. This idea
enables us to control the loss induced by the surrogate h within 1

r ·maxS:|S|≤r f(S).

4.1.3 Proof sketch of Theorem 4.1

We first analyze the query complexity and then prove the approximation performance.

Query complexity of Algorithm 2. In Line 3, we make (n − r + 1) calls to the noisy oracle f̃
in total. By Corollary 3.4, the total number of queries to φ̂h in Line 2 is at most (I + 1)(r − 1)n

and I ≤ 5r ln r
ε . Combining with Lemma 4.4, the query complexity to f̃ is upper bounded by

(n−r+1)+M(I+1)(r−1)n = O
(
r2 log2 r · n 3

2 ε−1 max{r, log n}
)

. This matches Theorem 4.1.

Approximation ratio and success probability of Algorithm 2. Let Oh ∈ argmaxS∈I(r−1) h(S)
represent the (r − 1)-set whose value of h is the largest. Following from Theorem 3.3, we
have h(SL) ≥

(
1− 1

e − ε
)
h(Oh) with probability at least 1 − 1

n . We denote by Of ∈
argmaxS∈I(r) f(S) the optimal solution to f . By the submodularity of f , Of has a subset Õf
with r − 1 elements such that f(Õf ) ≥

(
1− 1

r

)
f(Of ). Then we have

h(SL) ≥
(
1− 1

e
− ε

)
h(Õf ) ≥

(
1− 1

e
− ε

)
f(Õf ) ≥

(
1− 1

r

)(
1− 1

e
− ε

)
f(Of ), (1)

where the first inequality follows from h(SL) ≥
(
1− 1

e − ε
)
h(Oh) and the second from monotonic-

ity of f . Since r is assumed to be Ω
(
1
ε

)
, h(SL) is a

(
1− 1

e −O(ε)
)
-approximation of f(Of ).

Recall that h(SL) is the expectation of f(SL + e) over a random element e ∈ N . Ineq. (1) already
proves a claim that uniformly randomly adding an element e ∈ N to SL achieves an approximation
ratio of 1− 1

e −O(ε) in expectation for maximizing f , i.e., E[f(SL+ e)] ≥
(
1− 1

e −O(ε)
)
f(Of ).

Moreover, we can convert this claim to a with-high-probability claim by the following lemma.
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Lemma 4.5 (Approximation at the f̃ -maximization phase). With probability 1−O
(

1
logn

)
, we

have f(SM ) ≥ (1− ε)h(SL).

This lemma indicates that a bad element e ∈ N \ SL with f(SL + e) < (1 − ε)h(SL) is unlikely
to be chosen at the f̃ -maximization phase. This is because the local search procedure guarantees
that the number of good elements with f(SL + e) ≥ (1− ε)h(SL) is almost of the same order as
the bad ones. Consequently, we can show that the selected element is likely to be good due to the
generalized exponential tail noise, using similar proof idea as that of [20, Lemma 3.4]. By Ineq. (1)
and Lemma 4.5, we complete the proof.

4.2 Algorithmic results for cardinality constraints when r ∈ Ω
(
n

1
3

)
We present in this subsection an algorithm (Algorithm 3) and its analysis (Theorem 4.6) that can be
applied to r ∈ Ω

(
n

1
3

)
when n is sufficiently large. All missing proofs can be found in Section E.

Theorem 4.6 (Algorithmic results for cardinality constraints when r ∈ Ω
(
n

1
3

)
). Let ε > 0 and

assume n ∈ Ω
(

1
ε4

)
is sufficiently large. For any r ∈ Ω

(
n

1
3

)
, there exists an algorithm that returns

a
(
1− 1

e −O(ε)
)
-approximation for Problem 2.6 under a r-cardinality constraint, with probability

1−O
(

1
n2

)
and query complexity at most O(n6ε−1) to f̃ .

The above theorem addresses the remaining range of r in Theorem 4.1, and also achieves a tight
approximation ratio of 1− 1

e −O(ε) with Poly(n, 1/ε) queries to f̃ .

4.2.1 Useful notations and useful facts for Theorem 4.6

Our algorithm and analysis in this subsection are based on another smoothing surrogate function h.

Definition 4.7 (Smoothing surrogate function II). Given a subset H ⊆ N , for any set S ⊆ N \H ,
we define the smoothing surrogate function hH(S) as hH(S) =

∑
Hj⊆H f(S ∪Hj)/2

|H|.

Intuitively, if |H| is sufficiently large, the surrogate function h is robust to noise as it is based on a
large averaging set with size 2|H|. Throughout the rest of this subsection, we consider the case that
|H| ∈ Ω(log n). Similar to Section 4.1.1, we give some basic properties of hH .

Lemma 4.8 (Properties of hH ). For any H ⊆ N , the smoothing surrogate function hH is monotone
and submodular, and for all S ⊆ N \H , hH(S) ≥ 1

2f(S ∪H) + 1
2f(S).

Given a cardinality r and a set H ⊆ N , we define a (r − |H|)-cardinality constraint confined on
N\H as IH(r) = {S ⊆ N \H : |S| = r − |H|}. Similar to Section 4.1.1, we provide the following
lemma indicating that the auxiliary function φhH

can be well approximated.

Lemma 4.9 (Approximation of φhH
). Let ε > 0 and assume n ∈ Ω

(
ε−4
)
. For a set H with |H| ≥

3 lnn, there exists a value oracle O to a
(
α = ε

4r ln r , δ = 3
n6 , IH(r)

)
-approximation φ̂hH

of φhH
,

which answering O(A) queries f̃ ’s oracle O
(
rε−1 log

5
2 n log2 r

)
times for each set A ∈ IH(r).

The above lemma indicates that for sufficiently large n and |H|, we can achieve an almost accurate
approximation φ̂hH

of φhH
, which queries f̃ only Õ(nε−1) times for each φ̂hH

(A). By Corollay 3.4,
we set δ = 3

n6 when applying Algorithm 1.

4.2.2 Algorithm for Theorem 4.6

We present Algorithm 3 that mainly contains a local search phase (Line 3). The main difference
from Algorithm 2 is that Algorithm 3 arbitrarily select a redundant set H (Line 1), and use this set to
construct a smoothing surrogate function hH for local search (Line 3). Then Algorithm 3 returns
SL ∪H directly (Line 4) without a f̃ -maximization phase.
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Algorithm 3: Noisy local search under large cardinality constraint

Input :a value oracle to f̃ , budget r ∈ Ω
(
n

1
3

)
, and ε ∈ (0, 1/2)

1 Arbitrarily select a subset H ⊆ N with |H| = ⌈3 lnn⌉
2 Let φ̂hH

be a
(
α = ε

4r ln r , δ = 3
n6 , IH(r)

)
-approximation of φhH

as in Lemma 4.9
3 SL ← NLS

(
φ̂hH

, IH(r),∆ = ε
4r ln r

)
▷ Local search phase

4 return SL ∪H

4.2.3 Proof sketch of Theorem 4.6

Again, we first analyze the query complexity and then prove the approximation performance.

Query complexity of Algorithm 3. Since n ∈ Ω
(

1
ε4

)
, we have I ∈ O(n2) in Corollary 3.4. Hence

Line 4 calls the oracle of φ̂hH
at most O(rn3) times by Corollary 3.4, and each call to φ̂hH

queries
f̃ at most O

(
rε−1 log

5
2 n log2 r

)
times by Lemma 4.9. Thus we query f̃ at most O(n6ε−1) times.

Approximation ratio and success probability of Algorithm 3. Corollary 3.4, we have hH(SL) ≥(
1− 1

e − ε
)
·maxS⊆IH(r) hH(S) with probability 1−O

(
1
n2

)
. Furthermore, f(SL∪H) ≥ hH(SL)

follows from the monotonicity of f . Then we can demonstrate the approximation performance of
Algorithm 3 by the following lemma.

Lemma 4.10. Let O⋆ = argmaxS∈I(r) f(S). We have maxS∈IH(r) hH(S) ≥
(
1− |H|

r

)
f(O⋆).

Roughly speaking, there exists a subset A ⊆ O⋆ of size |H| such that f(O⋆\A) ≥
(
1− |H|

r

)
f(O⋆)

by submodularity of f . The claim follows from maxSL∈IH(r) hH(S) ≥ h(O⋆\A) ≥ f(O⋆\A).
Combining the fact that f(SL ∪ H) ≥

(
1− 1

e − ε
)
maxS⊆IH(r) hH(S) with Lemma 4.10, we

complete the proof of Theorem 4.6.

5 Our algorithms and main theorems for general matroid constraints

In this section, we consider Problem 2.6 under matroid constraints. Similarly, for different ranges of
matroid ranks, we prove there are (1− 1

e −O(ε))/2-approximate algorithms (Theorems 5.1 and 5.2).
W.l.o.g., we assume that all single elements are feasible for the given matroid constraints.

Theorem 5.1 (Algorithmic results for matroid constraints with rank r ∈ Ω
(
1
ε log

(
1
ε

))
∩O

(
n

1
3

)
).

Let ε > 0 is sufficiently small and assume n ∈ Ω
(
exp

((
1
ε

)O(1)
))

is sufficiently large. For any

r ∈ Ω(ε−1 log(ε−1)) ∩ O
(
n

1
3

)
, there exists an algorithm that returns a

((
1− 1

e

)
/2−O(ε)

)
-

approximation for Problem 2.6 under a matroid constraint I(M) with rank r, with probability at

least 1−O
(
ε4
)

and query complexity at most O
(
r2 log2 r · n 3

2 ε−1 max{r, log n}
)

to f̃ .

The proof can be found in Section F. The main difference from Theorem 4.1 is that the approximation
ratio is

(
1− 1

e

)
/2 − O(ε) instead of 1 − 1

e − O(ε). The reason is that to maintain the feasibility
of the output, we may not be able to add an element to SL as in Line 3 of Algorithm 2. To address
this issue, we design a comparison procedure (Lines 4-8 of Algorithm 7) to evaluate the value of
f(SL) and f(SM \ SL) and output the larger one, which results in a loss on the approximation ratio.
Moreover, the failure probability of the comparison procedure is upper bounded by O(ε4).

Theorem 5.2 (Algorithmic results for matroid constraints with rank r ∈ Ω
(
n

1
3

)
). Let ε > 0

and assume n ∈ Ω
(

1
ε4

)
is sufficiently large. For r ∈ Ω

(
n

1
3

)
, there exists an algorithm returning a((

1− 1
e

)
/2−O(ε)

)
-approximation for Problem 2.6 under a matroid constraint I(M) with rank

r, with probability 1 − O
(

1
n2

)
and query complexity O(n6ε−1) to f̃ . Specifically, for a strongly

base-orderable matroid (Definition H.1), the approximation ratio can be improved to 1− 1
e −O(ε).
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The proof for general matroid constraints can be found in Section G. The main difference from
Theorem 4.6 is again the approximation ratio. For maintaing the feasibility, we divide an arbitrary
base into two equal-size subsets, apply Algorithm 3 to both subsets, and output the larger one.
Consequently, we achieve a

((
1− 1

e

)
/2−O(ε)

)
-approximation ratio. Specifically, for a strongly

base-orderable matroid, we can use its good exchangable property to maintain the feasibility without
sacrificing the approximation ratio; see Section H for a complete proof.

6 Discussions

For any cardinality r ≥ 2, Algorithms 2 and 3 return a
((
1− 1

r

) (
1− 1

e

)
−O (ε)

)
-approximation

for monotone submodular maximization problem under noise with query complexity Poly
(
n, 1

ε

)
.

When r ∈ Ω
(
1
ε

)
, the approximation ratio can be written as

(
1− 1

e

)
−O(ε) (Theorem 1.1). However,

if r ∈ O
(
1
ε

)
, then this ratio is not close to the optimal one. In this case, Singer and Hassidim

[20] provide an algorithm that achieves
(
1− 1

r

)
-approximation with query complexity Ω(nr). It

remains open whether there is an algorithm that returns
(
1− 1

e −O(ε)
)
-approximation with query

complexity Poly
(
n, 1

ε

)
for r ∈ O

(
1
ε

)
. The main challenges of our approach to handle this range of r

is that the introduction of surrogates (Definition 4.2) inevitably results in a loss of 1
r in approximation

ratio. For the special case of r = 1, one of the few known results is an algorithm by [20] achieving a
1
2 -approximation guarantee in expectation, which is information theoretically tight. To the best of our
knowledge, there is no with-high-probability result for this case.

Another limitation of this work is that we only consider independent noise. For non-i.i.d. noise,
Hassidim and Singer [11] indicate that no algorithm can achieve a constant approximation when the
noise multipliers are arbitrarily correlated across sets. Considering this, it may be worthwhile to
consider special cases of correlated distributions for which optimal guarantees can be obtained. One
of them is a model called d-correlated noise [11]: a noise distribution is d-correlated if for any two sets
S and T such that |S\T |+ |T\S| > d, the noise is applied independently to S and to T . The noise
multipliers can be arbitrarily correlated when S and T are similar in the sense that |S\T |+ |T\S| ≤ d.
We notice that our algorithms can be naturally extended to d-correlated noise for d ∈ O(1). In
particular, to adapt Algorithm 2 to deal with d-correlated noise, we need to arbitrarily split N into
sets T1, . . . , T⌊ N

d+1 ⌋
and define the smoothing surrogate function as h(S) = 1

L

∑L
l=1 f(S ∪ Tl) to

replace the original surrogate.

7 Conclusions

In this work, we study the problem of constrained monotone submodular maximization with noisy
oracles. We design a unified local search framework that allows for inaccuracy in the objective
function. Under this framework, we construct several smoothing surrogate functions to average the
noise out. For cardinality constraints, the local search framework results in algorithms that achieve a(
1− 1

e −O(ε)
)
-approximation with Poly

(
n, 1

ε

)
query complexity. Moreover, for general matroid

constraints, the framework obtains an approximation ratio arbitrarily close to
(
1− 1

e

)
/2, which is

the first constant approximation result to our knowledge.

There are many directions in which this work could be extended. For submodular maximization with
noisy oracles under general matroid constraints, there is a gap between the approximation ratio of
(1− 1/e) /2−O(ε) provided in this paper and impossibility results [5, 20]. The first open question is
to close this gap. In addition, it would be interesting to consider more complex constraints under noise
including knapsack constraints [4]. It is meaningful to investigate submodular maximization with
correlated noise. Moreover, it is also worthwhile to investigate the robustness of other submodular
optimization approaches, e.g., multi-linear extension [25].
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