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Abstract

3D human pose and shape estimation (a.k.a. “human mesh recovery”) has achieved
substantial progress. Researchers mainly focus on the development of novel algo-
rithms, while less attention has been paid to other critical factors involved. This
could lead to less optimal baselines, hindering the fair and faithful evaluations of
newly designed methodologies. To address this problem, this work presents the first
comprehensive benchmarking study from three under-explored perspectives beyond
algorithms. /) Datasets. An analysis on 31 datasets reveals the distinct impacts
of data samples: datasets featuring critical attributes (i.e. diverse poses, shapes,
camera characteristics, backbone features) are more effective. Strategical selec-
tion and combination of high-quality datasets can yield a significant boost to the
model performance. 2) Backbones. Experiments with 10 backbones, ranging from
CNNss to transformers, show the knowledge learnt from a proximity task is readily
transferable to human mesh recovery. 3) Training strategies. Proper augmentation
techniques and loss designs are crucial. With the above findings, we achieve a
PA-MPIJPE of 47.3 mm on the 3DPW test set with a relatively simple model.
More importantly, we provide strong baselines for fair comparisons of algorithms,
and recommendations for building effective training configurations in the future.
Codebase is available at https://github. com/smplbody/hmr-benchmarks.

1 Introduction

3D human pose and shape estimation (a.k.a. “human mesh recovery”') has attracted a lot of interest
due to its vast applications in robotics, computer graphics, AR/VR, etc. Common approaches take

monocular RGB images [33, 30, 35, 59] or videos [32, 31, 48] as input to regress the parameters of a
human body model. One of the most popular human parametric models is SMPL [47]. Over the years,
a substantial amount of novel algorithms have been proposed [36, 18, 35, 24, 8, 54,29, 37,12, 34, 33],

which significantly improve the recovery accuracy.

Despite the advances in mesh recovery algorithms, prior works rarely systematically investigated other
fundamental factors that are also crucial to the model performance. (1) Different selections of datasets
and their contributions yield distinct model performance. This is especially prominent in human
mesh recovery as datasets containing different label modalities (2D keypoints, 3D keypoints, mask,
SMPL parameters) are usually combined for training. (2) The mesh recovery model is commonly
learnt from a pretrained backbone. The quality of the backbone (e.g., network architecture, weight
initialization) is a primary determinant of the downstream task. (3) The performance of the mesh
recovery model is also highly sensitive to the training strategies, including data augmentation and
training loss design. It is still unclear how these factors can affect the model performance and what
are the optimal training configurations to obtain good mesh recovery models.

!'The two terms are used interchangeably in this work.
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Such a lack of understanding can severely impede the development of mesh recovery research. First,
researchers may build and assess new algorithms with less optimal training configurations, which
cannot fully reflect the benefits of the new inventions. For instance, the state-of-the-art algorithms
SPIN [35] and PARE [33] can achieve the PA-MPJPE (i.e., recovery error) of 59.2 mm and 50.9 mm,
respectively, while we can obtain the PA-MPJPE of 47.3 mm by selecting a better configuration with
a simple base method (Table 1). Second, some prior works compare different algorithms or methods
with different training configurations, leading to unfair evaluations. For instance, HMR [30] and
SPIN [35] are often used as the baselines for comparison with various algorithms [33, 34, 29, 40, 12]
despite having used vastly different dataset mixes. There are fewer studies [83, 34] that utilize the
same dataset mix as HMR or SPIN or replicate their dataset mix with HMR for ablation.

To address the aforementioned problems, we perform a large-scale benchmarking study about human
mesh recovery tasks from three perspectives. (1) Datasets. We provide comprehensive evaluations
on 31 datasets, including several that have not been used for mesh recovery. We observe that huge
performance gains can be achieved from a careful selection of datasets. We identify factors that
make a dataset competitive, and provide suggestions to enhance existing datasets or collect new ones.
(2) Backbone. Mainstream approaches are still using conventional CNN-based feature extractors
[33, 12]. We extend the study to 10 backbone architectures, including vision transformers. We
also investigate the effect of pretraining and discover that weight initialization from a strong pose
estimation model is highly complementary for mesh recovery tasks. (3) Training strategy. We
examine different augmentations and training loss designs. We discover that L1 loss is more effective
for supervision and curbing noise than the typically used mixed losses. We explain the effectiveness
of different augmentations based on the underlying feature distributions of the train and test datasets.

Putting  together ~ our Table 1: Our identified optimal baseline models with the performance
findings, we establish on the 3DPW test set. Abbreviations for the datasets - Human3.6M [23]:
strong baselines for dif- H36M, MPI-INF-3DHP [51]: MI, MuCo-3DHP [52]: MuCo, PoseTrack [2]:
ferent dataset mixes and PT, OCHuman [36]: OCH

backbones on the HMR Algorithm Dataset Backbone | PA-MPJPE| _ MPJPE] _ PA-PVE| _ PVEL
. PARE [17] EFT-[COCO, LSPET, MPI], H36M, SPIN-MI HrNet-w32 50.90 820 5 979
algorlthm [ ] and 3DP\N Ours EFT-[COCO, LSPET, MPII], H36M-Aug, SPIN-MI HrNet-W32 47.68 81.16 64.70 98.23
SPIN [5] H36M, MI, COCO, LSP, LSPET, MPII ResNet-50 592 96.9 - 135.1

test set [ ] as shown HMR [30] H36M, MI, COCO, LSP, LSPET, MPII ResNet-50 76.7 130.0 - -
N > Ours H36M, MI, COCO, LSP, LSPET, MPII ResNet-50 51.66 82.80 70.53 100.59
in Table 1 (results on the Ours H36M, MI, COCO, LSP. LSPET, MPII Twin-SVT-B 48.77 82.91 66.91 96.33
H36 Ours FH36M, MI, COCO, LSP, LSPET, MPIT HNet-W32 .18 79.76 6838 96.07
M Ours H36M-Aug, MI, COCO, LSP, LSPET, MPII Twin-SVT-B 47.70 79.16 66.53 95.03

f te.St ;et [ ] (%al'l Ours EFT-[COCO, LSPET, MPII], H36M, SPIN-MI Twin-SVT-B 47.31 81.90 64.19 96.56
Ours H36M, MI, EFT-COCO HrNet-W32 48.08 83.16 66.01 100.59

be found in the appendlx). Ours H36M, MI, EFT-COCO Twin-SVT-B 4827 8439 64.72 99.61
Ours H36M, MuCo, EFT-COCO Twin-SVT-B 47.76 80.03 64.43 98.07

Patel et al. [ ] SuggeSted Ours EFT-[COCO, LSPET, PT, OCH] H36M, MI Twin-SVT-B 49.33 83.13 66.29 99.73

that 3DPW-test benchmarks
are becoming saturated in the PA-MPJPE range of 50+ mm, making it difficult to evaluate how
close the field is to fully robust and general solutions. Through this study, we manage to attain a
PA-MPIJPE of 47.68 mm using the same backbone and dataset selection as PARE [33], which reports
50.9 mm with a more sophisticated algorithm. Keeping model capacity and dataset selection similar
to HMR (76.7 mm) [30] and SPIN (59.2 mm) [35], we reach 51.66 mm. Additionally, we achieve
48.77 mm using HMR’s original dataset and partition which does not contain any EFT or SPIN
fittings. With more robust dataset choices following [33], our best model obtains 47.31 mm without
fine-tuning on 3DPW train set. We hope our competitive results could propel the community to focus
on newer algorithms and draw attention away from different training settings in the future.

2 Preliminaries

Base model. The origin of many mesh recovery works [35, 12, 37, 32, 33, 62, 59, 48] can be
traced back to HMR [30]. It adopts a neural network to regress the parameters of a SMPL body
[30], which is a differentiable function that maps pose parameters 6 and shape parameters (3 to a
triangulated mesh with 6980 vertices. Following this study, subsequent works have been built upon
HMR to further enhance the recovery performance. For instance, some solutions are proposed to
improve the robustness by adding an optimization loop [35], estimating camera parameters [34] or
using probabilistic estimation to derive the pose [37]; some works also extend HMR to predict the
appearance (e.g., HMAR [63]) or temporal dimension (e.g., HMMR [60], VIBE [32], MEVA [48]).
We benchmark HMR as it has also been widely used as the baseline in many studies [58, 29, 5, 12].
In Section 6, we also demonstrate benchmarking results on other algorithms.

Evaluation. We follow the widely adopted evaluation protocol in [30, 35]. Performance is measured
in terms of recovery errors (PA-MPJPE) in mm. A smaller PA-MPJPE value indicates better recovery



Table 2: HMR model performance when trained on individual datasets. For PROX and MuPoTs-3D, only
2D keypoints are used for training. P: person-person occlusion O: person-object occlusion.

Training dataset Annotation type Env. # Samples # Subjects # Scenes # Cam Oce. PA-MPJPE MPJPE] PA-PVE] PVE]
PROX [20] * 2DKP Indoor 88484 11 12 - [§) 84.69 147.93 109.85 177.01
COCO-Wholebody [25] 2DKP Outdoor 40055 40055 - - - 85.27 157.13 107.44 176.49
Instavariety [31] 2DKP Outdoor 2187158 >28272 - - - 88.93 151.22 12251 184.15
COCO [45] 2DKP Outdoor 28344 28344 - - - 93.18 197.47 122.05 238.30
MuPoTs-3D [52] * 2DKP Outdoor 20760 8 - 12 - 95.83 190.88 121.58 241.89
LIP[17] 2DKP Outdoor 25553 25553 - - - 96.47 198.65 123.78 241.98

MPII [1] 2DKP Outdoor 14810 14810 3913 - - 98.18 228.90 128.95 246.61
Crowdpose [39] 2DKP Outdoor 13927 - - - P 99.97 207.03 136.45 240.35
Vlog People [31] 2DKP Outdoor 353306 798 798 - - 100.38 201.69 135.86 245.75
PoseTrack (PT) [2] 2DKP Outdoor 5084 550 550 - - 105.30 229.44 141.58 270.99
LSP [26] 2DKP Outdoor 999 999 - 111.45 247.29 154.63 293.38
Al Challenger [77] 2DKP Outdoor 378374 - - - - 111.66 255.35 147.40 305.342
LSPET [27] 2DKP Outdoor 9427 9427 - - - 112.26 328.98 139.79 387.05
Penn-Action [88] 2DKP Outdoor 17443 2326 2326 - - 114.53 370.03 144.84 447.89
OCHuman (OCH) [86] 2DKP Outdoor 10375 8110 - - PO 130.55 262.62 157.68 315.87
MuCo-3DHP (MuCo) [52] 2DKP/ 3DKP Indoor 482725 8 - 14 P 78.05 14425 101.19 164.02
MPI-INF-3DHP (MI) [51] 2DKP/ 3DKP Indoor 105274 8 1 14 - 107.15 232.47 140.74 274.58
3DOHS50K (OH) [87] 2DKP/ 3DKP Indoor 50310 - 1 6 o 114.48 302.57 248.07 346.12
3D People [61] 2DKP/ 3DKP Indoor 1984640 80 - 4 - 108.27 229.89 127.21 25338
AGORA [58] 2DKP/ 3DKP/ SMPL Indoor 100015 >350 - - PO 77.94 140.64 98.40 161.91
SURREAL [75] 2DKP/ 3DKP/ SMPL Indoor 1605030 145 2607 - - 110.00 291.17 142.53 37278
Human3.6M (H36M) [23] 2DKP/ 3DKP/ SMPL Indoor 312188 9 1 4 - 124.55 286.12 170.57 326.40
EFT-COCO [29] 2DKP/ SMPL. Outdoor 74834 74834 - - - 60.82 96.20 78.28 114.61
EFT-COCO-part [29] 2DKP/ SMPL Outdoor 28062 28062 - - - 67.81 110.00 86.77 128.62
EFT-PoseTrack [29] 2DKP/ SMPL Outdoor 28457 550 - - - 75.17 127.87 96.61 149.14
EFT-MPII [29] 2DKP/ SMPL Outdoor 14667 3913 - - - 71.67 132.46 97.97 150.55
UP-3D [35] 2DKP/ SMPL Outdoor 7126 7126 - - - 86.92 161.61 109.51 181.00

MTP [55] 2DKP/ SMPL Outdoor 3187 3187 - - - 87.03 191.08 110.43 227.36
EFT-OCHUMAN [29] 2DKP/ SMPL. Outdoor 2495 2495 - - PO 93.44 187.38 123.03 216.06
EFT-LSPET [29] 2DKP/ SMPL Outdoor 2946 2946 - - - 100.53 208.90 128.77 240.69
3DPW [76] SMPL Outdoor 22735 7 - - - 89.36 168.98 115.09 207.98

performance. Our goal is to infer accurate pose 6 and shape parameters /3, which are later taken
as input for parametric human models to get joint locations. This metric has already implied the
evaluation of human shape and mesh [43, 73, 35, 44]. [83, 41] pointed out that PA-MPJPE is not
perfect, thus we have add more metrics such as PVE, PA-PVE and MPJPE.

We adopt the 3DPW [75] test set for evaluation without any fine-tuning on its training set (Protocol 2)?.
In Section 6, we also provide evaluations on other test sets and show that 3DPW is a representative
benchmark. This outdoor dataset is often used as the main or only benchmark [30, 35, 71, 12, 29, 32,

] to assess real-world systems under a wide variety of in-the-wild conditions. We also evaluate
the indoor H36M test set [23]. The results can be found in the appendix, which gives the same
conclusions as 3DPW. We train the model for 100 epochs® and evaluate its performance in each epoch.
After this, the best PA-MPJPE is reported. We perform our benchmarking from three perspectives -
datasets (Section 3), backbones (Section 4) and training strategies (Section 5).

3 Benchmarking Training Datasets

Training datasets play an important role in determining mesh recovery accuracy. Table 12 in the
appendix summarises the datasets used in various algorithms. Many works train on their own
unique combinations of datasets determined heuristically [33, 34, 29, 40, 12]. This makes it hard to
attribute performance gains to the proposed algorithm or to the handpicked selection of datasets, and
necessitates benchmarks on different dataset choices. We provide a systematic and comprehensive
evaluation of the impact of training datasets on the HMR performance. Our benchmarks involve
not only the datasets used in prior mesh recovery works, but also the newest ones (e.g., PROX [20],
AGORA [58]) as well as those commonly used in 2D/3D pose estimation (e.g., LIP [17], Crowdpose
[39], Al Challenger [77], Penn-Action [88], MuCo-3DHP [52], etc.). We consider different factors in
the training datasets that can affect the model performance, which are rarely investigated previously.

3.1 Dataset Attributes

Different datasets may exhibit different attributes, which are critical for the model performance. To
easily analyze their impacts, we use each dataset from our collection to train the HMR model, and
test its performance. Table 2 summarizes the attributes and the corresponding performance.

Non-critical attributes. Joo et al. [29] suggested that there exists an indoor-outdoor domain gap,
where models trained on outdoor datasets do not perform well on indoor test datasets, and vice
versa. However, our comprehensive benchmarks reveal that not all datasets’ performance can be
explained by the indoor-outdoor domain gap, calling for a more careful analysis of underlying factors.

2Some works [34, 80, 48, 43, 68, 19] also adopt the 3DPW training set during training (Protocol I). In
general, using the 3DPW training data improves the performance but it is not a universal practice.
3 All models were trained with 8 Tesla V100 GPUs.
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Figure 1: Distributions of the four attributes in four datasets (better viewed in color).

For instance, several notable indoor training datasets (e.g., PROX, MuCo-3DHP) outperform many
outdoor datasets, and result in high-performing models on the outdoor 3DPW test dataset. Similarly,
we observe that some indoor training datasets (e.g., MPI-INF-3DHP, 3DOHS50K) give a really poor
performance on the indoor H36M test dataset, as shown in the appendix. In addition, we find weak
correlations between the number of data points and model performance. For instance, COCO with
10x fewer data points outperforms H36M [23] on the 3DPW test set.

Critical attributes. There are some attributes that can heavily impact the model performance, such as
human poses, body shape (height, limb length), scenes, lighting, occlusion (self, people, environment),
annotation types (2D/3D keypoints, SMPL) and camera characteristics (angles) [58, 5, 73, 64, 29, 4].
High similarities of these attributes between the training and test datasets can yield better performance.

To validate these, we adopt a well-trained HMR model to estimate the distributions of four attributes:
1) pose § € R%, 2) shape 3 € R'° and 3) camera translation ¢¢ € R? obtained from the head, and
4) features f € R2%4® obtained from the ResNet-50 backbone. Fig. 1 visualizes the results with
the UMAP dimension reduction technique [50] for four selected datasets: COCO, 3DPW, H36M
and MPI-INF-3DHP. We have the following observations. First, COCO has a large variety of these
attributes, which considerably overlap with those of 3DPW. This explains why training with COCO
gives satisfactory performance on 3DPW. Second, H36M lacks diversity in poses (Fig. 1a) and has
distinctly different distributions of features (Fig. 1d) and shape (Fig. 1b) from 3DPW, possibly due to
the limited number of subjects (9) and scenes (1) (Table 2). In addition, H36M’s shape and camera
distribution differ from MPI-INF-3DHP. Therefore, training with either 3DPW or MPI-INF-3DHP has
poor performance on H36M. H36M benchmarks and extra visualization of the attribute distributions
for other datasets (Figs. 12 - 15) can be found in the appendix.

Notably, the indoor datasets that perform well on outdoor 3DPW benchmarks are designed with
considerable person-person (MuCo-3DHP) and person-object occlusion (PROX) (Fig. 6 in the
appendix). This suggests that occlusion can be a more important factor that predominates the
background (see Appendix C for more details).

To demonstrate the importance of the SMPL fitting mechanism, Table 3: HMR model perfor-
we compare EFT datasets with and without SMPL annotation, as mance with EFT datasets.

shown in Table 3. We observe that EFT fittings can reduce the PA- El?]f‘?gecto W’é%“g'“ W"; fi’;"L
MPIJPE by over 20 mm for different datasets. This is consistent with  grr.coco-part | 6781 101.65
the findings from [29, 5] that SMPL parameters (¢ and ) provide EFT-PoseTrack | 75.17 103.10
L . - EFT-MPII 77.66 99.87
stronger supervision signals compared to 2D and 3D keypoints. Cai  grr.ocHuman | 94.01 121.68
et al. [5] put forward the reason that strong supervision initiates the _EFT-LSPET 100.53 134.62

gradient flow that reaches the learnable SMPL parameters in the shortest possible route.

Remark #1: The indoor/outdoor settings or number of data points are not strong indicators for
the model performance. Some attributes (e.g., human pose and shape, camera characteristics,
backbone features) are more critical, and having high diversities (leading to considerable overlap
between the training and test sets distributions) can give more satisfactory results. Occlusion
(person-person or person-object) and SMPL fittings can also help boost recovery accuracy.

3.2 Combination of Multiple Datasets

It is a common practice to train the mesh recovery model with multiple datasets of different domains
and annotation types. Past works select the datasets empirically. We argue that different combinations
of datasets can lead to a vast fluctuation in performance. We explore their impacts from two directions.



Table 5: HMR model performance when trained with different contribution configurations of six datasets.
(Left) Direct partition. (Right) Reweight samples.

Partition | PA-MPJPE, Weighting | pa-mpyPE]

H36M MI LSPET LSP MPIL COCO H36M MI LSPET LSP MPIL COCO

0.35 0.15 0.10 0.10 0.10 0.20 64.55 0.17 0.17 0.17 0.17 0.17 0.17 63.25
0.10 0.10 0.10 0.05 0.15 0.50 61.66 0.10 0.10 0.10 0.05 0.15 0.50 62.43
0.20 0.10 0.10 0.05 0.15 0.40 61.23 0.20 0.10 0.10 0.05 0.15 0.40 62.47
0.40 0.20 0.10 0.10 0.10 0.10 66.33 0.20 0.10 0.15 0.10 0.15 0.40 63.51
0.17 0.17 0.17 0.17 0.17 0.17 63.10 0.35 0.15 0.10 0.10 0.10 0.20 64.93

Table 4: HMR model performance when trained with different

Selection of datasets. We first T
combinations of datasets.

evaluate different combinations

.. . Mix Datasets PAMPJPE] _ MPJPE] _ PA-PVE] _ PVE]

of training datasets, as shown in T mrwicoco 6,14 T15.19 59,00 T35.68

: : 2| H36M, MI, EFT-COCO 55.98 91.68 7317 107.39

Table 4. Particularly, Mix 2 fol- 3| H36M, MI, BFT-COCO, MPII 56.39 9456 74.88 111.40

i i 4 | H36M, MuCo, EFT-COCO 53.90 87.76 7110 104.59

lows the selectlon. 1n D_SR [12] 5 | H36M, MI, COCO, LSP, LSPET, MPII 6455 109.73 86.62 128.93

and EFT [29] while Mix 6 fol- s EFT-[COCO, MPII, LSPET], SPIN-MI, H36M 55.47 90.77 7278 107.08

. 7 | EFT{COCO, MPIL LSPET], MuCo, H36M, PROX 5296 86.00 70.34 104.49

lows that in PARE [ ] We have 8 EFT-{COCO, PT, LSPET], MI, H36M 55.97 91.34 73.63 107.90

. . 9 | EFT{COCO, PT, LSPET, OCH], MI, H36M 55.59 89.91 73.20 106.17

several observations. First, the | "pox suco, Erricoco, b LsPET ocH), o oo T e
: B UP-3D, MTP, Crowdpose o7 - > 3

selection of the training sets has |, EFT-[COCO, MPIL, LSPET], MuCo, H36M 52.54 86.68 70.63 103.07

high impacts on the model per-
formance, even more critical than the training algorithms. For instance, for Mix 2, we obtain a
PA-MPJPE of 55.98 mm using the HMR base model, while DSR and EFT report 54.1 mm and
54.7 mm respectively, with more sophisticated algorithms. The performance difference is minor
compared to that with different combinations of datasets. Similarly, for Mix 6, our HMR base model
gets 55.47 mm whereas PARE reports 52.3 mm. We observe that some prior works compare their
model performance with algorithms trained on vastly different dataset mixes, which is arguably unfair.
The lack of a defined and consistent combination of training datasets hinders the direct comparison
of different algorithms’ performance. Through our benchmarking, we provide the community with
new baselines on some of the commonly used dataset combinations.

Second, it is not necessary to include more datasets. From Table 4, we observe that Mix 10 does not
perform as well as other mixes with fewer datasets. Involving more datasets could harm the model
accuracy. It is recommended to select the optimal combination of datasets rather than prioritizing the
quantity. For instance, we discover that the involvement of EFT (especially EFT-COCO) datasets can
boost the performance, which should be strongly considered as the baselines (Table 4).

It is worth noting that we heuristically select the datasets for benchmarking. We emphasize that this
selection process is not directionless. From our analysis, a good overlap in train-test distributions of
features (e.g., camera, pose, shape, backbone features) would help to achieve good performance. We
could then select the top N datasets that would cover a wide distribution. In addition, we identify
attributes that makes a dataset effective for training, such as the presence of SMPL annotations, and
few datasets currently afford it. These findings help us make informed choices on dataset selection.
How to automatically select the datasets will be our future work.

Dataset contributions. In addition to the selection of datasets, the relative contribution of each dataset
in the combination is also important. Unfortunately, no prior works consider this factor. Basically,
there are two approaches to adjust the dataset contribution. The first one is to set the partitions (i.e.,
probability that a dataset is “seen” during training) of these datasets with pre-defined ratios [30]. The
second is to maintain the same partition and reweight samples from different datasets, similar to prior
methods of weighting valuable samples [65, 69]. Table 5 shows the model performance with different
contribution configurations using 6 datasets in [30]. Our observations include: (1) Setting different
contributions for different datasets can indeed alter the model performance. A careful configuration
can bring a rather large improvement. It is important to increase the contributions of critical datasets
that can benefit the training (e.g., COCO in our case). (2) Under the same contribution configurations,
the approach of directly altering the partitions is more effective than reweighting the samples.

Remark #2: The selection of datasets and their relative contributions are important factors to
determine the model performance. To fairly evaluate and compare the impact of other factors
(e.g., training algorithms), it is crucial to keep the same dataset combination configuration, which
is usually ignored by prior works. To get a good baseline model, it is suggested to adopt more
critical datasets and increase their contribution during training.




3.3 Annotation Quality

Many algorithms use pseudo-annotations during training (Table 12 in the appendix). We assess how
the annotation quality affects training. To this end, we generate datasets with controlled noise to
reflect different magnitudes of corruption in real scenarios. We investigate the following aspects.
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Figure 2: HMR model performance with different types of noisy training data.

Proportion of noisy samples. We inject noise to different ratios of samples. We consider two
scenarios: (1) only SMPL annotations is noisy, which might occur when challenging poses are
wrongly fitted; (2) both keypoints and SMPL annotations are noisy as incorrect keypoint estimation
leads to erroneous fittings [29] (Fig. 7 in the appendix).

Fig. 2a shows the model performance on the 3DPW test set with different ratios of noisy samples in
the above two scenarios. For scenario (1), the errors remain low under small portions of noisy SMPL
annotations (<50%). The trained model can generalize and learn with such noisy samples. When
the amount of noisy SMPL annotations overwhelms the clean ones, the errors increase sharply. For
scenario (2), when we add noisy keypoints on top of noisy SMPL, we obtain large increments in the
recovery errors. It also increases significantly with more than 50% noisy samples. A plausible reason
is that when there are only noisy SMPL annotations, the clean keypoints can still provide supervision
to keep errors low. However, when both keypoints and SMPL are noisy, the errors are dire.

Scale and location of noise. We further consider two more scenarios about the controlled noise (Fig.
8 in the appendix). (1) We inject noise to the SMPL of all poses and vary its scales (i.e. Simple
Gaussian Noise with different standard deviations following [22, 14]). The generated poses are still
realistic. (2) We observe that fitted poses of certain body parts (i.e. feet and hand) tend to be less
accurate in existing fittings. We simulate cases for wrongly fitted body parts by replacing a percentage
of pose parameters (body parts) with random noise.

Fig. 2b shows the model performance, where we add noise of different standard deviations to all pose
parameters (scenario 1), or totally random noise to different ratios of the pose parameters (scenario
2). When we increase the noise scale, the errors increase slightly and remain low (<70). However,
when a portion of body part is replaced with random noise, errors increase by a large margin. This
shows that clean SMPL annotations are important, but slightly noisy SMPL within realistic realms
can still be useful for training. SMPL fittings should be reasonably accurate, but need not be perfect.

Remark #3: Noisy data samples can harm the model performance, especially when the ratio of
samples is higher, or both the SMPL annotation and keypoints are compromised. Slightly noisy
SMPL still helps training.

4 Benchmarking Backbone Models

Model architecture.
Table 6: HMR model performance with different

Following Kanazawa et al. [30], ResNet-50 [21] backbone architectures.

is the default backbone in many mesh recovV- — e Frmor—TroRT [ TN SRR TR
ery works [29, 33, 32, 35]. More recently, Ko-  &&a0 | 3% 6 R B0
cabas et al. [33] adopted HRNet-W32 [70] and  smwecws 1 S0 15 an RSO R s
attributed the performance gains to its ability to Egli'r::"c‘flfilh?’?' y 3? Sg ;20?:2 ?ég igi Eigg i§§Z§
produce more robust high-resolution represen- Tv'sile ] s s @s e w2
tations. We further consider other architectures. _Twnreveril 20 645 213 lo3ss  soe2 12393

Particularly, we compare different variations of CNN-based models (ResNet-101, ResNet-152, HR-



Net, EfficientNet [72], ResNext [78]), as well as the latest transformer-based architectures (ViT [11],
Swin [46], Twins (-SVT and -PCVCT) [9]).

Table 6 reports the performance of the HMR model trained with different backbone architectures.
First, increasing the backbone capacity allows deeper feature representations to be learned, yielding
performance gains. For instance, the PA-MPJPE is reduced when we switch the backbone model
from ResNet-50 to ResNet-152. This is consistent with the findings in [5]. Second, transformer-based
backbones are superior to CNN-based backbones, achieving lower PA-MPJPEs and similar FLOPs
under comparable parameters (Table 6). They are capable of mining rich structured patterns, which
are especially essential for learning from different data sources. This contradicts the discoveries in
[5], which did not find the advantage of vision transformers over CNN-based ones.

Weight initialization. It is common and computationally efficient to build the HMR model based on
a pre-trained backbone. Initialization of the backbone model weights has a significant impact on the
HMR model performance. PARE [33] is the first work to use weights from a pose estimation task. It
initializes the weights of the HRNet-W32 backbone from a pose estimation model trained on MPII.
The initialized model is further finetuned on EFT-COCO for 175K steps before training on Mix 6.
Kocabas et al. [33] noted that this strategy accelerates the model convergence and reduces overall
training time. However, this study does not provide ablation studies to explore the effect of using
pretrained weights from a pose estimation model.

To disclose the impact of weight initialization, we Sys- Taple 7: HMR model performance with dif-
tematically benchmark strategies where the backbone  ferent weight initializations.
weights are pre-trained with ImageNet, or from pose

Backbone | Mixed Datasets | Dataset for weight initialization

estimation models trained over MPII or COCO. The ImageNet  MPI__ COCO
results are reported in Table 7. First, we observe that  ResNet50 HMR/SPIN 64.55 60.60 57.26
. . . HRNet-W32 HMR/SPIN 64.27 55.93 54.47
transferring knowledge from a strong pose estimation TwinSVEB | HMR/SPIN 6011 5680 5261
HRNet-W32 PARE 54.84 51.50 49.54

model is sufficient to achieve large improvement gains
without having to fine-tune on EFT-COCO, as done in PARE. In Table 7, with the HRNet-W32
backbone and weights initialized from MPII, we can already achieve a PA-MPJPE of 51.5 mm, which
is very close to the error of 50.9 mm reported by PARE [33]. The effectiveness of such a pretrained
backbone suggests that features learnt from pose estimation tasks are robust and complementary for
mesh recovery tasks. Second, the choice of the pose estimation dataset for weight initialization is
also vital. Regardless of the backbone variants, pretraining the backbone with COCO gives better
performance than MPII for different training dataset mixes and backbone architectures.

Remark #4: The backbone architecture and weight initialization are vital for the HMR perfor-
mance. Optimal configurations comprise of transformer-based backbones with weights initialized
from a strong pose estimation model trained on in-the-wild datasets.

S Benchmarking Training Strategies

5.1 Augmentation

Various augmentation methods have been adopted for mesh recovery. SPIN [33] utilized rotation, flip
and color noising. PARE [33] and BMP [81] added synthetic occlusion by compositing a random
nonhuman object to the image. BMP [85] made it keypoint-aware by occluding randomly selected
keypoints. Georgakis et al. [15] controlled the extent of occlusion by varying the pattern (oriented
bars, circles, rectangles) size. Mehta et al. [52] created inter-person overlap in the datasets. Other
than occlusion, crop augmentation has also been applied to better reconstruct highly truncated
people [66, 29, 33]. Augmentation has also been used to bridge the synthetic-to-real domain gap
[59, 10, 79, 67]. However, the above studies adopt different configurations and benchmarks, and it is
hard to get general conclusions about the effect of different augmentations.

We systematically evaluate and compare 9 image-based augmentations over different training and
test datasets. Specifically, we re-implement common augmentation techniques in prior mesh recovery
works, such as random occlusion (or hard erasing) [40, 89], synthetic occlusion [33] and crop
augmentation [33, 29]. Besides, we also adopt popular augmentations from person re-identification
and pose estimation tasks, such as soft erasing [7], self-mixing [7], photometric distortion [3], coarse
and grid dropouts [3]. Fig. 3 visualizes the augmented results by different techniques.
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Figure 3: Visualisation of augmented samples.

Table 8: HMR model performance on test sets of 3DPW [76], EFT-LSPET [29], EFT-OCH [29] and H36M
[23] and validation set of EFT-COCO [29] when trained on H36M and EFT-COCO with different aug-
mentations. Blue: Augmentation improves the performance. Red: Augmentation harms the performance.
Bold: best in column. Underline: second best in column.

R . H36M-train EFT-COCO-train

3DPW| LSPET| OCH] COCOJ H36M] 3DPW| LSPET| OCH] COCOJ H36M]
No augmentation 124.55 207.45 161.77 165.03 53.73 62.37 131.71 115.50 114.59 118.39
Hard erasing 107.03 201.16 153.87 147.00 51.70 64.77 136.90 118.93 115.61 120.78
Soft erasing 107.10 193.33 149.93 143.51 47.77 65.70 139.21 118.29 100.01 131.09
Self mixing 101.10 191.70 136.68 132.17 45.12 63.98 133.18 118.30 125.32 104.37
Photometric distortion 113.53 190.60 155.57 153.95 48.45 62.07 128.45 116.47 112.88 118.92
Random crop 110.08 205.91 150.33 147.27 52.53 71.21 148.80 124.14 104.43 100.43
Synthetic occ. 101.96 221.79 146.44 143.32 48.27 63.94 135.00 116.25 103.36 107.14
Synthetic occ. (kp) 107.68 215.34 153.90 145.70 52.26 7135 142.93 121.34 100.90 103.79
Grid dropout 117.45 208.49 161.69 158.27 57.20 66.65 139.71 118.89 100.52 103.07
Coarse dropout 124.99 202.74 162.50 159.48 50.61 62.78 128.61 116.58 119.70 127.92

We consider two individual training datasets with distinct characteristics: the indoor H36M set and
outdoor EFT-COCO. We apply different augmentations to both datasets to train the HMR models,
before evaluating them on five test datasets: 3DPW, EFT-LSPET, EFT-OCHuman, EFT-COCO and
H36M. Table 8 reveals the distinct effects of augmentation on these two training datasets. (1) For
H36M, almost all the augmentations help the trained model achieve lower errors across outdoor test
sets, and self-mixing is the most effective solution. This implies that augmentation can help bridge
the indoor-outdoor domain gap and prevent overfitting. In the appendix, Fig. 9 compares the training
curves with and without augmentation to confirm this conclusion. Fig. 10 shows the distribution of
camera features after applying self-mixing, which overlaps substantially with the predicted features
obtained from a robust model that performs well on 3DPW-test. (2) For EFT-COCO, we observe that
robust augmentations seldom improve the model performance on the test sets of 3DPW, EFT-LSPET
and EFT-OCHuman, with the exception of EFT-COCO-val. This is consistent with the findings in Joo
et al. [29]: EFT-COCO-train already includes many robust samples with severe occlusions. Adding
more extensive augmentation can harm the model performance.

Remark #5: The effect of data augmentations highly depends on the characteristics of the
training dataset. Their benefits are more obvious when the training sets contain less diverse and
robust samples. When combining multiple datasets during training, we can selectively apply data
augmentations to different datasets based on their characteristics.

5.2 Training Loss
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120 ‘ 90 ’
E 100 E 80
w E
g g
o 80 o 70
= =
g £
60 60
g g
a ]
40 50
00 01 02 03 04 05 06 07 08 09 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Portion of naisy samples _ Scale and location of noise
(a) Scenario 2 - Noisy SMPL and Keypoints (b) Scenario 2 - Noisy SMPL (Poses)

Figure 4: HMR model performance with and without L1 loss under different (a) proportions of noisy
SMPL and keypoints; (b) ratios of noisy pose parameters.
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Prior works commonly adopt the MSE loss in pose estimation involving keypoints [13, 56]. In HMR,
regression of keypoints and SMPL parameters are supervised with the MSE loss. We experiment with
alternative settings where a different loss is applied. As the L1 loss function measures the magnitude
of the error but does not consider the direction, it is insensitive to outliers. Under certain assumptions,
Ghosh et al. [16] theoretically demonstrated that L1 can be robust against noisy labels. Inspired
by this, we use L1 in place of MSE loss for the regression of keypoints and SMPL parameters in
HMR. We note that this replacement can improve the model from two directions. First, it helps to
tackle noisy samples. Fig. 4 compares the HMR model performance with MSE and L1 loss functions
under different scales of SMPL noise, and proportions of noisy keypoints and SMPL annotations,
respectively. We find that L1 loss can make the model more robust to noise.

Second, L1 loss improves model performance under the Table 9: HMR model performance with and
multi-dataset setting. Table 9 compares the performance without L1 loss under multi-dataset setting.

with and without L1 loss trained on different dataset Mx [ Datses Wioll WLl

. . . . . 1 H36M, MI, COCO 66.14 57.01
combinations. We observe that L1 loss can bring signif- , | wsem mi errcoco 5598 5525
: . : : 5 H36M, MI, COCO, LSP, LSPET, MPIT 64.55 58.20
icant performance gains. In particular, applying L1 10SS ¢ | 5rricoco. MpiL, LSPET), SPIN-ML H36M S e

to the dataset configurations in SPIN [35] reduces the 5 | 000 i Lonin) wco tsow prox | soas Saos
errors from 64.55 mm to 58.20 mm. We also note that 1| BTCOCO. MPIL LSPET), MuCo. H36M 25 B0
the gains from L1 loss becomes smaller when the dataset selection is more optimal (Mix 2, 6, 8).

Remark #6: Prior works adopt MSE loss for regression of keypoints and SMPL parameters.
Using L1 loss instead can not only improve the model’s robustness against noisy samples, but
also enhance the model performance, especially when the selected datasets are not optimal.

6 Benchmarking Other Algorithms and Test Sets

In the previous benchmarking experiments, we choose the HMR algorithm and 3DPW test set. Our
evaluation methodology and conclusions are general to other algorithms and test sets as well. In this
section, we demonstrate some experiments to validate their generalization.

Other algorithms. In addition to HMR, we consider some other popular algorithms (SPIN [35],
GraphCMR [36], PARE [33], Graphormer [44]). Table 10 reports the model performance for
different algorithms and configurations*. Table 16 in Appendix considers different dataset mixes and
backbones. We can easily observe that similar to HMR, high-quality models for other algorithms are
also established with L1 loss, weight initialisation from COCO pose estimation model, and selective
augmentation.

Table 10: Model performance (3DPW-test PA-MPJPE in 1mm) when trained with different recommended
strategies of L1 loss, weight initialisation from COCO pose estimation model, and selective augmentation.

Algorithms Datasets Backbones Initialisation Normal L1 L1+COCO L1+COCO+Aug
HMR H36M, MI, COCO, MPII, LSP, LSPET ResNet-50 ImageNet 64.55 58.20 51.80 51.66
SPIN H36M, MI, COCO, MPII, LSP, LSPET ResNet-50 HMR (ImageNet) 59.00 57.08 51.54 50.69

GraphCMR COCO, H36M, MPII, LSPET, LSP, UP3D ResNet-50 ImageNet 70.51 67.20 61.74 60.26
PARE EFT-[COCO, LSPET, MPII], H36, MI HRNet-W32 ImageNet 61.99 61.13 59.98 58.32

Graphormer H36M, COCO, UP3D, MPII, MuCo HRNet-W48 ImageNet 63.18 63.47 59.66 58.82

Other test sets. In addition to the 3DPW, other works have evaluated on MuPoTs-3D-test [81],
AGORA-test [42], MPI-INF-3DHP-test [40] and Joo et al. [29] suggested EFT-OCHuman-test and
EFT-LSPET-test for more challenging benchmarks. For comprehensive benchmarking, we include 7
more test sets: (H36M, AGORA validation, MPI-INF-3DHP test, EFT-COCO validation, MuPots-3D
test, EFT-OCHuman test, EFT-LSPET test) for evaluations. We run dataset benchmarks on all
selected test sets and compute the correlation between the model performance on different test sets.
The results are shown in Table 11. We find good correlations between the performance on 3DPW
with that on other test sets. This indicates that 3DPW is a fairly good benchmark, and evaluations on

*Our baseline models for HMR, SPIN and GraphCMR can reach the reported results in the respective works.
For PARE, the original work trains the model on MPII for pose estimation task and later on EFT-COCO for mesh
recovery before training on the full set of datasets. To keep consistent with the practice adopted throughout our
work, we benchmark PARE by training it from scratch with only ImageNet initialisation. For Graphormer, the
original work evaluates on H36M every epoch before fine-tuning the best H36M model on 3DPW-train (Protocol
1) for 5 epochs. To keep consistent with the evaluation settings throughout this work, we train each model for
100 epochs and report the best PA-MPJPE on 3DPW-test set (Protocol 2). We provide the training logs for all
the experiments in https://github. com/smplbody/hmr-benchmarks.


https://github.com/smplbody/hmr-benchmarks

3DPW can be generalized to other test sets as well. This is quite different from H36M: models with
good performance is not representative of performance on other test sets.

Table 11: Correlation of performance on test benchmarks
[ EFT-COCO__3DPW __AGORA __EFTOCH __EFTLSPET __ MI___ MuPois3D _ H36M | Average

EFT-COCO
3DPW
AGORA
EFT-OCH
EFT-LSPET
MI
MuPots-3D
H36M

0.682
0.654
0.638
0.621
0.553

7 Conclusion

Model (a) HMR (b) SPIN () HMR+ (d) PARE (e) HMR+ () HMR+
(Backbone) L (ResNet-50) (ResNet-50) (ResNet-50) I (HRNet-W32) (HRNet-W32) (Twins-SVT) |
Dataset mix H36M, MI, COCO, LSP, LSPET, MPII EFT-[COCO, LSPET, MPII], H36M, SPIN-MI

Figure 5: Qualitative results on COCO and LSPET test sets. From left to right: (a) HMR [30], (b) SPIN
[35], (c) HMR+ (ResNet-50) (d) PARE [33] (¢) HMR+ (HRNet-W32) (f) HMR+ (Twins-SVT). (a)-(c) follow
[31]’s dataset mix while (d)-(f) follow [33]’s dataset mix. HMR+ adopts COCO-weight initialization, L1
loss and selective augmentation. More examples in Appendix F.

Large amounts of efforts have been devoted to the exploration of novel algorithms for 3D human
mesh recovery. However, there are also other important factors that can affect the model performance,
which are rarely investigated in a systematic way. To the best of our knowledge, this paper presents
the first large-scale benchmarking of various configurations for mesh recovery tasks. We identify the
key strategies and remarks that can significantly enhance the model performance. We believe this
benchmarking study can provide strong baselines for unbiased comparisons in mesh recovery studies.
We summarize all our findings in Appendix A.

Future works. There are a couple of future research directions. (1) Due to the large amount of
experiments, we mainly perform the benchmarks on HMR, which is an important milestone work with
straightforward architecture. We provide some evaluation results on a few other algorithms in Section
6 to show the generalization of our major findings. In the future, we plan to extend our studies to more
3D human pose and mesh reconstruction algorithms. (2) Currently we need to use prior knowledge
to manually select the datasets and their partitions. Future efforts could investigate if it would be
possible to automatically determine the optimal selection of datasets and partitions. For instance, we
find that dataset-level weighting is more effective than sample-level weighting. If we consider dataset
partition as a hyperparameter to tune, we can borrow techniques from automatic hyperparameter
tuning with methods such as reinforcement learning or bayesian optimization to automate dataset
configurations. (3) In this paper, we experimentally disclose some inspiring conclusions about HMR
training. It is worth conducting deeper investigations to interpret and explain those findings, and
obtain the optimal strategy. This will be our future work as well.

10



Acknowledgements

We sincerely thank the anonymous reviewers for their valuable comments on this paper. This work is
supported by NTU NAP, MOE AcRF Tier 2 (T2EP 20221-0033), and under the RIE2020 Industry
Alignment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash an
in-kind contributions from the industry partner(s).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2D human pose
estimation: New benchmark and state of the art analysis. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 3686-3693, 2014. ISSN
10636919. doi: 10.1109/CVPR.2014.471.

Mykhaylo Andriluka, Umar Igbal, Eldar Insafutdinov, Leonid Pishchulin, Anton Milan, Juergen
Gall, and Bernt Schiele. PoseTrack: A Benchmark for Human Pose Estimation and Track-
ing. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 5167-5176, 2018. ISSN 10636919. doi: 10.1109/CVPR.2018.00542.

Alexander Buslaev, Vladimir I Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail
Druzhinin, and Alexandr A Kalinin. Albumentations: fast and flexible image augmentations.
Information, 11(2):125, 2020.

Zhongang Cai, Junzhe Zhang, Daxuan Ren, Cunjun Yu, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo,
and Chen Change Loy. Messytable: Instance association in multiple camera views. In European
Conference on Computer Vision, pp. 1-16. Springer, 2020.

Zhongang Cai, Mingyuan Zhang, Jiawei Ren, Chen Wei, Daxuan Ren, Jiatong Li, Zhengyu Lin,
Haiyu Zhao, Shuai Yi, Lei Yang, Chen Change Loy, and Ziwei Liu. Playing for 3D Human
Recovery. arXiv:2110.07588, 2021. URL http://arxiv.org/abs/2110.07588.

Zhongang Cai, Daxuan Ren, Ailing Zeng, Zhengyu Lin, Tao Yu, Wenjia Wang, Xiangyu Fan,
Yang Gao, Yifan Yu, Liang Pan, et al. Humman: Multi-modal 4d human dataset for versatile
sensing and modeling. arXiv preprint arXiv:2204.13686, 2022.

Minghui Chen, Zhigiang Wang, and Feng Zheng. Benchmarks for corruption invariant person
re-identification, 2021.

Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee. Pose2Mesh: Graph Convolutional
Network for 3D Human Pose and Mesh Recovery from a 2D Human Pose. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 12352 LNCS:769-787, 2020. ISSN 16113349. doi: 10.1007/
978-3-030-58571-6_45.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia,
and Chunhua Shen. Twins: Revisiting the Design of Spatial Attention in Vision Transformers.
In NeurIPS, pp. 1-14,2021. URL http://arxiv.org/abs/2104.13840.

Carl Doersch and Andrew Zisserman. Sim2real transfer learning for 3D human pose estimation:
Motion to the rescue. Advances in Neural Information Processing Systems, 32, 2019. ISSN
10495258.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In International Conference on Learning Representations, 2021.

Sai Kumar Dwivedi, Nikos Athanasiou, Muhammed Kocabas, and Michael J. Black. Learning
to Regress Bodies from Images using Differentiable Semantic Rendering. In IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 11230-11239, 2021. ISBN 9781665428125.
doi: 10.1109/iccv48922.2021.01106.

11


http://arxiv.org/abs/2110.07588
http://arxiv.org/abs/2104.13840

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Zhang Feng, Xiatian Zhu, and Mao Ye. Fast Pose Estimation. In Computer Vision and Pattern
Recognition, pp. 3517-3526, 2019.

Joela F. Gauss, Christoph Brandin, Andreas Heberle, and Welf Lowe. Smoothing Skeleton
Avatar Visualizations Using Signal Processing Technology. SN Computer Science, 2(6):1-17,
2021. ISSN 26618907. doi: 10.1007/s42979-021-00814-2. URL https://doi.org/10.
1007/s42979-021-00814-2.

Georgios Georgakis, Ren Li, Srikrishna Karanam, Terrence Chen, Jana KoSeck4, and Ziyan Wu.
Hierarchical Kinematic Human Mesh Recovery. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12362
LNCS:768-784, 2020. ISSN 16113349. doi: 10.1007/978-3-030-58520-4_45.

Aritra Ghosh, Naresh Manwani, and P. S. Sastry. Making risk minimization tolerant to label
noise. Neurocomputing, 160:93-107, 2015. ISSN 18728286. doi: 10.1016/j.neucom.2014.09.
081.

Ke Gong, Xiaodan Liang, Dongyu Zhang, Xiaohui Shen, and Liang Lin. Look into Person: Self-
supervised Structure-sensitive Learning and a new benchmark for human parsing. Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January:
6757-6765, 2017. doi: 10.1109/CVPR.2017.715.

Riza Alp Giiler and Kokkinos Iasonas. HoloPose: Holistic 3D Human Reconstruction In-The-
Wild Task-Specific Decoders. IEEE Conference on Computer Vision and Pattern Recognition,
pp- 10884-10894, 2019. URL http://arielai.com/holopose.

Lee Gun-Hee and Lee Seong-Whan. Uncertainty-Aware Human Mesh Recovery from Video by
Learning Part-Based 3D Dynamics. Iccv, pp. 12375-12384, 2021.

Mohamed Hassan, Vasileios Choutas, DImitrios Tzionas, and Michael Black. Resolving 3D
human pose ambiguities with 3D scene constraints. Proceedings of the IEEE International
Conference on Computer Vision, 2019-Octob:2282-2292, 2019. ISSN 15505499. doi: 10.1109/
ICCV.2019.00237.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 9908 LNCS:630-645, 2016. ISSN 16113349.
doi: 10.1007/978-3-319-46493-0_38.

Daniel Holden. Robust solving of optical motion capture data by denoising. ACM Transactions
on Graphics, 37(4):1-12, 2018. ISSN 15577368. doi: 10.1145/3197517.3201302.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3. 6M. leee
Transactions on Pattern Analysis and Machine intelligence, pp. 1,2014. ISSN 01628828. URL
http://109.101.234.42/documente/publications/1-82.pdf.

Wen Jiang, Nikos Kolotouros, Georgios Pavlakos, Xiaowei Zhou, and Kostas Daniilidis. Coher-
ent reconstruction of multiple humans from a single image. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 5578-5587, 2020. ISSN
10636919. doi: 10.1109/CVPR42600.2020.00562.

Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen Qian, Wanli Ouyang, and Ping Luo.
Whole-Body Human Pose Estimation in the Wild. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12354
LNCS:196-214, 2020. ISSN 16113349. doi: 10.1007/978-3-030-58545-7_12.

Sam Johnson and Mark Everingham. Clustered pose and nonlinear appearance models for
human pose estimation. In Proceedings of the British Machine Vision Conference, 2010.
doi:10.5244/C.24.12.

Sam Johnson and Mark Everingham. Learning effective human pose estimation from inaccurate
annotation. Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 1465-1472,2011. ISSN 10636919. doi: 10.1109/CVPR.2011.5995318.

12


https://doi.org/10.1007/s42979-021-00814-2
https://doi.org/10.1007/s42979-021-00814-2
http://arielai.com/holopose.
http://109.101.234.42/documente/publications/1-82.pdf

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, lain Matthews, Takeo Kanade, Shohei
Nobuhara, and Yaser Sheikh. Panoptic studio: A massively multiview system for social motion
capture. In IEEE International Conference on Computer Vision, pp. 3334-3342, 2015. ISBN
9781467383912. doi: 10.1109/ICCV.2015.381.

Hanbyul Joo, Natalia Neverova, and Andrea Vedaldi. Exemplar Fine-Tuning for 3D Human
Model Fitting Towards In-the-Wild 3D Human Pose Estimation. Proceedings - 2021 Interna-
tional Conference on 3D Vision, 3DV 2021, pp. 42-52, 2021. doi: 10.1109/3DV53792.2021.
00015.

Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik. End-to-End Recovery
of Human Shape and Pose. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 7122-7131, 2018. ISBN 9781538664209. doi:
10.1109/CVPR.2018.00744.

Angjoo Kanazawa, Jason Y Zhang, Panna Felsen, and Jitendra Malik. Learning 3D Human
Dynamics from Video. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5614-5623,2019. URL https://akanazawa.github.

Muhammed Kocabas, Nikos Athanasiou, and Michael J. Black. Vibe: Video inference for
human body pose and shape estimation. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 5252-5262, 2020. ISSN 10636919. doi:
10.1109/CVPR42600.2020.00530.

Muhammed Kocabas, Chun-Hao P. Huang, Otmar Hilliges, and Michael J. Black. PARE:
Part attention regressor for 3D human body estimation. In Proc. International Conference on
Computer Vision (ICCV), pp. 11127-11137, October 2021.

Muhammed Kocabas, Chun-Hao P. Huang, Joachim Tesch, Lea Miiller, Otmar Hilliges, and
Michael J. Black. SPEC: Seeing people in the wild with an estimated camera. In Proc.
International Conference on Computer Vision (ICCV), pp. 11035-11045, October 2021.

Nikos Kolotouros, Georgios Pavlakos, Michael Black, and Kostas Daniilidis. Learning to
reconstruct 3D human pose and shape via model-fitting in the loop. Proceedings of the IEEE
International Conference on Computer Vision, 2019-Octob:2252-2261, 2019. ISSN 15505499.
doi: 10.1109/ICCV.2019.00234.

Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis. Convolutional mesh regression
for single-image human shape reconstruction. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2019-June:4496-4505, 2019. ISSN
10636919. doi: 10.1109/CVPR.2019.00463.

Nikos Kolotouros, Georgios Pavlakos, Dinesh Jayaraman, and Kostas Daniilidis. Probabilistic
Modeling for Human Mesh Recovery. In International Conference on Computer Vision (ICCV),
pp- 11585-11594, 2021. ISBN 9781665428125. doi: 10.1109/iccv48922.2021.01140.

Christoph Lassner, Javier Romero, Martin Kiefel, Federica Bogo, Michael J. Black, and
Peter V. Gehler. Unite the people: Closing the loop between 3D and 2D human representations.
Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
2017-Janua:4704-4713, 2017. doi: 10.1109/CVPR.2017.500.

Jiefeng Li, Can Wang, Hao Zhu, Yihuan Mao, Hao Shu Fang, and Cewu Lu. Crowdpose:
Efficient crowded scenes pose estimation and a new benchmark. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June:10855—
10864, 2019. ISSN 10636919. doi: 10.1109/CVPR.2019.01112.

Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang, and Cewu Lu. HybrIK: A
Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estima-
tion. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 3382-3392, 2021. ISSN 10636919. doi: 10.1109/CVPR46437.2021.00339.

Ren Li, Meng Zheng, Srikrishna Karanam, Terrence Chen, and Ziyan Wu. Everybody Is Unique:
Towards Unbiased Human Mesh Recovery. In British Machine Vision Conference, pp. 1-13,
2021. URL http://arxiv.org/abs/2107.06239.

13


https://akanazawa.github.
http://arxiv.org/abs/2107.06239

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Zhihao Li, Jianzhuang Liu, Zhensong Zhang, Songcen Xu, and Youliang Yan. CLIFF: Carrying
Location Information in Full Frames into Human Pose and Shape Estimation. In European
Conference on Computer Vision, 2022. URL http://arxiv.org/abs/2208.00571.

Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-End Human Pose and Mesh Reconstruction
with Transformers. Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 1954-1963, 2021. ISSN 10636919. doi: 10.1109/CVPR46437.
2021.00199.

Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh Graphormer. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 12919-12928, 2021. ISBN 9781665428125.
doi: 10.1109/ICCV48922.2021.01270.

Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dolldr, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 8693 LNCS(PART 5):740-755, 2014. ISSN 16113349. doi:
10.1007/978-3-319-10602-1_48.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Bain-
ing Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9992-10002, 2021. ISBN
9781665428125. doi: 10.1109/iccv48922.2021.00986.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
SMPL: A skinned multi-person linear model. ACM Transactions on Graphics, 34(6), 2015.
ISSN 15577368. doi: 10.1145/2816795.2818013.

Zhengyi Luo, S. Alireza Golestaneh, and Kris M. Kitani. 3D Human Motion Estimation via
Motion Compression and Refinement. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12626 LNCS:
324-340, 2021. ISSN 16113349. doi: 10.1007/978-3-030-69541-5_20.

L. Mclnnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. ArXiv e-prints, February 2018.

Leland Mclnnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng
Xu, and Christian Theobalt. Monocular 3D human pose estimation in the wild using improved
CNN supervision. Proceedings - 2017 International Conference on 3D Vision, 3DV 2017, pp.
506-516, 2017. doi: 10.1109/3DV.2017.00064.

Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Srinath Sridhar,
Gerard Pons-Moll, and Christian Theobalt. Single-shot multi-person 3D pose estimation from
monocular RGB. Proceedings - 2018 International Conference on 3D Vision, 3DV 2018, pp.
120-130, 2018. doi: 10.1109/3DV.2018.00024.

Gyeongsik Moon and Kyoung Mu Lee. 12L-MeshNet: Image-to-Lixel Prediction Network
for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 12352 LNCS:752-768, 2020. ISSN 16113349. doi: 10.1007/
978-3-030-58571-6_44.

Gyeongsik Moon, Hongsuk Choi, and Kyoung Mu Lee. Accurate 3d hand pose estimation for
whole-body 3d human mesh estimation. In Computer Vision and Pattern Recognition Workshop
(CVPRW), 2022.

Lea Miiller, Ahmed A.A. Osman, Siyu Tang, Chun Hao P. Huang, and Michael J. Black.
On Self-Contact and Human Pose. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 9985-9994, 2021. ISSN 10636919. doi:
10.1109/CVPR46437.2021.00986.

14


http://arxiv.org/abs/2208.00571

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Tewodros Legesse Munea, Yalew Zelalem Jembre, Halefom Tekle Weldegebriel, Longbiao
Chen, Chenxi Huang, and Chenhui Yang. The Progress of Human Pose Estimation: A Survey
and Taxonomy of Models Applied in 2D Human Pose Estimation. /EEE Access, 8:133330—
133348, 2020. ISSN 21693536. doi: 10.1109/ACCESS.2020.3010248.

Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Peter Gehler, and Bernt Schiele.
Neural body fitting: Unifying deep learning and model based human pose and shape estimation.
Proceedings - 2018 International Conference on 3D Vision, 3DV 2018, pp. 484-494, 2018. doi:
10.1109/3DV.2018.00062.

Priyanka Patel, Chun-Hao P. Huang, Joachim Tesch, David T. Hoffmann, Shashank Tripathi,
and Michael J. Black. AGORA: Avatars in geography optimized for regression analysis. In
Proceedings IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), June 2021.

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman,
Dimitrios Tzionas, and Michael J. Black. Expressive body capture: 3d hands, face, and body
from a single image. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019.

Georgios Pavlakos, Jitendra Malik, and Angjoo Kanazawa. Human Mesh Recovery from
Multiple Shots. In Computer Vision and Pattern Recognition, 2022. URL http://arxiv.
org/abs/2012.09843.

Albert Pumarola, Jordi Sanchez, Gary P.T. Choi, Alberto Sanfeliu, and Francesc Moreno.
3Dpeople: Modeling the geometry of dressed humans. Proceedings of the IEEE International
Conference on Computer Vision, 2019-Octob:2242-2251, 2019. ISSN 15505499. doi: 10.1109/
ICCV.2019.00233.

Jathushan Rajasegaran, Georgios Pavlakos, Angjoo Kanazawa, and Jitendra Malik. Tracking
People by Predicting 3D Appearance, Location & Pose. In IEEE Conference on Computer
Vision and Pattern Recognition, 2021. URL http://arxiv.org/abs/2112.04477.

Jathushan Rajasegaran, Georgios Pavlakos, Angjoo Kanazawa, and Jitendra Malik. Tracking
people with 3d representations. In NeurIPS, 2021.

Michat Rapczynski, Philipp Werner, Sebastian Handrich, and Ayoub Al-Hamadi. A baseline
for cross-database 3d human pose estimation. Sensors, 21(11), 2021. ISSN 14248220. doi:
10.3390/s21113769.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples
for robust deep learning. 35th International Conference on Machine Learning, ICML 2018, 10:
6900-6909, 2018.

Chris Rockwell and David F. Fouhey. Full-Body Awareness from Partial Observations. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 12362 LNCS:522-539, 2020. ISSN 16113349. doi: 10.1007/
978-3-030-58520-4_31.

Akash Sengupta, Ignas Budvytis, and Roberto Cipolla. Synthetic training for accurate 3d
human pose and shape estimation in the wild. In British Machine Vision Conference (BMVC),
September 2020.

Akash Sengupta, Ignas Budvytis, and Roberto Cipolla. Probabilistic 3D human shape and
pose estimation from multiple unconstrained images in the wild. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pp. 16089-16099,
2021. ISSN 10636919. doi: 10.1109/CVPR46437.2021.01583.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-

weight-net: Learning an explicit mapping for sample weighting. Advances in Neural Information
Processing Systems, 32(NeurIPS):1-12, 2019. ISSN 10495258.

15


http://arxiv.org/abs/2012.09843
http://arxiv.org/abs/2012.09843
http://arxiv.org/abs/2112.04477

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation
learning for human pose estimation. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2019-June:5686—-5696, 2019. ISSN 10636919. doi:
10.1109/CVPR.2019.00584.

Yu Sun, Qian Bao, Wu Liu, Yili Fu, Black Michael J., and Tao Mei. Monocular, one-stage,
regression of multiple 3d people. In ICCV, 2021.

Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking model scaling for convolutional
neural networks. 36th International Conference on Machine Learning, ICML 2019, 2019-June:
10691-10700, 2019.

Yating Tian, Hongwen Zhang, Yebin Liu, and Limin Wang. Recovering 3D Human Mesh
from Monocular Images: A Survey. arXiv preprint arXiv:2203.01923, pp. 1-20, 2022. URL
http://arxiv.org/abs/2203.01923.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, volume 139, pp. 10347-10357, July 2021.

Giil Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev,
and Cordelia Schmid. Learning from synthetic humans. Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua:4627-4635, 2017. doi:
10.1109/CVPR.2017.492.

Timo von Marcard, Roberto Henschel, Michael J. Black, Bodo Rosenhahn, and Gerard Pons-
Moll. Recovering accurate 3D human pose in the wild using IMUs and a moving camera.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 11214 LNCS:614-631, 2018. ISSN 16113349. doi:
10.1007/978-3-030-01249-6_37.

Jiahong Wu, He Zheng, Bo Zhao, Yixin Li, Baoming Yan, Rui Liang, Wenjia Wang, Shipei
Zhou, Guosen Lin, Yanwei Fu, Yizhou Weng, and Yonggang Wang. Al Challenger : A Large-
scale Dataset for Going Deeper in Image Understanding. In IEEE International Conference on
Multimedia and Expo, pp. 1480-1485, 2017. ISBN 9781538695524. doi: 10.1109/ICME.2019.
00256.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. arXiv preprint arXiv:1611.05431, 2016.

Yuanlu Xu, Song Chun Zhu, and Tony Tung. DenseRaC: Joint 3D pose and shape estimation by
dense render-and-compare. Proceedings of the IEEE International Conference on Computer
Vision, 2019-October:7759-7769, 2019. ISSN 15505499. doi: 10.1109/ICCV.2019.00785.

Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu, William T. Freeman, Rahul Sukthankar,
and Cristian Sminchisescu. Weakly Supervised 3D Human Pose and Shape Reconstruction with
Normalizing Flows. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 12351 LNCS:465-481, 2020.
ISSN 16113349. doi: 10.1007/978-3-030-58539-6_28.

Andrei Zanfir, Eduard Gabriel Bazavan, Mihai Zanfir, William T. Freeman, Rahul Sukthankar,
and Cristian Sminchisescu. Neural descent for visual 3D human pose and shape. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.
14479-14488, 2021. ISSN 10636919. doi: 10.1109/CVPR46437.2021.01425.

Mihai Zanfir, Andrei Zanfir, Eduard Gabriel Bazavan, William T. Freeman, Rahul Sukthankar,
and Cristian Sminchisescu. THUNDR: Transformer-based 3D HUmaN Reconstruction with
Markers. arXiv preprint arXiv:2106.09336, pp. 12951-12960, 2022. ISSN 15505499. doi:
10.1109/iccv48922.2021.01273.

Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang, Yebin Liu, Limin Wang, and
Zhenan Sun. PyMAF: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment
Feedback Loop. In International Conference on Computer Vision (ICCV), pp. 11426-11436,
2021. ISBN 9781665428125. doi: 10.1109/iccv48922.2021.01125.

16


http://arxiv.org/abs/2203.01923

[84]

[85]

[86]

[87]

[88]

[89]

Hongwen Zhang, Jie Cao, Guo Lu, Wanli Ouyang, and Zhenan Sun. Learning 3D Human
Shape and Pose From Dense Body Parts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(5):2610-2627, 2022. ISSN 19393539. doi: 10.1109/TPAMI.2020.3042341.

Jianfeng Zhang, Dongdong Yu, Jun Hao Liew, Xuecheng Nie, and Jiashi Feng. Body Meshes as
Points. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 546-556, 2021. ISSN 10636919. doi: 10.1109/CVPR46437.2021.00061.

Song Hai Zhang, Ruilong Li, Xin Dong, Paul Rosin, Zixi Cai, Xi Han, Dingcheng Yang, Haozhi
Huang, and Shi Min Hu. Pose2Seg: Detection free human instance segmentation. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-
June:889-898, 2019. ISSN 10636919. doi: 10.1109/CVPR.2019.00098.

Tianshu Zhang, Buzhen Huang, and Yangang Wang. Object-Occluded Human Shape and Pose
Estimation from a Single Color Image. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 7374-7383, 2020. ISSN 10636919. doi:
10.1109/CVPR42600.2020.00740.

Weiyu Zhang, Menglong Zhu, and Konstantinos G. Derpanis. From actemes to action: A
strongly-supervised representation for detailed action understanding. In IEEE International
Conference on Computer Vision, pp. 2248-2255, 2013. ISBN 9781479928392. doi: 10.1109/
ICCV.2013.280.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data
augmentation. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, pp. 13001-13008,
2020. ISSN 2159-5399. doi: 10.1609/aaai.v34i07.7000.

17



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A |
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? It it too costly to run multiple times.
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUg, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

18



	Introduction
	Preliminaries
	Benchmarking Training Datasets
	Dataset Attributes
	Combination of Multiple Datasets
	Annotation Quality

	Benchmarking Backbone Models
	Benchmarking Training Strategies
	Augmentation
	Training Loss

	Benchmarking Other Algorithms and Test Sets
	Conclusion
	Lessons from Our Benchmarking
	Related Works
	Occlusion
	Noisy Samples
	Augmentation
	Qualitative evaluation
	Other benchmarks
	Optimized configurations for other algorithms
	Feature distributions of datasets

