Appendices

A Details on experiments

A.1 Datasets

In our experiments in Section 4, we used the following datasets for meta-training/validation/testing.
We used the Torchmeta library [10] for the implementations.

Omniglot Omniglot [29] is a dataset of monochrome 28 x 28 images of 1623 hand-
written characters from 50 different alphabets, which is distributed under the MIT Li-
cense. For meta-learning, the mutually disjoint 1028/172/423 characters are used for meta-
traininig/validation/testing respectively, following Vinyals et al. [59], where each character
is randomly rotated by 0, 90, 180, 270 degrees.

CIFAR-FS CIFAR-FS is a dataset for meta-learning introduced in Bertinetto et al. [8],
which consists of 32 x 32 images with 100 classes from the CIFAR-100 dataset'[28].
The mutually disjoint 64/16/20 classes [10] are used for meta-training/validation/testing
respectively.

VGG-Flower VGG-Flower'[43] is a dataset of images of 102 species of flow-
ers. For meta-learning, the mutually disjoint 71/16/15 classes [30] are used for meta-
training/validation/testing respectively.

Aircraft  Aircraft [37] is a dataset of images of 102 classes of aircrafts, which is provided
exclusively for non-commercial research purposes. For meta-learning, the mutually disjoint
70/15/15 classes [30] are used for meta-training/validation/testing respectively.

minilmageNet = MinilmageNet is a dataset for meta-learning introduced in Vinyals
et al [59], which consists of 84 x 84 images of 100 classes collected from the Ima-
geNet dataset*[53]. The mutually disjoint 64/16/20 classes [52, 10] are used for meta-
training/validation/testing respectively.

CUB CUB' [63] is a dataset of images of 200 species of birds. For meta-learning,
the mutually disjoint 100/50/50 classes [10] are used for meta-training/validation/testing
respectively.

Cars Cars [27] is a dataset of images of 196 classes of cars, which is provided for
research purposes. For meta-learning, the mutually disjoint 98/49/49 classes [57] are used
for meta-training/validation/testing respectively.

A.2 Network architectures

A.2.1 5-layered MLPs (for Omniglot in Section 4.1.1)

In Table 3, we summarize the network architecture of 5-layered MLPs used in Section 4.1.1. To
analyze the effect of the network size, we introduced the width factor p € N by which the dimensions
of the intermediate outputs are multiplied.

Table 3: The architecture of 5-layered MLPs for Omniglot (p: a width factor).
Layers Output dimensions

Flatten 784 (= 28 x 28)
Linear — BatchNorm — ReLU  256p
Linear — BatchNorm — ReLU  128p
Linear — BatchNorm — ReLU 64p
Linear — BatchNorm — ReLU 64p
Linear # ways (5 or 20)

" The licenses of these datasets are unknown.
“ImageNet is provided for non-commercial research or educational use.
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A.2.2 5-MLP (for CIFAR-FS, VGG-Flower and Aircraft in Section 4.1.3)

In Table 4, we summarize the network architecture of 5-MLP used in Section 4.1.3. For a fair
comparison, the hidden dimensions are chosen so that the baseline method (MAML) achieves a good
performance.

Table 4: The architecture of 5S-MLP for CIFAR-FS.

Layers  Output dimensions

Flatten 3072 (=3 x 32 x 32)
Linear — BatchNorm — ReLU 1024
Linear — BatchNorm — ReLU 512
Linear — BatchNorm — ReLU 256
Linear — BatchNorm — ReLU 128
Linear 5

A.2.3 CNNs (for minilmageNet, CUB and Cars in Section 4.2)

For ResNet12, we employed the architecture used in Lee et al. [32], following the setting of the
BOIL paper by Oh et al. [44]. For WideResNet-28-10, we used the architecture provided in the
learn2learn library [4], which is the setting used in Dhillon et al. [11]. The number of parameters for
these architectures is summarized in Table 5.

Table 5: The numbers of parameters for CNNs in our experiments.

Networks # of parameters
ResNet-12 8.0M
WideResNet-28-10 36.5M

A.3 Hyperparameters

In our experiments, there are two types of hyperparameters: (1) ones common to gradient-based
meta-learning, including MAML and Meta-ticket, and (2) ones specific to Meta-ticket.

A.3.1 Common hyperparameters

Here we summarize hyperparameters common to gradient-based meta-learning: the number of
iterations of meta-learning, the number of inner gradient steps .S, batch size B for meta-learning,
outer learning rate (LR), inner LR, and optimizers. In our experiments, we trained all meta-models
(MAML, ANIL, BOIL and Meta-ticket) for 30000 iterations with S = 1 and B = 4. Other
hyperparameters are summarized in Table 6. For MAML-based methods, we followed the settings in
the previous work [44].

Table 6: Hyperparameters common to gradient-based meta-learning methods.

Meta-training datasets Methods Outer LR Inner LR  Optimizer
Omnielot MAML 0.001 0.4 Adam [26]
g Meta-ticket ~ 10.0 0.4 SGD
MAML 0.001 0.5 Adam
CIFAR-FS, VGG-Flower - yjoia ticket 10,0 05 SGD
minilmaceNet MAML 0.0006 0.3 Adam
g Meta-ticket ~ 10.0 0.3 SGD
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A.3.2 Specific hyperparameters to Meta-ticket

« Initial sparsity For the initial sparsity pinit € [0, 1], we chose pinit = 0.0 (i.e. the initial
subnetwork is equal to the entire network) since we found that a lower initial sparsity tends
to be better in terms of meta-generalization ability. However, as we can see in Section B.2,
we can get a more sparse subnetwork if we use a larger initial sparsity.

* Parameter initialization In Meta-ticket, there are two initialization for the score parameter
s and the network parameter ¢g. (See Section 3.1 for the notation.) We employed Kaiminig
uniform initialization [1] for s, and Kaiming normal initialization [1] for ¢y.

e Optimizer As a (meta-)optimizer for the score parameters of Meta-ticket, following the
strong lottery ticket literature [51, 9], we employed stochastic gradient descent (SGD) with
a cosine scheduler. Also, we found that the outer learning rate needs to be larger than the
standard ones, and thus we set the learning rate as 10.0. (See also Section B.1.)

* Iterative randomization Iterative randomization (IteRand, proposed by Chijiwa et al. [9])
is a technique to boost the performance of weight-pruning optimization, especially for small
neural networks, by re-initializing the pruned parameters every K iterations. We chose the
re-initialization frequency as K = 1000.

A.4 Implementations and training details

Implementations We implemented Meta-ticket and all experiments by using the PyTorch [48],
learn2learn [4] and Torchmeta [10] libraries. Also, the implementation of ResNet-12 is based on the
one implemented by Oh et al. [44].

Computational resources In meta-training and meta-testing, we used a single NVIDIA V100 GPU
or NVIDIA A100 GPU for each experiment. For all of our experimental results, we reported means
and one standard deviations for three random seeds.

Computational overhead of Meta-ticket Even though Meta-ticket has additional parameters for
scores compared to MAML, there was little difference in meta-training time. For example, in the
meta-training on minilmageNet with ResNet12 (Section 4.2), Meta-ticket takes about 583 seconds
for 1000 iterations on an A100 GPU machine, while MAML takes about 560 seconds. Hence the
computational overhead in this case is only about 4%.

B Additional experiments

B.1 Learning rates for Meta-ticket

We searched the outer learning rate for the score parameter of Meta-ticket, using the 1-shot 5-way
benchmark on minilmageNet with ResNet-12. Table 7 shows the meta-validation accuracies for
various learning rates. In contrast to standard training, relatively large learning rates are suitable for
the score parameter s = (s;)1<;<x. This is because the actual value of each s; is not important and
just whether or not s; is above the threshold o matters.

Table 7: Meta-validation accuracies for various learning rates on the 1-shot 5-way minilmageNet
benchmark with ResNet-12.

Learning rate 0.01 0.1 1.0 10.0 100.0
Accuracy 34.87+1.40% 42.97+0.67% 53.67 +2.12% 54.30 £2.52% 51.97 + 0.64%

B.2 Effects of the initial sparsity

In this section, we analyze the effects of the initial sparsity p;iy;t to the resulting subnetworks. Figure 5
shows the sparsity of the subnetwork in ResNet-12 obtained by Meta-ticket during the meta-training
phase. Although the final sparsity largely depends on the initial sparsity, the sparsity changes in the
direction of the half sparsity, consistently in every case. On the other hand, from the viewpoint of
meta-generalization, we can see that the meta-validation accuracy tends to be better if we start from a

18



lower initial sparsity (Table 8). Also, in Figure 6, we plotted the meta-validation accuracy curves
during meta-training for each initial sparsity.
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Figure 5: For each initial sparsity (pinit = 0.0,0.3,0.5,0.7,0.9), we plotted the sparsity of the
subnetwork in ResNet-12 obtained by Meta-ticket during the meta-training phase. The x-axis is the
number of meta-training iterations.

Table 8: Meta-validation accuracies for various initial sparsities in 1-shot 5-way setting.
Initial sparsity 0.0 0.3 0.5 0.7 0.9
Accuracy 54.70 +£1.90% 53.40 £ 0.50% 52.27 £0.84% 51.57 +0.64% 51.53 +£0.92%
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Figure 6: For each initial sparsity (pinit = 0.0,0.3,0.5,0.7,0.9), we plotted meta-validation accura-
cies during meta-training. The x-axis is the number of meta-training iterations.

B.3 Cross-domain evaluation in 1-shot 5-way setting

Table 9 shows the results of cross-domain evaluation on minilmageNet with the setting of 1-shot
learning. We meta-trained ResNet-12 and WideResNet-28-10 by Meta-ticket and MAML, with the
1-shot learning tasks from the minilmageNet dataset. There seems to be little difference between
the results of MAML and Meta-ticket (except for the case of WideResNet-28-10 evaluated on
minilmageNet itself), in contrast to the 5-shot setting (Section 4.2). The results may be due to the
lack of training samples during the inner optimization in the 1-shot setting, where we cannot take
enough advantage of the rapid learning nature of Meta-ticket.

B.4 Comparison with state-of-the-art methods
In Table 10, we compare our cross-domain evaluation results (given in Table 2 in Section 4.2)

to state-of-the-art methods (MetaOptNet [32] and Feature-wise Transformation [57]) other than
MAML-based methods. Both of these state-of-the-art methods achieve higher meta-test accuracy on
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Table 9: Cross-domain 1-shot 5-way evaluation with ResNet-12 and WideResNet-28-10

Networks ResNet-12 WideResNet-28-10

Meta-train minilmageNet minilmageNet

Meta-test minilmageNet CUB Cars minilmageNet CUB Cars
MAML 56.25 £ 1.28% 4585+ 0.77% 35.85 £1.18% 50.59 +0.54% 42.12+0.57% 33.50 £ 0.88%

Meta-ticket  56.17 £0.91% 45.95+0.81% 35.99 £2.00% 54.124+1.24% 41.77+0.92% 34.26 £0.31%

minilmageNet, which is the dataset used in meta-training, than variants of MAML and Meta-ticket.
This would be because these methods can leverage their strong feature extractor on the meta-training
dataset. However, these two state-of-the-art methods are largely degraded when meta-tested on
CUB and Stanford Cars. On the other hand, Meta-ticket + BOIL achieves similar accuracy as the
feature-wise transformation method on CUB, and the highest accuracy on Stanford Cars in the table.
This would show the strength of the rapid learning nature of Meta-ticket.

Table 10: Comparison with state-of-the-art methods in 5-shot 5-way cross-domain classification.

Meta-training dataset

minilmageNet

Meta-test dataset

minilmageNet

CUB

Cars

MAML
ANIL
BOIL

67.47 £ 1.31%
66.88 £+ 1.59%
69.67 £ 0.66%

54.44 £ 0.23%
53.90 £ 1.17%
58.79 + 1.48%

43.68 £ 1.44%
40.87 £ 3.95%
4711 £ 1.10%

Meta-ticket (Ours)
+ BOIL (Ours)

71.31 £0.29%
74.23 £0.30%

57.97 £ 0.53%
64.06 £ 1.05%

45.90 £ 0.50%
55.20 + 0.64%

MetaOptNet-SVM-trainval [32]
GNN + Feature-wise Transformation [57]

80.00 £ 0.45%°
81.98 +0.55% °

54.67 £ 0.56%°
66.98 +0.68% *

45.90 £ 0.49%°
44.90 + 0.64%"°

B.5 Results on specific to general/specific adaptation

In Section 4.2, we evaluated the cross-domain adaptation from a general-domain dataset (mini-
ImageNet) to specific-domain datasets (CUB and Cars). Here we present additional experimental
results (Table 11) of cross-domain adaptation from a specific-domain dataset (CUB) to the other
datasets. Although there are only small difference between MAML-based methods and Meta-ticket
when evaluated on the meta-training dataset itself, Meta-ticket has a larger gain on the specific to
general/specific cross-domin adaptation. The results indicate that, while MAML-based methods
successfully encode useful features into their initial parameters to classify the fine-grained classes of
bird species (in CUB), the encoded features are not enough useful for classifying other categories in
minilmageNet and Cars datasets.

Table 11: Results on specific to general/specific adaptation.

Meta-training dataset

CUB

Meta-test dataset

CUB

minilmageNet

Cars

MAML
BOIL

78.92 + 0.62%
83.70 + 0.40%

43.03 +0.26%
49.17 £ 1.30%

38.95 + 0.42%
43.93 + 1.39%

Meta-ticket
+ BOIL

80.49 £+ 0.50%
83.28 + 0.44%

46.01 £ 0.55%
53.82 +0.92%

40.24 £ 0.92%
48.85 +0.56%

B.6 Detailed plots of inner gradients during meta-training

In Section 3.2, we presented the plots of inner gradient norms of the last layer of the feature extractor
of 5-MLP during meta-training on CIFAR-FS. Here we provide more detailed plots for every feature
extracting layer of 5-MLP on CIFAR-FS (Figure 7) and VGG-Flower (Figure 8) with log-scaled

% These results are cited from Tseng et al. [57]
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y-axis. In both cases, the inner gradient norms in MAML tend to converge to nearly zero, while
the ones in Meta-ticket stop to decrease or even start to increase at some iteration. However, there
are some exceptions particularly when inner learning rate is relatively large. This indicates that
our theoretical discussion for a small inner learning rate (given in Section 3.2) does not necessarily
describe the dynamics of inner gradients for large inner learning rates.
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Figure 7: Inner gradient norms (log scale) of 5-MLP meta-trained on CIFAR-FS with various inner
learning rates « € {0.001,0.01, 0.1, 1.0} for each fully-connected layer of the feature extractor.
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Figure 8: Inner gradient norms (log scale) of 5-MLP meta-trained on VGG-Flower with various inner
learning rates « € {0.001,0.01,0.1, 1.0} for each fully-connected layer of the feature extractor.

C Experiments on a regression benchmark

In this section, we report the results on a toy regression benchmark of learning to predict a given
sine function, which is called Sinusoid regression [13], in the setting of 5-shot learning with 5
gradient steps. We used a simple 3-layered ReLU multilayered perceptron (MLP) with 1-dimensional
input/output and 40-dimensional hidden layers, following the setting in Finn et al. [13]. First of all,
we can predict that the naive application of Meta-ticket to the regression problem should fail because
Meta-ticket cannot meta-learn the output scale of the neural network, in contrast to MAML which
meta-learns the scale by meta-optimizing the NN parameter. Moreover, since the input/output of
the network is 1-dimensional, pruning the input/output layer just decreases the hidden dimension
after/before the input/output layer. Indeed, the mean squared error (MSE) loss of the naive application
of Meta-ticket is only 3.56 4 0.11, while MAML achieves 0.346 & 0.113. Therefore, instead of the
naive application, we apply Meta-ticket to the regression benchmark with the following configuration:
For the input and output linear layers, instead of applying Meta-ticket, we simply meta-optimize the
initial parameters for these layers in the same way as MAML. For the intermediate layer, we apply
Meta-ticket and thus meta-optimize the sparse structure of the 40 x 40 matrix.

As a result, we observed that the modified application of Meta-ticket achieves the MSE loss of
0.596 £ 0.173, which is more comparable to MAML than the naive application. However, there
still remains a gap between Meta-ticket and MAML in this benchmark. We consider that this may
be because the direct parameter optimization (MAML) is more suitable for the simple functional
approximation task than the meta-learned sparse structures (Meta-ticket).
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