
A Proofs of technical results

A.1 Proof of Proposition 1

Proposition 1 Assume that Z is Lβ-Lipschitz with respect to β, the model log fθ(y |x) is Lx-
Lipschitz with respect to x. Given i ∈ D and j ∈ Bi, if the set Rec∆(θ,xij , yi) is non-empty and the
recourse network gϕ gives a modified β′

ij such that ||β′
ij − β|| ≤ ϵ for some β ∈ Rec∆(θ,xij , yi),

then, for ∆ > tLxLβϵ with t > 1 we have:

log fθ(yi |Z(zi,β
′
ij)) > log fθ(yi |xij) + (1− 1/t)∆ (11)

Proof. Recall that by definition in Eq. (3) in our main submission,

Rec∆(θ,x, y) = {β′ | log fθ (Z(zi,β
′), y) > log fθ (y |x) + ∆} (12)

Thus, for β′
ij ∈ Rec∆(θ,xij ,βij) we have,

log fθ(yi |xij) < log fθ(yi |x′
ij = Z(xij ,β

′
ij))−∆ (13)

= log fθ(yi |Z(zi,β)) + log fθ(yi |x′
ij = Z(xij ,β

′
ij))

− log fθ(yi |Z(zi,β))−∆

(1)
< log fθ(yi |Z(zi,β)) + Lx||x′

ij − Z(zi,β)|| −∆

= log fθ(yi |Z(zi,β)) + Lx||Z(zi,β
′
ij)− Z(zi,β)|| −∆

(2)
< log fθ(yi |Z(zi,β)) + LxLβϵ−∆

(3)
< log fθ(yi |Z(zi,β)) + (1/t− 1)∆

The inequality (1) is due to the Lx Lipschitz-continuity of fθ(y |x) in x. The inequality (2) is due to
the Lβ Lipschitz-continuity of Z(z,β) in β. The last inequality (3) follows from the assumption
that ∆ > tLxLβϵ.

A.2 Proof of Proposition 2

Proposition 2 Let us assume that the true conditional distribution of y given x is fθ∗ , log fθ(y |x)
is Lθ-Lipschitz w.r.t. θ and ||θ − θ∗|| ≤ δ. Moreover, we define the following quantities:

∆(i,j) = max
r∈Bi

[log fθ∗(yi |xir)− log fθ∗(yi |xij)] (14)

A = {(i, j) ∈ V |∆(i,j) > 0} (15)
∆0 = min

(i,j)∈A
∆i,j (16)

Then, we have the following results:

1. For (i, j) ∈ A, Rec∆0
(θ∗,xij , yi) is non-empty.

2. Given (i, j) ∈ V , if we have δ < ∆0

2Lθ
, then Rec∆(θ,xij , yi) is non-empty for ∆ <

∆0 − 2Lθδ

3. If the recourse network gϕ gives us a modified β′
ij such that ||β′

ij − β|| ≤ ϵ for some
β ∈ Rec∆(θ,xij , yi) with ∆ < ∆0 − 2Lθδ, then, for ϵ < (∆0 − 2Lθδ)/(tLβLx) with
t > 1, we have:

log fθ(yi |xij) < log fθ(yi |Z(zi,β
′
ij))− (1− 1/t)(∆(i,j) − 2Lθδ) (17)

14

Proof. The statement (1) is true by definition.
log fθ(yi |xij) = log fθ∗(yi |xij) + log fθ(yi |xij)− log fθ∗(yi |xij) (18)

(1)

≤ log fθ∗(yi |x = Z(zi,β))

+ log fθ(yi |xij)− log fθ∗(yi |xij)−∆0 (19)
= log fθ(yi |x = Z(zi,β))

+ log fθ∗(yi |x = Z(zi,β))− log fθ(yi |x = Z(zi,β))

+ log fθ(yi |xij)− log fθ∗(yi |xij)−∆0 (20)

≤ log fθ(yi |x = Z(zi,β))− (∆0 − 2Lθδ) (21)
Thus Rec∆(θ,xij , yi) is non-empty for ∆ < ∆0 − 2Lθδ. Next, we have

log fθ(yi |x = Z(zi,β))− (∆0 − 2Lθδ)

= log fθ(yi |x′
ij = Z(zi,β

′
ij))

+ log fθ(yi |x = Z(zi,β))− log fθ(yi |x′
ij = Z(zi,β

′
ij))− (∆0 − 2Lθδ)

≤ log fθ(yi |x′
ij = Z(zi,β

′
ij)) + LxLβϵ− (∆0 − 2Lθδ) (22)

The last inequality is due to the Lipschitzness of fθ with respect to x, the Lipschitzness of Z with
respect to β; and, ||βij − β|| ≤ ϵ.

A.3 Analysis of our greedy algorithm

We first start with an assumption that log fθ is algorithmically stable, i.e., if it is trained upon a
dataset V of size N , then ||θ∗(V) − θ∗(V ′)|| < ρ

N , where |V \V ′| = |V ′\V | = 1, i.e., V and V ′

has N − 1 elements in common and therefore, V ′ is obtained by replacing one element of V . It
is well known that minimizing regularized convex and L-Lipschitz loss functions are stable with
ρ = 2L/λmin where λmin is the minimium eigenvalue of the regularized convex loss [26, Chapter
13, Regularization and stability]. For Polyak-Lojasiewicz (PL) loss functions with PL-coefficient
µ [4, corollary 4], we have ||θ∗(V)− θ(V ′)|| < 2L2

µ(N−1) ≤
4L2

µN for N > 2. Under this assumption,
we state the following result:

Proposition 3 Suppose, log fθ is stable, i.e., ||θ∗(V)− θ∗(V ′)|| < ρ
N for some constant ρ where V ′

is obtained by replacing one element of V . Then, let us assume that the true conditional distribution
of y given x is fθ∗ , log fθ(y |x) is Lθ-Lipschitz w.r.t. θ. Moreover, we define the following quantities:

∆(i,j) = max
r∈Bi

[log fθ∗(yi |xir)− log fθ∗(yi |xij)] (23)

A = {(i, j) ∈ V |∆(i,j) > 0} (24)
∆0 = min

(i,j)∈A
∆i,j (25)

Now, note that if (i, j) ∈ A, then it is obvious that Rec∆0
(θ∗,xij , yi) is non-empty. Assume that

|A| > b, ||θ(R(0))− θ∗|| < δ < ∆0

2Lθ
and |V | is large enough so that |V | > 2Lθρb

∆0−2Lθδ
Now if R(k) is

solution in R during the k-th iteration of our greedy algorithm, then the greedy algorithm will choose
(i, j) at each step k ∈ {1, .., b} so that

F (θ∗(R(k) ∪ (i, j)), R(k) ∪ (i, j)) > F (θ∗(R(k)), R(k)) (26)

when 0 < ∆ < ∆0 − 2Lθ

(
δ + ρb

|V |

)
.

Proof. Assume that during k-th iteration, we have the following snapshot of the training instances:

V (k) = {(xi1,j1 , y1), . . . , (xim,jm , ym)︸ ︷︷ ︸
V \R(k)

, (x′
i1,j1 , y

′
1), . . . , (x

′
ia,ja , y

′
a)︸ ︷︷ ︸

Instances after applying recourse on R(k)

} (27)

We add atmost one element (i, j) to R(k) to obtain R(k+1). This can be seen as replacing atmost one
instance (i, j) in V with a new instance obtained after applying recourse on (i, j). As the model is

15

Figure 9: Causal Model that depicts the data generating process of human.

stable, then we have:

||θ∗(R(k+1))− θ∗(R(k))|| ≤ ρ

|V |
(28)

Since we start with ||θ∗(R0)− θ∗|| ≤ δ, by consecutively applying triangle inequalities, we have:

||θ∗(Rk)− θ∗|| ≤ δ +
ρk

|V |
≤ δ +

ρb

|V |
(29)

Now, from the first part of Proposition 2, we show that, whenever Rec∆0
(θ∗,xij , yi) is non-empty

with ∆0 > 2Lθ

(
δ + ρb

|V |

)
, then Rec∆(θ

∗(R(k)),xij , yi) is nonempty for ∆ < ∆0−2Lθ

(
δ + ρb

|V |

)
.

Hence, there will be b instances for which Rec∆(θ
∗(R(k)),xij , yi) is non-empty. Now we have:

F (θ∗(R(k) ∪ (i, j)), R(k) ∪ (i, j))− F (θ∗(R(k)), R(k))

= F (θ∗(R(k) ∪ (i, j)), (R(k) ∪ (i, j)))− F (θ∗(R(k)), R(k) ∪ (i, j))

+ F (θ∗(R(k)), R(k) ∪ (i, j))− F (θ∗(R(k)), R(k)) (30)
(1)

≥ F (θ∗(R(k)), R(k) ∪ (i, j))− F (θ∗(R(k)), R(k))

Inequality (1) is due to the fact that: F (θ∗(R(k)∪(i, j)), (R(k)∪(i, j))) ≥ F (θ∗(R(k)), R(k)∪(i, j)).
Now given this element (i, j), we will choose it for recourse if Rec∆(θ∗(R(k)),xij , yi) is non-empty.

Now since there are at least b elements for which Rec∆(θ
∗(R(k)),xij , yi) is non-empty, we will find

at least b− k elements which would be chosen for recourse at this k-th step. For those elements, we
will have βir ∈ Rec∆(θ

∗(R(k)),xij , yi) and then we have:

F (θ∗(R(k)), R(k) ∪ (i, j))− F (θ∗(R(k)), R(k)) = log fθ(yi |xir)− log fθ(yi |xij) > 0 (31)
Thus, there will be at least b− k elements for which

F (θ∗(R(k) ∪ (i, j)), R(k) ∪ (i, j))− F (θ∗(R(k)), R(k)) > 0 (32)
Since, we choose (i, j) to be the one with highest gain, we conclude that, for any step k ≤ b, the
instance (i, j) chosen for recourse, the underlying gain would be strictly positive.

B Additional details about experimental setup

Causal Model. The causal model that depicts the relationships between the variables x,β, y, z in
our dataset is shown in the Figure 9

Synthetic Dataset. We generate a 4 class synthetic real valued dataset with |D| = 1200 objects
zi ∈ Z = Rdz with dz = 6. The objects zi are sampled from class dependent Isotropic Gaussian
distribution N (µy,Σy) where Σy = Diag[0.1, 0.25, 0.1, 0.1, 0.25, 0.1] for all y ∈ Y . The means
µ0 = [−1, 0, 0.5, 0.5, 0, 0], µ1 = [1, 0, 0.5, 0.5, 0, 0], µ2 = [0, −1, 0, 0, −0.5, −0.5], µ3 =
[0, 1, 0, 0, −0.5, −0.5]. Then, we draw βij ∼ Unif{0, 1}dz such that they have exactly 3 bits set
to 1 and none of them have both βij [0] = βij [1] = 1. Finally, we set xij = zi ⊙ βij for i ∈ D
and j ∈ Bi where |Bi| = 8. The purpose of gϕ thus is to predict which bits in the input should be
unmasked so as to make fθ predict the correct label.

Generating Shapenet Datasets. As mentioned in our main submission, we work with two ver-
sions of Shapenet dataset namely Shapenet-Large and Shapenet-Small which differ in the group
size |Bi|. While Shapenet-Large has 4 renderings for each zi, Shapenet-Small has only 2 ren-
dering for each zi. Recall that we corrupt certain xij if βij used to render them is inherently
noisy. Here, we expand more on how we inject noise. We use imagecorruptions python li-

16

Class
front view front view top view left&side left&side front&top front&top side&top side&front
zoom in normal zoom zoom in zoom out normal zoom normal zoom zoom out zoom out zoom out
yellow white yellow pink white white green pink yellow

Aeroplane ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bench ✓ ✓ ✓ ✓
Bus ✓ ✓ ✓ ✓ ✓

Cabinet ✓
Chair

Display
Knife ✓ ✓
Lamp ✓ ✓ ✓ ✓ ✓

Speaker
Gun ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 10: This table denotes the classes that admit noisy β. ✓ indicates that images having the
corresponding (y,β) are corrupted w.p. 0.5. We picked (β, y) pairs through visual inspection and
decided to corrupt a random subset of them so as to make the learning task more challenging for fθ
thereby amplifying the need for recourse.

brary5 for injecting noise to xij . It provides us API for 15 different types of noise. We se-
lected 9 of them namely {gaussian_noise, shot_noise, impulse_noise, frost, fog,
brightness, elastic_transform, pixelate, jpeg_compression}. Each of these APIs ac-
cept an RGB image as input and outputs an RGB image with noise added to it. For each label y, we
select a set of βs so that any image generated under these settings (β, y) will be noisy with certain
probability. Let us denote this set of noisy β for a given y as βnoise

y . Once we obtain yi,βij , zi
following the sampling procedure depicted by the Figure 9, we render the corresponding xij under
one of the following two cases: (a) if βij ∈ βnoise

yi
, we render xij in a noisy manner w.p. 0.5 i.e. we

subject the image rendered using (βij , zi) to one of the 9 noises selected uniformly at random thereby
rendering a noisy xij . (b) if βij ̸∈ βnoise

yi
, we simply render xij in the setting (βij , zi) without

adding any noise to it.

Generating Speech Commands Dataset. For this dataset, we choose 20 commands with Y =
{cancel, disable, enable, decrease, increase, good morning, good night, lock, open,
door, pauseplay, set, show, skip, snooze, start, stop, turn off, turn on}. We chose
rhyming words so as to make the classification task harder. Unlike Shapenet, we decided to embed
noise in sample generation as part of β itself so as to simulate real life scenarios. Because we work
with Mel spectograms (images), we fixed the model architecture for fθ, gϕ to be the same as that of
Shapenet.

Generating Skin Lesion Dataset. This dataset consists of images of skin captured us-
ing smartphone and the task is to predict different skin conditions (|Y| = 7) namely
{melanocytic nevi , melanoma, basal cell carcinoma, actiniv keratoses an,
vascular lesions, benign keratoses lik, dermatofibroma}. The dataset is taken from
from Kaggle 6 and synthetically generated environments. We generate images under 9 different
environments (|B| = 9) where each environment is defined by (zoom, illumination, contrast). For
zoom, we assume that the original image is at 100% zoom level and create two additional zoom levels
namely 175%, 250%. For illumination, we chose three values to simulate the impact of a skin image
captured in light, dark, and the original image. For contrast also we chose three values and simulated
low, normal and high contrast skin images. We fixed the model architecture for fθ, gϕ to be the same
as that of Shapenet.

C Results on Synthetic Dataset

Here, we compare the performance of various recourse trigger and recourse recommender methods on
the synthetic dataset. We summarize the results in Figure 11 — we make the following observations.
(1) Since the generated dataset is not linearly separable, the accuracy of fθ is 77%. Moreover, the
greedy algorithm for training fθ improves the accuracy by 3% over a model that trains on all data.
(2) The accuracy provided by both recourse trigger π and recourse recommender gϕ improves as we

5https://github.com/bethgelab/imagecorruptions
6https://www.kaggle.com/code/kmader/deep-learning-skin-lesion-classification/

notebook

17

https://www.kaggle.com/code/kmader/deep-learning-skin-lesion-classification/notebook
https://www.kaggle.com/code/kmader/deep-learning-skin-lesion-classification/notebook

(a) Recourse trigger π (b) Recourse recommender gϕ

Figure 11: Recourse accuracy vs recourse fraction i.e. maximum instances that can undergo recourse
for Synthetic dataset. Panel (a) shows performance comparison of recourse trigger π with baselines.
Panel (b) shows performance comparison of recourse recommender gϕ with a constant predictor.

(a) Shapenet-Large (b) Shapenet-Small (c) Speech-Commands

Figure 12: This shows the min loss in each group in a sorted order. We use this to select the groups
into Dδ. As discussed in the main submission, the groups in Dδ have atleast one good feature and
thus its min loss must be very close to 0. In this view, we set Dδ = the first 1800 min loss groups for
Shapenet-large and the first 1250 min loss groups for shapenet-small. For Speech commands we set
the first 1400 groups as part of the set Dδ .

increase b. We notice in the dataset that it is necessary to have 1st bit unmasked for instances labelled
{y = 0, y = 1} and 2nd bit unmasked for the classes {y = 2, y = 3} so that fθ can predict them
correctly. Our gϕ is able to learn this pattern using cues from the remaining bits as expected. (3)
We observe a linear trend in improvement until about 48%; beyond which we observe a flat trend
at 100% recourse accuracy. This is because β are randomly generated which leaves us with ≈ 50%
bad instances that require recourse. Only ϕ performs poorly because of arbitration in the supervision
provided by the pseudo labels that are committed while training. The model has no flexibility to pick
and choose alternative good βs in accordance with gϕ for instances where β prediction becomes hard.
(4) Constant prediction on the other hand fails to emit instance specific recourse recommendation and
hence suffers to improve the recourse accuracy consistently.

D Additional Baselines

We added new baselines to compare with RECOURSENET. In all these we train fθ on the entire
training dataset but instead of gϕ we learn networks that estimate accuracy of an input xij on a counter-
factual setting β using ideas from the domain-invariant representations and Individual Treatment
Effect estimation literature. (1) Domain Adversarial Neural Network based training. This
method [6] aims to learn domain invariant representations using GANs based minmax objective. We
extract representations of input (x) by fine tuning a Resnet18 model with pre trained Imagenet weights.
Then from the representation layer, we spawn a domain classifier that predicts the environment β that

18

Figure 13: This figure shows renderings of a chair object under different βs. Each β is a 3-tuple
namely (view, zoom-level, light color).

generated the instance x. We multiply x representation with a domain reversal layer before feeding
it to the domain classifier. The representations are concatenated with environment embedding and
then fed to one more Fully connected Network that is spawned out of the representation layer. This
network aims to predict classifier’s confidence (fθ(y|x)) on the examples. (2) TARNET. We extract
representations of input (x) by fine tuning a Resnet18 model with pre-trained Imagenet weights.
From the representation layer, we spawn |B| fully connected layers for each β ∈ B. Each layer is
thus responsible to predict classifier’s confidence (fθ(y|x)) on only those instances that belong to the
same environment β.
For Triage, since these methods directly model the counterfactual accuracy P (y|x,β)∀β, we use
these predicted values in place of our prior fCF term in Eq (8). The results for these baselines in
shown in the Figure 14. Our proposal beats all the baselines thus establishing the supremacy of out
three-stage proposal for training RECOURSENET.

E Illustration of original and recoursed skin images

In this experiment, we visualize the original and recoursed images for the first five images in the
Skin-Lesion test dataset that require recouse as per our triage policy. The visualizations are shown in
the Figure 15. The images on the left are the test images before recourse and those on the right are
the corresponding images that are obtained after recourse.

19

(a) Shapenet-Large (b) Shapenet-Small

(c) Speech-Commands (d) Skin-Lesion

Figure 14: This figure shows the performance of Recourse Recommender on all 4 datasets with newly
added random baselines namely Invariant Risk Minimization, TARNET and Domain Adversarial
Neural Network. The curves depict the mean Recourse accuracy ± one standard deviation over the
mean for results obtained over five seeds.

20

Figure 15: This figure shows the test images of the Skin-Lesion dataset before (left) and after recourse
(right).

21

