A Auxiliary Proofs

A. 1 Proof of Theorem 1

Proof. Using Fenchel-Rockafellar's duality theorem, the dual of (7) can be written as

$$
\begin{array}{ll}
& \max _{f, g, \gamma \geq 0} \int_{\mathcal{X}} f(x) d \alpha(x)+g^{\top} \beta-\sum_{j, k, j \neq k} \gamma_{j k} \lambda_{j} \tag{22}\\
\text { s.t. } & \left(1+\sum_{k \neq j} \gamma_{j k}\right) c(x, j)-\sum_{k \neq j} \gamma_{k y} c(x, k) \frac{\beta_{k}}{\beta_{j}} \\
& -f(x)-g_{j} \geq 0 \quad \forall x \in \mathcal{X}, y_{j} \in \mathcal{Y}
\end{array}
$$

Fixing $g \in \mathbb{R}^{n}$ and $\gamma \in \mathbb{R}^{n(n-1)}$, we can check using first order conditions that the optimal $f(x)$ has the closed form expression:

$$
\min _{j \in[n]} \bar{g}_{\gamma, c}\left(x, y_{j}\right):=\left(1+\sum_{k \neq j} \gamma_{j k}\right) c(x, j)-\sum_{k \neq j} \gamma_{k j} c(x, k) \frac{\beta_{k}}{\beta_{j}}-g_{j}
$$

Using this, the infinite dimensional optimization problem in (22) can be transformed to a finite dimensional optimization problem:

$$
\begin{equation*}
\max _{g, \gamma \geq 0} \mathcal{E}(g, \gamma):=\int_{\mathcal{X}} \min _{j \in[n]} \bar{g}_{\gamma, c}\left(x, y_{j}\right) d \alpha(x)+g^{\top} \beta-\sum_{j, k, j \neq k} \gamma_{j k} \lambda_{j} \tag{23}
\end{equation*}
$$

Alternatively, we can adapt the Laguerre cell notation in (2) to (23):

$$
\mathcal{E}(g, \gamma)=\sum_{i \in[n]} \int_{\mathbb{L}_{y_{i}}(g, \gamma)} \bar{g}_{\gamma, c}\left(x, y_{i}\right) d \alpha(x)+g^{\top} \beta-\sum_{j, k, j \neq k} \gamma_{j k} \lambda_{j}
$$

where $\mathbb{L}_{y_{i}}(g, \gamma)=\left\{x \in \mathcal{X}: y_{i}=\underset{y_{j}}{\arg \min } \bar{g}_{\gamma, c}\left(x, y_{j}\right)\right\}$.

A. 2 Proof of Theorem 2

Proof. We prove the result via uniform convergence:

$$
\begin{align*}
& \mathcal{E}\left(g^{*}, \gamma^{*}\right)-\mathcal{E}\left(\hat{g}_{S}, \hat{\gamma}_{S}\right) \\
= & \mathcal{E}\left(g^{*}, \gamma^{*}\right)-\mathcal{E}_{S}\left(\hat{g}_{S}, \hat{\gamma}_{S}\right)+\mathcal{E}_{S}\left(\hat{g}_{S}, \hat{\gamma}_{S}\right)-\mathcal{E}\left(\hat{g}_{S}, \hat{\gamma}_{S}\right) \\
\leq & \mathcal{E}\left(g^{*}, \gamma^{*}\right)-\mathcal{E}_{S}\left(g^{*}, \gamma^{*}\right)+\mathcal{E}_{S}\left(\hat{g}_{S}, \hat{\gamma}_{S}\right)-\mathcal{E}\left(\hat{g}_{S}, \hat{\gamma}_{S}\right) \\
\leq & \sup _{g, \gamma}\left(\mathcal{E}(g, \gamma)-\mathcal{E}_{S}(g, \gamma)\right)+\sup _{g, \gamma}\left(\mathcal{E}_{S}(g, \gamma)-\mathcal{E}(g, \gamma)\right) \\
\leq & 2 \sup _{g, \gamma}\left|\mathcal{E}(g, \gamma)-\mathcal{E}_{S}(g, \gamma)\right| \tag{24}
\end{align*}
$$

Clearly, it suffices to show that $\mathcal{E}_{S}(\cdot)$ converges uniformly to $\mathcal{E}(\cdot)$. For a given g, γ, the dual objective function and its' empirical version can be written as

$$
\mathcal{E}(g, \gamma)=\mathbb{E}_{\alpha}[f(X)], \quad \mathcal{E}_{S}(g, \gamma)=\frac{1}{m} \sum_{t=1}^{m} f\left(X^{t}\right)
$$

Then we can rewrite the supremum in (24) as:

$$
\begin{equation*}
\sup _{g, \gamma}\left|\mathcal{E}(g, \gamma)-\mathcal{E}_{S}(g, \gamma)\right|=\sup _{f \in F}\left|\mathbb{E}_{\alpha}[f(X)]-\frac{1}{m} \sum_{X \in S} f(X)\right| \tag{25}
\end{equation*}
$$

Since $|f(X)| \leq(R \bar{x}+R)$ for all $f \in F, X \in \mathcal{X}$, it follows from Theorem 26.5 in [26] that with probability $1-\delta$,

$$
\begin{equation*}
\sup _{f \in F} \mathbb{E}_{\alpha}[f(X)]-\frac{1}{m} \sum_{X \in S} f(X) \leq 2 \mathbb{E}_{S}\left[\operatorname{Rad}_{m}(F \circ S)\right]+(R \bar{x}+R) \sqrt{\frac{2 \log (2 / \delta)}{m}} \tag{26}
\end{equation*}
$$

and the same also holds by replacing F with $-F$. Here

$$
\operatorname{Rad}_{m}(F \circ S):=\mathbb{E}_{\sigma}\left[\frac{1}{m} \sup _{f} \sum_{j=1}^{m} \sigma_{j} f\left(X_{j}\right)\right]
$$

is the standard definition of Rademacher complexity of the set $F \circ S$. Since σ_{i} are i.i.d. Rademacher random variables, it is easy to see that $\operatorname{Rad}_{m}(F \circ S)=\operatorname{Rad}_{m}(-F \circ S)$. Therefore we can use a union bound to obtain that with probability $1-\delta$,

$$
\begin{equation*}
\sup _{f \in F}\left|\mathbb{E}_{\alpha}[f(X)]-\frac{1}{m} \sum_{X \in S} f(X)\right| \leq 2 \mathbb{E}_{S}\left[\operatorname{Rad}_{m}(F \circ S)\right]+(R \bar{x}+R) \sqrt{\frac{2 \log (4 / \delta)}{m}} \tag{27}
\end{equation*}
$$

It remains to bound the Rademacher complexity of the $F \circ S$. To do so, we use tools from learning theory, and give the following bound on the fat-shattering dimension ([8]) of the hypothesis class F.
Lemma 1. Under Assumption $\sqrt{1]} F$ has ζ-fat-shattering dimension of at most $\frac{c_{0}(R \bar{x}+R)^{2}}{\zeta^{2}} n \log (n)$, where c_{0} is some universal constant.

The proof of Lemma 1 can be found in the Appendix. The above bound on the fat-shattering dimension can be used to bound the covering number (see Definition 27.1 of [26]) of $F \circ S$. Theorem 1 from [22] states that

$$
\begin{equation*}
\mathcal{N}\left(\delta, F,\|\cdot\|_{2}\right) \leq\left(\frac{2 B}{\delta}\right)^{c_{1} \mathrm{fat}_{c_{2} \delta}(F)} \tag{28}
\end{equation*}
$$

where B is a uniform bound on the absolute value of any $f \in F$. Let $B=(R \bar{x}+R)$, we have that

$$
\begin{aligned}
& \operatorname{Rad}_{m}(F \circ S) \\
\leq & \inf _{\delta^{\prime}>0}\left\{4 \delta^{\prime}+12 \int_{\delta^{\prime}}^{B} \sqrt{\frac{\log \mathcal{N}\left(\delta, F,\|\cdot\|_{2}\right)}{m}} d \delta\right\} \\
\leq & \inf _{\delta^{\prime}>0}\left\{4 \delta^{\prime}+12 \frac{\sqrt{c_{1} c_{0}}}{c_{2}}\right. \\
B & \left.\sqrt{\frac{n \log n}{m}} \int_{\delta^{\prime}}^{B} \sqrt{\log \left(\frac{2 B}{\delta}\right)} d \delta\right\} \\
= & c^{\prime} \sqrt{\frac{n \log n(\log m)^{3}}{m}}
\end{aligned}
$$

Where we used Dudley's chaining integral [28, 16], Lemma 1 and (28], and setting $\delta^{\prime}=\frac{1}{\sqrt{m}}$ respectively. Plugging the above back to (27) and (24), we see that with probability $1-\delta$,

$$
\mathcal{E}\left(g^{*}, \gamma^{*}\right)-\mathcal{E}\left(\hat{g}_{S}, \hat{\gamma}_{S}\right) \leq c^{\prime}\left(\sqrt{\frac{n \log n(\log m)^{3}}{m}}+\sqrt{\frac{1 \log \frac{1}{\delta}}{m}}\right)
$$

Conversely, ignoring the log terms, m needs to be at most on the order of $\tilde{O}\left(\frac{n}{\epsilon^{2}}\right)$ in order for $\mathcal{E}\left(g^{*}, \gamma^{*}\right)-\mathcal{E}\left(\hat{g}_{S}, \hat{\gamma}_{S}\right)$ to be bounded by ϵ with high probability.

Proof of Lemma
Proof. Theorem 3 in [20] shows that $\operatorname{fat}_{\zeta}\left(F_{\min }\right) \leq \frac{c_{0}(R \bar{x}+R)^{2}}{\zeta^{2}} n \log n$. Since the shattering dimension is monotone in the size of the set, we are done.

A. 3 Experimental Setup

For the artificial data, the value utility vectors are generated from $X=[1,0.7]-Z\left[\begin{array}{ll}0.2, & 0 \\ 0.8, & 0.4\end{array}\right]$ where $Z \sim \operatorname{Unif}(0,1) \times \operatorname{Unif}(0,1)$. For finding the optimal allocation policy on the artificial data, we used Algorithm 1 with $T=2 \cdot 10^{5}$. For simulator data, we used $T=2.5 \cdot 10^{6}$. To generate Figure 2 we sampled 6000 points from the distribution and plotted them, colored by the allocation. For Figure 4 for each m we ran 16 trials, sampling a different set of m data points as our training data per trial. All experiments are run on a 2019, 6-core Macbook Pro laptop. The simulator code is open sourced by [21] athttps://github.com/duncanmcelfresh/blood-matching-simulations, and also included in the supplementary material.

