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Abstract

Humans and other animals are capable of improving their learning performance as
they solve related tasks from a given problem domain, to the point of being able to
learn from extremely limited data. While synaptic plasticity is generically thought
to underlie learning in the brain, the precise neural and synaptic mechanisms by
which learning processes improve through experience are not well understood.
Here, we present a general-purpose, biologically-plausible meta-learning rule
which estimates gradients with respect to the parameters of an underlying learning
algorithm by simply running it twice. Our rule may be understood as a general-
ization of contrastive Hebbian learning to meta-learning and notably, it neither
requires computing second derivatives nor going backwards in time, two charac-
teristic features of previous gradient-based methods that are hard to conceive in
physical neural circuits. We demonstrate the generality of our rule by applying it
to two distinct models: a complex synapse with internal states which consolidate
task-shared information, and a dual-system architecture in which a primary network
is rapidly modulated by another one to learn the specifics of each task. For both
models, our meta-learning rule matches or outperforms reference algorithms on a
wide range of benchmark problems, while only using information presumed to be
locally available at neurons and synapses. We corroborate these findings with a
theoretical analysis of the gradient estimation error incurred by our rule.1

1 Introduction

The seminal study of Harlow [1] established that humans and non-human primates can become better
at learning when presented with a series of learning tasks which share a certain common structure.
To achieve this, the brain must extract and encode whichever aspects are common within a problem
domain, in such a way that future learning performance is improved. This capacity, which we refer
to as meta-learning, confers great evolutionary advantage to an organism over another that must

∗Equal contribution; arbitrary ordering.
1Code available at https://github.com/smonsays/contrastive-meta-learning
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face new tasks starting from tabula rasa. The neural and synaptic basis of this higher-order form
of learning is largely unknown and theories are notably scarce [2]. The present work focuses on
developing one such theory.

Formally, we define learning as the optimization of a data-dependent objective function with respect
to learnable parameters, following the prevalent view in machine learning [3]. Meta-learning can be
straightforwardly accommodated for in this framework by first specifying a learning algorithm through
a set of meta-parameters, and then measuring post-learning performance through a meta-objective
function [4–8]. Formulated as such, meta-learning corresponds to a hierarchical optimization problem,
where lower-level parameters are optimized to learn the specifics of each task, and meta-parameters
are adapted over tasks to improve overall learning performance.

An essential question in this framework is how to optimize meta-parameters. In current deep
learning practice, meta-parameters are almost always learned by backpropagation-through-learning,
an instance of backpropagation-through-time [9]. While a number of biologically-plausible designs
[3, 10–13] have been developed for the standard error backpropagation algorithm for feedforward
neural networks [14, 15], backpropagation-through-learning suffers from a number of issues which
appear to be fundamentally difficult to overcome in biological circuits. For example, when learning
involves optimizing synaptic connection weights – as it is presumed to be the case in the brain –
implementing backpropagation-through-learning would entail backtracking through a sequence of
synaptic changes in reverse-time order, while carrying out operations which would require knowledge
of all synaptic weights to be available at a single synapse. This is clearly at odds with what is currently
known about synaptic plasticity. Thus, calculating meta-parameter gradients by backpropagation is
both computationally expensive, and hard to reconcile with biological constraints.

Here we present a meta-learning rule for adapting meta-parameters which does not exhibit such
issues. Instead of backpropagating through a learning process, our rule estimates meta-parameter
gradients by running the underlying learning algorithm twice: learning a task is followed by a
second run to solve an augmented learning problem which includes the meta-objective. Our rule
has a number of appealing properties: (1) it runs forward in time, making the learning rule causal;
(2) implementing it only requires temporarily buffering one intermediate state; (3) it does not evaluate
second derivatives, thus avoiding accessing information that is non-local to a parameter; and (4) it
approximates meta-gradients as accurately as needed. Furthermore, our rule is generically applicable
and it can be used to learn any meta-parameter which influences the meta-objective function.

The local and causal nature of our rule allows us to develop a theory of meta-plastic synapses,
which slowly consolidate information over tasks in their internal hidden states or in their synaptic
weights. We show through experiments that, when governed by our meta-learning rule, such slow
adaptation processes result in improved learning performance in a variety of benchmark problems
and network architectures, from deep convolutional to recurrent spiking neural networks, on both
supervised and reinforcement learning paradigms. Moreover, we find that our meta-learning rule
performs as well or better than reference methods, including backpropagation-through-learning, and
we provide a theoretical bound for its meta-gradient estimation error which is confirmed by our
experimental findings. Thus, our results demonstrate that gradient-based meta-learning is possible
with local learning rules, and suggest ways by which slower synaptic processes in the brain optimize
the performance of faster learning processes.

2 Background and problem setup

The goal of meta-learning is to improve the performance of a learning algorithm through experience.
We begin by formalizing this goal as a mathematical optimization problem and outlining its solution
with standard gradient-based methods. The approach we present below underlies a large body of
work studying meta-learning in neural networks [e.g., 7, 16–18]. We also discuss why these standard
methods may be deemed unsatisfactory as models of meta-learning in the brain.

Problem setup. Formally, we wish to optimize the meta-parameters θ of an algorithm which
learns to solve a given task τ by changing the parameters ϕ of a model. Each task is drawn from
a distribution p(τ) representing the problem domain and comes with an associated loss function
Llearn
τ (ϕ, θ), which depends on some data Dlearn

τ . The goal of learning is to minimize this loss while
keeping the meta-parameters θ fixed; we denote the outcome of learning task τ by ϕ∗θ,τ . The subscript
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θ in ϕ∗θ,τ is here to emphasize that the solution of a task implicitly depends on the meta-parameters θ
used during learning. Learning performance is then evaluated by measuring again a loss function
Leval
τ (ϕ∗θ,τ , θ), defined on new evaluation data Deval

τ from the same task. The meta-objective is this
evaluation loss, averaged over tasks. Hence, we formalize meta-learning as a bilevel optimization
problem, which can be compactly written as follows:

min
θ

Eτ∼p(τ)
[
Leval
τ (ϕ∗θ,τ , θ)

]
s.t. ϕ∗θ,τ ∈ argmin

ϕ
Llearn
τ (ϕ, θ). (1)

In this paper, we approach problem (1) with stochastic gradient descent, which uses meta-gradient
information to update meta-parameters after learning a task (or a minibatch of tasks) presented by the
environment. For a given task τ we thus need to compute the meta-gradient

∇θ,τ :=

(
d

dθ
Leval
τ (ϕ∗θ,τ , θ)

)⊤

. (2)

The implicit dependence of ϕ∗θ,τ on the meta-parameters θ complicates the computation of the
meta-gradient; differentiating through the learning algorithm efficiently is a central question in
gradient-based meta-learning. We next review two major known ways of doing so.

Review of backpropagation-through-learning. A common strategy followed in previous work [cf.
19] is to replace the solution ϕ∗θ,τ to a learning task by the result ϕθ,τ,T obtained after applying a differ-
entiable learning algorithm for T time steps, not necessarily until convergence. One advantage of this
formulation is that the computational graph for ϕθ,τ,T is explicitly available. Thus, backpropagation
can be invoked to compute the meta-gradient ∇θ,τ , yielding what we refer to as backpropagation-
through-learning. This approach is hardly biologically-plausible, as it requires storing and revisiting
the parameter trajectory {ϕt}Tt=1 backwards in time, from t = T to t = 0. Moreover, when the
learning algorithm which produces ϕθ,τ,T is itself gradient-based, as it typically is in deep learning,
differentiating through learning gives rise to second derivatives. These second-order terms involve
cross-parameter dependencies that are difficult to resolve with local processes.

Review of implicit differentiation. An alternative line of methods [20–23] approaches problem (1)
through the implicit function theorem [24]. This theorem provides conditions under which the meta-
gradient ∇θ,τ is well-defined, while also providing a formula for it. Over backpropagation-through-
learning, this approach has the advantages that it does not require storing parameter trajectories
{ϕt}Tt=1, and that it is agnostic to which algorithm is used to learn a task. However, the meta-gradient
formula provided by the implicit function theorem is difficult to evaluate directly for neural network
models, as it includes the inverse learning loss Hessian. This makes it hard to design biologically-
plausible meta-learning algorithms based directly on the implicit meta-gradient expression. We refer
to Section S2 for more details and an expanded discussion on this class of meta-learning methods.

3 Contrastive meta-learning

Here we present a new meta-learning rule which is generically applicable to meta-learning problems
of the form (1). Our rule is gradient-following, and therefore scalable to neural network problems
involving high-dimensional meta-parameters, while being simpler to conceive in biological neural
circuits than the standard gradient-based methods reviewed in the previous section.

To derive our meta-learning rule we first introduce an auxiliary objective function which mixes the
two levels of the bilevel optimization problem (1):

Lτ (ϕ, θ, β) = Llearn
τ (ϕ, θ) + βLeval

τ (ϕ, θ). (3)

We refer to Lτ (ϕ, θ, β) as the augmented loss function. This auxiliary loss depends on a new scalar
parameter β ∈ R, which we call the nudging strength. Positive values of β nudge learning towards
the meta-objective associated with task τ . Thus, we can define a family of auxiliary learning problems
through the augmented loss Lτ by varying the nudging strength β away from zero. We denote the
solutions to these auxiliary learning problems by

ϕ∗θ,β,τ ∈ argmin
ϕ

Lτ (ϕ, θ, β), (4)
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and we use ϕ̂θ,β,τ to distinguish approximate model parameters found in practice with some learning
algorithm from the true minimizers ϕ∗θ,β,τ . Note that for the special case of β = 0, we recover a
solution ϕ∗θ,0,τ of the original learning task defined by Llearn

τ (ϕ, θ).

Our contrastive meta-learning rule prescribes the following change to the meta-parameters θ after
encountering learning task τ :

∆θ,τ := − 1

β

(
∂Lτ
∂θ

(ϕ̂θ,β,τ , θ, β)−
∂Lτ
∂θ

(ϕ̂θ,0,τ , θ, 0)

)⊤

. (5)

This rule contrasts information over two model parameter settings, ϕ̂θ,0,τ and ϕ̂θ,β,τ ; it may be
understood as a generalization to meta-learning of a classical recurrent neural network learning
algorithm known as contrastive Hebbian learning [25–29]. Intuitively, as we compute the solution to
the augmented learning problem with β > 0, we nudge our learning algorithm towards a parameter
setting ϕ̂θ,β,τ that would have been better in terms of the meta-objective — that we wish our algorithm
had actually reached, without needing the meta-objective to influence the learning process.

Our rule implements meta-learning by gradient descent when the learning solutions ϕ̂θ,0,τ and
ϕ̂θ,β,τ are exact and as β → 0. This important property can be shown by invoking the equilibrium
propagation theorem [29, 30] discovered and proved by Scellier and Bengio; we restate this result
and present the technical conditions for applying it to meta-learning in Section S1. Critically, ∆θ,τ

estimates the meta-gradient ∇θ,τ using only partial derivative information and without ever directly
calculating the total derivative in (2). Depending on the model, partial derivatives of the augmented
loss Lτ may be easy to calculate analytically and implement, or they may require dedicated neural
circuits for their evaluation; we return to this point in the next section.

We recall that the two points ϕ̂θ,0,τ and ϕ̂θ,β,τ which appear in (5) respectively correspond to
approximate solutions of the original and the augmented learning problems. Thus, the information
required to implement our rule can be collected causally by invoking the learning algorithm for
a second time, after the actual task has been learned, while buffering information across the two
runs. In contrast to backpropagation-through-learning, this process runs forward in time, it only
requires keeping a single intermediate state in short-term memory, and it is entirely agnostic to
which underlying learning algorithm is used. Moreover, as we will show in the theoretical results,
its precision can be varied; the same rule can produce both coarse- and fine-grained meta-gradient
estimates as needed, by varying the amount of resources spent in learning and by controlling the
nudging strength β.

4 Models

In the previous section, our contrastive meta-learning rule was presented in its general form. We now
describe two concrete neural models that provide complementary views on how meta-learning could
be conceived in the brain. We study the specific meta-learning rules arising from the application of
the update (5) to each case and discuss their implementation with biological neural circuitry.

4.1 Synaptic consolidation as meta-learning

We first use our general contrastive meta-learning rule (5) to derive meta-plasticity rules for a complex
synapse model which has been featured in prior meta-learning [22, 31] and continual learning [32, 33]
work. Biological synapses are complex devices which comprise components that adapt at multiple
time scales. Beyond changes induced by standard long-term potentiation and depression protocols
lasting minutes to several hours, synapses exhibit activity-dependent plasticity at much longer time
scales [34–36]. While previous work has focused on characterizing memory retention in more
realistic synapse models, here we study how such slow synaptic consolidation processes may support
fast future learning through our contrastive meta-learning rule.

In the model we consider, besides a synaptic weight ϕ which influences postsynaptic activity, each
synapse has an internal consolidated state ω towards which the weight is attracted whenever the
synapse changes. We further allow the attraction strength λ to vary over synapses; its reciprocal λ−1

plays a role similar to a learning rate. For this model the meta-parameters are therefore θ = {λ, ω}.
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We model the interaction between these three components through a quadratic function, which is
added to the task-specific learning loss llearnτ (ϕ):

Llearn
τ (ϕ, θ) = llearnτ (ϕ) +

1

2

|ϕ|∑
i=1

λi(ωi − ϕi)
2. (6)

In machine learning terms, we regularize the learning loss with a quadratic regularizer. On the other
hand, the evaluation loss function Leval

τ (ϕ) depends only on the synaptic weights ϕ such that the
meta-parameters θ only influence learning, not prediction.

The partial derivatives which appear in our contrastive meta-learning rule (5) can be analytically
obtained for this synaptic model. A calculation yields the meta-plasticity rules

∆ω,τ =
λ

β

(
ϕ̂θ,β,τ − ϕ̂θ,0,τ

)
and ∆λ,τ =

1

2β

[
(ϕ̂θ,0,τ − ω)2 − (ϕ̂θ,β,τ − ω)2

]
, (7)

where all operations are carried out elementwise. Contrastive meta-learning thus offers a principled
way to slowly (over learning tasks) consolidate information in the internal states of complex synapses
to improve future learning performance. Critically, it leads to meta-plasticity rules that are entirely
local to a synapse and are independent of the method used to learn. Our meta-plasticity rules can
thus be flexibly applied to improve the performance of any learning algorithm, including a host of
biologically-plausible learning rules, from precise neuron-specific error backpropagation circuits
[37, 38] to stochastic perturbation reinforcement rules [39]. The only requirement our theory makes
is that learning corresponds to the optimization of an objective.

4.2 Learning by top-down modulation

The second model that we consider is inspired by the modulatory role that is attributed to top-down
inputs from higher- to lower-order brain areas. Such modulatory inputs often feature in neural
theories of attention and contextual processing [40–42]. Here, we explore the possibility that they
subserve fast learning of new tasks. We incorporate this insight into a simple meta-learning model,
where learning a task τ corresponds to finding the right pattern of task-specific modulation ϕ∗θ,τ , and
meta-learning corresponds to changing synaptic weights θ. Unlike in the complex synapse model
presented in the previous section, here we interpret the task-specific parameters ϕτ as patterns of
neural activity, not synaptic weights. This implies that, if meta-learning succeeds, it becomes possible
to learn new tasks on the fast neural time scale without evoking synaptic plasticity.

More concretely, we take as modulatory inputs a multiplicative gain g and an adaptive threshold b
per neuron, as done in previous work [43, 44]. Rapid (input-dependent) multiplicative and additive
modulation of the sensitivity of the neural input-output response curve σ(x) is typically observed
in cortical neurons [45]. There exist a number of biophysical mechanisms which allow top-down
inputs to modulate σ(x) [e.g., 46]. Assuming a simple linear-threshold neuron model with weights θ,
this yields the response σ(x) = g(θ · x− b)+ to some input x, where (·)+ denotes the positive-part
operation. In this model, there are only few learnable parameters ϕ = {g, b}, as they scale with the
number of neurons and not with the number of synaptic connections.

We apply contrastive meta-learning to this model by changing synaptic weights θ according to our
rule (5). For this model, partial derivatives of the augmented loss function correspond to the usual
derivatives with respect to model parameters that are routinely evaluated to learn deep neural networks;
our rule simply asks to compute them twice. We therefore build upon existing theories of learning by
backpropagation-of-error in the brain and assume that some mechanism for neuron-specific spatial
error backpropagation is available, for example via prediction error neural subpopulations [37] or
dendritic error representations [11, 38, 47], or by invoking equilibrium propagation again [29].

5 Theoretical and experimental analyses

In the following, we theoretically analyze the approximation error incurred by our contrastive meta-
learning rule before empirically testing it on a suite of meta-learning problems. The objective of
our experiments is twofold. First, we aim to confirm our theoretical results and demonstrate the
performance of contrastive meta-learning on standard machine learning benchmarks. Second, we
want to illustrate the generality of our approach by applying it to various supervised and reinforcement
meta-learning problems as well as to a more biologically realistic neuron and plasticity model.
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5.1 Theoretical analysis of the meta-gradient approximation error

The contrastive meta-learning rule (5) only provides an approximation to the meta-gradient. This
approximation can be improved by refining the two learning solutions ϕ̂θ,0,τ and ϕ̂θ,β,τ through
additional computation or by using a better learning algorithm, and by decreasing the nudging strength
β, as prescribed by the equilibrium propagation theorem. In Theorem 1, we theoretically analyze
how the meta-gradient estimate (5) benefits from such improvements (see Fig. 1A for a visualization
of the result, Section S3 for a proof and empirical verification of our theoretical results). We find
that the refinement of the learning solutions must be coupled to a decrease in β: too small β greatly
detracts from the quality of the meta-gradient estimate when the solutions are not improved, while
better approximations are inefficient if β is not decreased accordingly.

Theorem 1 (Informal). Let β > 0 and δ be such that ∥ϕ̂θ,0,τ−ϕ∗θ,0,τ∥ ≤ δ and ∥ϕ̂θ,β,τ−ϕ∗θ,β,τ∥ ≤ δ.
Then, under regularity and convexity assumptions, there exists a constant C such that

∥−∆θ,τ −∇θ,τ∥ ≤ C

(
1 + β

β
δ +

β

1 + β

)
=: B(δ, β).

5.2 Contrastive meta-learning is a high-performance meta-optimization algorithm

As a first set of experiments, we study a supervised meta-optimization problem based on the entire
CIFAR-10 image dataset [48]. In these experiments the goal is to meta-learn a set of hyperparameters
(meta-parameters) such that generalization performance improves. This problem is a common
testbed for assessing the ability of a meta-learning algorithm to optimize a given meta-objective
[23]; it can be thought of as a limiting case of full meta-learning, as there are learnable meta-
parameters, but only one task. As the meta-objective we take the cross-entropy loss l evaluated
on a held-out dataset Deval: Leval(ϕ) = 1

|Deval|
∑

(x,y)∈Deval l(x, y, ϕ), where x is an image input
and y its label. We equip a convolutional deep neural network with our synaptic model (6), meta-
learning only the per-synapse regularization strength λ, keeping ω fixed at zero: Llearn(ϕ, λ) =

1
|Dlearn|

∑
(x,y)∈Dlearn l(x, y, ϕ) + 1

2

∑|ϕ|
i=1 λiϕ

2
i . We learn the weights ϕ by stochastic gradient

descent paired with backpropagation. Additional details and analyses may be found in Section S4.1.

Table 1: Meta-learning a per-synapse regular-
ization strength meta-parameter (cf. Section 4.1)
on CIFAR-10. Average accuracies (acc.) ±
s.e.m. over 10 seeds.

Method Evaluation acc. (%) Test acc. (%)

T1-T2 64.77±0.40 62.57±0.31

CG 57.65±1.51 57.51±0.98

RBP 64.92±1.32 62.14±0.97

CML 74.43±0.53 66.94±0.25

No meta 60.06±0.37 60.13±0.38

TBPTL 73.17±0.27 65.35±0.36

We benchmark our meta-plasticity rule (7)
against implicit gradient-based meta-learning
methods, which are considered state-of-the-art
for this type of problem [23] (see Section S2
for a review). More concretely, recurrent back-
propagation (RBP [49, 50]; also known as the
Neumann series approximation [23, 51]) and
the conjugate gradient method (CG) [21, 52]
correspond to two different numerical schemes
for calculating the meta-gradient; T1-T2 [53] is
an approximate method which neglects compli-
cated terms, thus introducing a non-reducible
bias in the meta-gradient estimate. Critically,
unlike our contrastive meta-learning rule (CML), this method offers no control over the meta-gradient
error.

We find that our meta-learning rule outperforms all three baseline implicit differentiation methods in
terms of both evaluation-set and actual generalization (test-set) performance, cf. Tab. 1. As a side
result, we confirm the instability of CG in deep learning reported in ref. [51, 54]. We note that the
hyperparameters of all four methods were independently and carefully set (cf. Section S4.1). These
strong results on a modern deep learning benchmark, involving stochastic approximate learning,
demonstrate that contrastive meta-learning is a scalable, highly effective meta-optimization algorithm.
Moreover, Theorem 1 is in excellent qualitative agreement with our experiments, cf. Fig. 1.

To further contextualize our findings, we provide results for training the same network without
meta-learning, where we performed a conventional hyperparameter search over a scalar regularization
strength hyperparameter shared by all synapses. This simple approach yields only a moderate
evaluation and test accuracy.
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Figure 1: (A) Visualization of the theoretical bound B on the meta-gradient estimation error from
Theorem 1 as a function of the nudging strength β. Better approximations of the solutions (smaller δ)
improve the quality of the meta-gradient, as they enable using smaller values of β. (B) Confirmation
of the qualitative findings of the theory on deep learning experiments. We show results for a
hyperparameter meta-learning problem, where a per-synapse regularization strength is meta-learned
(cf. Section 4.1) on CIFAR-10 with rule (7). The validation loss is a proxy for the quality of the
gradient and the number of steps in the first phase is a proxy for − log δ.

As all methods incur numerical errors when computing the meta-gradient, a comparison to using
the analytical solution for the meta-gradient would be desirable. Since this is intractable in this
case and running full backpropagation-through-learning requires too much memory, we evaluate
truncated backpropagation-through-learning (TBPTL) with the maximal truncation window we can
fit on a single graphics processing unit (in our case 200 out of 5000 steps). The resulting evaluation
accuracy and test accuracy outperform other implicit gradient-based meta-learning methods but are
still surpassed by our method.

5.3 Contrastive meta-learning enables visual few-shot learning

The ability to learn new object classes based on only a few examples is a hallmark of human
intelligence [55] and a prime application of meta-learning. We test whether our contrastive meta-
learning rule is able to turn into a few-shot learner a standard visual system, a convolutional deep
neural network learned by gradient descent and error backpropagation. Furthermore, we ask how
our contrastive meta-learning rule fares against other gradient-based meta-learning algorithms which
rely on backpropagation-through-learning and implicit differentiation to compute gradients. To that
end, we focus on two widely-studied few-shot image classification problems based on miniImageNet
[56] and the Omniglot [57] datasets. To further facilitate comparisons, we reproduce exactly the
experimental setup of ref. [18], which has been adopted in a large number of studies.

Briefly, during meta-learning, N -way K-shot tasks are created on-the-fly by sampling N classes at
random from a fixed pool of classes, and then splitting the data into task-specific learning Dlearn

τ

(with K examples per class for learning) and evaluation Deval
τ sets, used to define the corresponding

loss functions Llearn
τ and Leval

τ . The meta-objective is then simply the task-averaged evaluation
loss, measured after learning. The performance of the learning algorithm is tested on new tasks
consisting of classes that were not seen during meta-learning. We provide all experimental details in
Section S4.2.

Table 2: One-shot miniImageNet learn-
ing. Averages over 5 seeds ± std.

Method Test acc. (%)

MAML [18] 48.70 ±1.84

FOMAML [18] 48.07 ±1.75

Synaptic 48.43 ±0.43

Modulatory 49.80 ±0.40

As reference methods, we compare against the well-known
model-agnostic meta-learning (MAML) algorithm [18],
which relies on backpropagation-through-learning to meta-
learn an initial set of weights, starting from which a few
gradient steps should succeed; this is conceptually similar
to meta-learning the consolidated state ω of our complex
synapses. We also include results obtained with its first-
order approximation FOMAML (as well as a closely re-
lated algorithm known as Reptile [58]), which, like the T1-
T2 algorithm of the previous section, excludes all second-
order terms from the meta-gradient estimate to simplify
the update, at the expense of introducing a bias. Finally,
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we compare to the implicit MAML (iMAML) algorithm [22], which corresponds exactly to meta-
learning our consolidated synaptic state ω, but with implicit differentiation methods.

Table 3: Omniglot character few-shot learning. Test set
classification accuracy (%) averaged over 5 seeds ± std.

Method 20-way 1-shot 20-way 5-shot

MAML [18] 95.8±0.3 98.9±0.2

FOMAML [18] 89.4±0.5 97.9±0.1

Reptile [58] 89.43±0.14 97.12±0.32

iMAML [22] 94.46±0.42 98.69±0.1

CML (synaptic) 94.16±0.12 98.06±0.26

CML (modulatory) 94.24±0.39 98.60±0.27

When applied to the problem domain of
miniImageNet one-shot learning tasks,
the performance of all meta-learning al-
gorithms we consider here is closely
clustered together, cf. Tab. 2. In par-
ticular, meta-learning the consolidated
states ω of our complex synapses with
implicit differentiation (iMAML) or our
local update (7) leads to comparable per-
formance. Interestingly, we further find
that miniImageNet one-shot learning
performance is significantly improved
when using the modulatory model described in Section 4.2, despite the low dimensionality of the
task-specific variable ϕ. This is in line with other results suggesting that highly efficient visual
learning of new categories may be possible without necessarily engaging synaptic plasticity [43].
On Omniglot (see Section S4.2 for additional variants), the situation is comparable, except that on
its 20-way 1-shot variant, the performance gap between first- and second-order methods widens. In
line with our theory, our contrastive meta-learning rule performs close to (second-order) implicit
differentiation, showing that despite its simplicity and locality our rule is able to accurately estimate
meta-gradients.

5.4 Contrastive meta-learning enables meta-plasticity in a recurrent spiking network

For the experiments described on the previous sections we used simple artificial neuron models and
backpropagation-of-error to learn. We now move closer to a biological neuron and plasticity model
and consider meta-learning in a recurrently-connected neural network of leaky integrate-and-fire
neurons with plastic synapses. We study a simple few-shot regression problem [18], where the
aim is to quickly learn to approximate sinusoidal functions which differ in their phase and am-
plitude (for additional details see Section S4.3). For each task, we measure the mean squared
error on 10 samples for the learning loss and 10 samples for the evaluation loss. We imple-
ment synaptic plasticity using the local e-prop rule [59] and use a population of 100 Poisson
neurons to encode inputs, see Fig. 2A. As our contrastive meta-learning rule (5) is agnostic to
the specifics of the learning process, we can augment the model with our synaptic consolidation
model and apply the meta-plasticity rules derived in (7). Fig. 2B illustrates how the learning
process improves with increasing number of tasks encountered, eventually consolidating a sinu-
soidal prior that can be quickly adapted to the specifics of a task from few examples, cf. Fig. 2C.

Table 4: Few-shot learning of sinusoidal functions
with a recurrent spiking neural network. Avg. mean
squared error (MSE) over 10 seeds ± s.e.m.

Method Validation MSE Test MSE

BPTL + BPTT 0.17±0.01 0.41±0.10

BPTL + e-prop 0.52±0.05 0.72±0.08

TBPTL + e-prop 0.27 ±0.07 0.50 ±0.11

CML + e-prop 0.23±0.04 0.23±0.04

We compare our method to a standard base-
line where updates are computed by back-
propagating through the synaptic plasticity
process (backpropagation-through-learning;
BPTL) using surrogate gradients to handle
spiking nonlinearities [60] similar to previous
work on spiking neuron meta-learning [61].
Since full BPTL requires reducing the num-
ber of learning steps compared to our method
due to memory constraints, we also include
TBPTL with the same number of 500 learning steps and a truncation window of 100 steps. In both
cases, we find competitive performance for our method, see Tab. 4.

5.5 Contrastive meta-learning improves reward-based learning

Finally, we demonstrate how contrastive meta-learning can be applied in the challenging setting of
reward-based learning, second nature to most animals. Reward-based learning clearly demonstrates
hallmarks of meta-learning as animals are capable of flexibly remapping reward representations when
task contingencies change [62, 63]. Inspired by this, we aim to meta-learn a value function on a
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Figure 2: (A) A network of recurrently-connected leaky-integrate and fire neurons is tasked with
learning sinusoids on an input encoding of Poisson spike trains. Its prediction is the voltage of
the output neuron averaged over time. (B) Learning performance from few examples measured as
the mean squared error on evaluation examples during a learning episode improves as more tasks
are encountered over the course of meta-learning. (C) Meta-plasticity encodes information on the
consolidated synaptic component (dashed) which results in improved learning performance (purple),
compared to a naive network learning from scratch (blue).

family of reward-based learning tasks that can be quickly adapted to predict the expected reward of
the actions available to the agent in a particular task.

Specifically, we consider the wheel bandit problem introduced by [64] with the meta-learning setup
previously studied in refs. [65, 66]. On each task, an agent is presented with a sequence of context
coordinates randomly drawn from a unit circle for each of which it has to choose among 5 actions to
receive a stochastic reward. Hidden to the agent, a task-specific radius δ tiles the context space into a
low- and a high-reward region depending on which the optimal action to take changes (see Section
S4.4).

Table 5: Cumulative regret on the wheel bandit problem for
different δ. Values normalized by the cumulative regret of a
uniformly random agent. Avgs. over 50 seeds ± s.e.m.

δ 0.5 0.9 0.99

NeuralLinear [64] 0.95±0.02 4.65±0.18 49.63±2.41

MAML 0.45±0.01 1.02±0.76 15.21±1.69

CML (synaptic) 0.40±0.02 0.82±0.02 12.27±1.02

CML (modulatory) 0.42±0.01 1.83±0.11 16.46±1.80

The goal of meta-learning is to dis-
cern the general structure of the
low- and high-reward region across
tasks whereas the goal of learning
becomes to identify the task-specific
radius δ of the current task. During
meta-learning, we randomly sam-
ple tasks δ ∼ U(0, 1) and generate
a dataset by choosing actions ran-
domly. Data from each task is split
into training and evaluation data, ef-
fectively creating a sparse regression problem where only the outcome of a randomly chosen action
can be observed for a particular context. After meta-learning, we evaluate the cumulative regret
obtained by an agent that chooses his actions greedily with respect to its predicted rewards and adapts
its fast parameters on the observed context, action, reward triplets stored in a replay buffer.

We use both our synaptic consolidation and modulatory network models to meta-learn the value
function using our contrastive rule. We compare our two models to MAML and the non-meta-
learned baseline, NeuralLinear, from ref. [64], which performed among the best in their large-scale
comparison. Tab. 5 shows the cumulative regret obtained on different task parametrizations δ in the
online evaluation after meta-learning (extended table in Section S4.4). Meta-learning clearly improves
upon the non-meta-learned baseline with both our models performing comparably to MAML. This
improvement is more pronounced for tasks with larger δ within which it is more difficult to discover
the high-reward region.

6 Discussion

We have presented a general-purpose meta-learning rule which allows estimating meta-gradients from
local information only, and we have demonstrated its versatility studying two neural models on a range
of meta-learning problems. The competitive performance we observed suggests that contrastive meta-
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learning is a worthy contender to biologically-implausible machine learning algorithms – especially
for problems involving long learning trajectories, as demonstrated by the strong results on supervised
meta-optimization. At its core, our method relies on contrasting the outcome of two different learning
episodes. Despite its conceptual simplicity this requires complex synaptic machinery which is able to
buffer these outcomes in a way accessible to synaptic consolidation.

According to our top-down modulation model the goal of synaptic plasticity in primary brain areas is
not to learn a specific task, in contrast to more traditional theories of learning. Instead, we postulate
that the goal of synaptic plasticity is to make it possible to learn any given task by modulating the
sensitivity of primary-area neurons in a task-dependent manner. This view is consistent with the
experimental findings of Fritz et al. [67], who observed the rapid formation of task-dependent
receptive fields in the primary auditory cortex of ferrets, as the animals learned several tasks,
presumably due to changes in top-down signals originating in frontal cortex. Together with the
strong results of the modulatory model in the challenging setting of visual one-shot learning and
recent studies in continual learning problems [68–71] this shows the practical effectiveness of task-
dependent modulation. Complementary to the interaction of the frontal cortex with primary cortical
areas, the prefrontal cortex might similarly modulate the striatum during reward-based learning.
Whereas classical dopamine-based learning posits that reward prediction errors are used subcortically
to learn the reward structure of a task, recent work has demonstrated that reward can similarly affect
prefrontal representations to quickly infer the current task identity and switch the context provided to
the striatum [72]. More broadly, viewing synaptic plasticity as meta-learning is also consistent with
recent modeling work casting the prefrontal cortex as a meta-reinforcement learning system [73].

Reflecting on how our meta-learning rule can be implemented in the brain, we conjecture that the
hippocampal formation plays a central role in coordinating the two phases as well as creating the
augmented learning problem. First, some mechanism must signal that a switch from learning problem
to augmented learning problem has occurred, corresponding to the sign switch in our rule (5). We
argue that the hippocampus is well positioned for signaling such a switch to cortical synapses. A
recent experimental study shows that the hippocampus is at least able to control cortical synaptic
consolidation [74] but further evidence would be needed to support our hypothesis.

Second, we conjecture that the creation of the augmented learning problem at the heart of our meta-
gradient estimation algorithm might itself critically rely on the hippocampus. In all our experiments,
this second learning problem consisted simply of new data, presented to the learning algorithm to
evaluate how well learning went. Transferring additional data into cortical networks, putatively
during sleep and wakeful rest, fits well with the role that is classically attributed to the hippocampus
in systems consolidation and complementary learning systems theories [75, 76]. We thus speculate
that the hippocampus ‘prescribes’ additional learning problems to the cortex, which serve the purpose
of testing its generalization performance. By showing that a second ‘sleep’ learning phase enables
meta-learning with simple plasticity rules, our results lend further credit to complementary learning
systems theory, as well as to the hypothesis that dreams have evolved to assist generalization [77].

Lastly, this view of the cortex as a contrastive meta-learning system aided by the hippocampus may
also help elucidate how the brain learns from an endless, non-stationary stream of data. Current
artificial neural networks notoriously struggle to strike a balance between learning new knowledge and
retaining old one in such continual learning problems, in particular when the data are not independent
and identically distributed nor structured into clearly delineated tasks [78]. Interestingly, recent
investigations have shown that meta-learning can greatly improve continual learning performance
[79–83]. While details vary, the essence of these methods is to blend in past (replay) data with
new data in a meta-objective function. This amounts to a different instantiation of our bilevel
optimization problem (1), resulting in an augmented learning problem in which past and present data
are intermixed, for which the hippocampus would again appear to be ideally positioned.
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