
Discovery of Single Independent Latent Variable

Uri Shaham
Department of Computer Science

Bar-Ilan University
Ramat Gan, Israel

uri.shaham@biu.ac.il

Jonathan Svirsky
Faculty of Engineering

Bar-Ilan University
Ramat Gan, Israel

svirskj@biu.ac.il

Ori Katz
Electrical and Computer Engineering

Technion
Haifa, Israel

orikats@campus.technion.ac.il

Ronen Talmon
Electrical and Computer Engineering

Technion
Haifa, Israel

ronen@ee.technion.ac.il

A Colored MNIST experiment

In this experiment, we used a colored version of the MNIST handwritten image dataset, obtained
by converting the images to RGB format and coloring each digit with an arbitrary color from
{red, green, blue}.
We ran two experiments on this dataset. In the first one we considered the color as the condition. This
setup perfectly meets the model assumptions, as each colored image was generated by choosing an
arbitrary color at random (t) and coloring the original grayscale image (s). In the second experiment
we set the condition to be the digit label. This corresponds to a data generation process in which
handwriting characteristics (e.g., line thickness, orientation) and color are independent of the digit
label. While the color was indeed chosen independently of any other factor, independence of the
handwriting characteristics and the digit label is debatable, as for example, orientation may depend
on the specific digits (e.g., ’1’ is often written in a tilted fashion, while this is not the case for other
digits).

The condition t was incorporated into decoder by modulating the feature maps before each convolu-
tional layer. The discriminator was trained using domain confusion loss. As a reconstruction term we
used (pixel-wise) binary cross entropy.

Once the autoencoder was trained, we used it to manipulate the images by plugging to the decoder
arbitrary condition and generating new data. Figure 1 shows examples of reconstructions and
manipulation for both experiments. In the left panel (showing the results for condition=color) we can
see that very high quality reconstruction and conversion were achieved, implying that the learned
code did not contain color information, while preserving most of the information of the grayscale
image, as desired. The right panel (showing results for condition=digit label) displays similar results,
although of somewhat worse conversion quality, as this setting does not fully fit the assumptions
taken in this work. Yet, the code clearly captures most dominant characteristics of the handwriting.

B Image Domain Conversion

In this experiment we apply the proposed approach to some of the datasets introduced in [? ]. Here
the condition is the domain (e.g., orange / apple). We use a combination of `1 and SSIM loss for
reconstruction and domain confusion for independence. In addition to reconstruction loss, we also
use a GAN-like real/fake discriminator to slightly improve perceptual loss [? ]. Some results are
shown in Figure 2. While an interested reader might wonder why oranges are converted to red
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Figure 1: The colored MNIST experiment, using the color (left) and digit label (right) as condition.
In each of the plots, the leftmost column show the input x to the encoder, and the next column shows
the reconstruction. The remaining columns show conversion to each of the condition classes.

oranges rather than apples, we remark that as much as the condition specifies the type of fruit (orange
/ apple) throughout this dataset it also specifies its color (orange / red), which, by Ockham’s razor, is
a somewhat simpler description of the separation between the two domains. Therefore the image
manipulation made by the model can be interpreted as a domain conversion.

Figure 2: Image Domain Conversion experiment. Left: Conversion results on the oranges2apples
dataset. Right: Conversion from Cezanne to photo (up) and Van Goch to photo (down).

C More Details on the Experiments

C.1 2D demonstration

In this experiment we used MLP architectures for all networks, where each of the encoder, decoder and
discriminator consisted of three hidden layers, each of size 64. Identity and softplus activations were
used for the linear and nonlinear mixing experiments, respectively. The discriminator was regularized
using r1 loss, computed every eight steps. The model was trained for 100 epochs on a dataset of
15,000 points. To balance between the reconstruction and independence terms we used λ = 0.05. The
autoencoder optimizer was called every 5th step. A Jupyter notebook running this demo is available
at https://github.com/shaham-lab/disilv/blob/main/IMAGE/2D_demo.ipynb.
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C.2 MNIST Experiment

In this experiment each of the encoder and decoder consisted of three convolutional layers, of 16, 32
and 64 kernels and ReLU activations. The discriminator had a MLP architecture with 128 units in
each layer. The condition was incorporated into the decoder via modulation, utilizing a learnable
lookup table of class embeddings of dimension 64. In this experiment we also used an additional
discriminator, trained in a GAN fashion to distinguish between real and generated images. During
training this discriminator was also trained on swapped data, i.e., codes that were fed to the decoder
with a random condition. This discriminator has three convolution layers and was trained with
standard non-saturating GAN loss. The system was trained for 50 epochs, with λ = 0.01 and the
real/fake discriminator loss term was added to the LAE in (??) with coefficient of 0.001. A Jupyter
notebook running this demo is available at https://github.com/shaham-lab/disilv/blob/
main/IMAGE/colored_mnist_demo.ipynb.

C.3 Rotating Figures

The images x were of size 128× 128 pixels and the conditions were of size 64×64. In the encoder
images were passed through two downsampling blocks and two residual blocks. ResNet encoding
models were applied to the condition and the images (separately), before the their feature maps were
concatenated and passed through several additional ResNet blocks. In the decoder conditions were
downsampled once and passed through two residual blocks, before being concatenated to the codes
and fed through two more residual blocks. The decoder and discriminator have a similar architecture.
We use `1 as reconstruction loss. The system was trained for 120 epochs on a dataset containing
10,000 instances, using λ = 1.05, and the autoencoder was trained every 5th step.

C.4 Image Domain Conversion

In this experiment the encoder and decoder’s architectures were inspired by the cycleGAN [? ]
ResNet generator architecture, splitting the generator to encoder and decoder. The decoder was
enlarged with modulation layer before each convolutional layer. The class embeddings were of size
512. As in the MNIST experiment, GAN-like real / fake discriminator was used here as well. The
system was trained for 200 epochs, on the datasets downloaded from the cyclegan official repository1.
We used λind = λrf = 0.1 for both discriminators. The autoencoder was trained every 5th step. A
Jupyter notebook running this demo is available at https://github.com/shaham-lab/disilv/
blob/main/IMAGE/orange_apples_demo.ipynb.

C.5 Voice Conversion

The encoder receives mel-filterbank features calculated from windows of 1024 samples with a 256
samples overlap, and outputs a latent representation of the source speech. The network is constructed
from downsampling by factor 2 1D convolution layer with ReLU followed by 30 Jasper [? ] blocks,
where each sub-block applies a 1D convolution, batch norm, ReLU, and dropout. All sub-blocks
in a block have the same number of output channels which we set to 256. The decoder is also a
convolutional neural network which receives as input the latent representation produced by encoder
and the target speaker id as the condition. The condition was then mapped to a learnable embedding
in R64 concatenated to the encoder output by repeating it along the temporal dimension. The
concatenated condition is passed through 1D convolution layer with stride 1 followed by a leaky-
ReLU activation with a leakiness of 0.2 and 1D transposed convolution with stride 2 for upsampling
to the original time dimension. The discriminator was trained using domain confusion loss. The
system was trained for 2000 epochs, which took 8 days on a simple GTX 1080 GPU. We used λ = 1,
both optimizers were called every training step.

C.5.1 Possible negative societal impact

The ability to synthesize realistic audio using voice conversion can be exploited for malicious
purposes, e.g., for voice spoofing, fake news, fraud, phishing, and harassment, to name but a few.
Therefore, voice conversion should be deployed subject to ethical concerns. Specifically, the converted

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/datasets/
download_cyclegan_dataset.sh
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speech should be presented with an appropriate disclosure indicating that the synthetic speech was
generated using a voice conversion technique. In addition, the conversion should be conditioned by
obtaining consent from all the affiliated parties (both the source speaker and the target speaker). We
acknowledge that this discussion is limited; for a broader discussion we refer the readers to [? ].

C.6 ECG Analysis

C.6.1 Dataset

The dataset consists of 60 entries from 39 voluntary pregnant women. Each entry is composed
of recordings from 27 ECG channels and a synchronized recording from a trans-abdominal pulse-
wave doppler (PWD) of the fetal’s heart. The recordings’ lengths vary from 7.5 seconds to 119.8
seconds (with average length of 30.6 seconds ± 20.6 seconds). The ECG recordings were sampled
by the TMSi Porti7 system with a frequency-sampling rate of 2KHz . The PWD recordings were
acquired using the Philips iE33 ultrasound machine. The obtained video was converted into a 1D
time series using a processing scheme based on envelope detection. The code for this processing
scheme was provided as a Matlab-script by the authors of [? ]. For convenience, we uploaded
the obtained 1D time series after applying the provided Matlab-script, and it is available at https:
//github.com/shaham-lab/disilv/tree/main/ECG/Data.

C.6.2 Pre-proecssing and model implementation

In the following we provide a detailed description of the pre-processing steps and the implementation
of the model. For convenience, all the parameters and hyperparameters are summarized in Table 1.
The recording of subjects 1-20 were used for hyperparameters selection. These subjects were
discarded in the objective evaluation reported in ??.

Pre-processing. The raw ECG recordings were filtered by a median filter with a window length
of nm = 2, 048 (1 second) to remove the baseline drift. In addition, we apply a notch filter to
remove the 50Hz powerline noise and a low-pass filter with a cut-off frequency of Fc = 125Hz.
Finally, we downsample the signal to frequency-sampling rate of Fs = 500Hz. The doppler signal
was pre-processed using the script provided by the dataset’s owners. No further operations were
performed.

Implementation details. The encoder module E(X) is implemented using a convolutional neural
network (CNN): Rna×nT → Rnd×nT . This choice of architecture is inspired by the architecture
proposed by [? ] for the benefit of ECG compression, and it is described in detail in Table 2.

The implementation of the decoder module D(S′, T ) is based on a deconvolutional neural network
(dCNN): R(nd+nt)×nT → Rna×nT . This decoder is applied to the concatenation of the code signal
and the thorax signal, where the concatenation is along the first dimension. The exact architecture is
described in details in Table 3.

The discriminator is implemented via an additional CNN g(T ) : Rnt×nT → Rnd×nT . g(T ) shares
the same architecture as E(X), except the first convolutional layer which has nt input channels
rather than na. The independence term is given by I(T, S′) = Ind(g(T ), S′), where Ind(x, y) is a
scale-invariant version of the MSE loss function: Ind(x, y) =

∣∣∣∣ |x|e
||x||F −

|y|e
||y||F

∣∣∣∣
F

, and | · |e denotes
an element-wise operation of absolute value. We remark that other possibilities can be considered as
well.

Lastly, the reconstruction module is simply implemented via the standard MSE loss: Recon(x, y) =∣∣∣∣x− y∣∣∣∣
F

.

C.6.3 Training process

We train a model for each subject. The training data is a collection of n input-condition pairs
{(xi, ti)}ni=1, where each input-condition pair (xi, ti) is a time-segment that was selected from the
ECG recording at a randomly drawn offset and n is a hyperparameter indicating the number of
randomly drawn training examples. We use two optimizers that operate in an interleaved (adverserial-
like) fashion. Specifically, for each update step of the second optimizer we perform β update steps of
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Table 1: List of parameters and hyperparameters used in the ECG analysis. Parameters are listed in
the upper part of the table, while hyperparameters are listed in the lower part of the table.

Notation Description Value
na Number of abdominal channels 24
nt Number of thorax channels 3
nm Window length of the median-filter 2, 000
Fc Cut-off frequency 5 · 104
Fs Frequency-sample 500
nd Dimensioanlity of the code 5
n Number condition-pairs for training 5 · 104
b Batch size 32
lr Learning rate 10−4

λ Objective independency factor 0.01
β Interleaving independency factor 5

Table 2: Layers consisting the encoder E(X) in the ECG analysis.

No Layer
name

No. of filters
× kernel size

Activation
function

Output
size

1 1D Conv 8× 3 Tanh 2000× 8
2 1D Conv 8× 5 Tanh 2000× 8
3 Batch Norm. - - 2000× 8
4 1D Conv 8× 3 Tanh 2000× 8
5 Batch Norm. - - 2000× 8
6 1D Conv 8× 11 Tanh 2000× 8
7 1D Conv 8× 13 Tanh 2000× 8
8 1D Conv nd × 3 Tanh 2000× nd

the first optimizer, where β = 5 is a hyperparameter. The first optimizer updates g(T ) and aims to
maximize the dependency between the condition and the code. The second optimizer updates E(X)
and D(S′, T ) and has two objectives – minimizing the reconstruction loss while preventing the first
optimizer from succeeding to maximize the dependency loss. Hence, encouraging the optimization
process to converge to a “condition-free" code. The proportion between these two objectives is
controlled by the hyperparameter λ = 0.01 which multiplies the second objective term. The losses
obtained by the two optimizers are denoted by Ldisc and LAE in ??.

Both optimizers are implemented using the Adam algorithm [? ] with a fixed learning rate of
lr = 10−4, β = (0.9, 0.999) and a bach-size of b = 32.

C.6.4 Qualitative evaluation

Here, we describe in detail the procedure presented in ?? in the paper. First, we produce a code s′i
for each input-condition pair (xi, ti). Then, we column-stack each matrix in the set {s′i}

1,000
i=1 and

project the obtained set of vectors to a 3D space using principal component analysis (PCA). We
repeat the same procedure for {xi}1,000i=1 . We color the projected points in two manners: according
to the fECG signal and according to the mECG signal. The color of the ith sample representing the
fECG (mECG) signal is computed as follows: {mod(i, τ (f))}1,000i=1 ({mod(i, τ (m))}1,000i=1 ), where τ (f)

(τ (m)) denotes the period of the fECG (mECG) obtained from the doppler signal (thorax recordings).

C.6.5 Additional results

The results presented in ?? are averaged over subsets of subjects. In Table 4 we present the results for
each subject.
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Table 3: Layers consisting the decoder D(S′, T ) in the ECG analysis. “T.Conv" denotes a transposed
convolution layer.

No Layer
name

No. of filters
× kernel size

Activation
function

Output
size

1 1D T.Conv 8× 3 Tanh 2000× 8
2 1D T.Conv 8× 13 Tanh 2000× 8
3 1D T.Conv 8× 3 Tanh 2000× 8
4 1D T.Conv 8× 5 Tanh 2000× 8
5 1D T.Conv na × 3 Tanh 2000× na

Table 4: fECG extraction results for each subject.

Subject Input Ours ADALINE ESN LMS RLS

1 0.11 (0.10) 0.74 (1.63) 0.51 (0.51) 0.05 (0.16) 0.00 (0.00) 0.20 (0.16)
2 0.13 (0.12) 0.51 (1.90) 0.17 (0.58) 0.07 (0.12) 0.00 (0.00) -0.02 (0.10)
3 0.10 (0.13) 0.49 (0.90) 0.56 (0.59) 0.45 (0.33) 0.47 (0.33) 0.04 (0.14)
4 0.15 (0.22) 0.69 (0.68) 0.10 (0.70) 0.15 (0.50) 0.07 (0.15) 0.08 (0.22)
5 7.89 (0.12) 0.74 (1.04) -0.01 (0.69) 0.22 (0.36) 0.07 (0.72) 0.04 (0.13)
6 0.11 (0.09) 0.58 (1.14) 0.39 (0.54) 0.14 (0.22) 0.34 (0.45) 0.10 (0.15)
7 0.10 (0.11) 0.07 (0.99) 1.04 (0.84) 0.32 (0.28) 0.60 (0.41) 0.09 (0.10)
8 -0.00 (0.26) 0.94 (0.69) 0.26 (0.48) 0.18 (0.79) 0.00 (0.00) 0.17 (0.28)
10 0.10 (0.10) 4.41 (1.48) 1.46 (2.01) 0.22 (0.25) 0.01 (0.02) 0.03 (0.12)
11 0.09 (0.12) 0.56 (1.73) 0.68 (0.63) 0.11 (0.17) 0.00 (0.00) 0.15 (0.22)
13 -0.05 (0.08) 1.35 (0.50) 1.08 (1.23) 0.03 (0.50) 0.00 (0.01) 0.58 (0.30)
14 -0.03 (0.05) 3.60 (3.18) 8.82 (4.39) 1.85 (1.59) 3.17 (2.50) 0.90 (0.54)
15 0.13 (0.39) 0.52 (0.90) 0.36 (0.67) 0.29 (1.04) 0.14 (0.82) 0.28 (0.22)
16 0.04 (0.20) 0.80 (1.57) 0.20 (0.61) 0.09 (0.51) 0.00 (0.00) -0.03 (0.13)
17 0.03 (0.23) 1.31 (0.45) 0.29 (0.50) -0.06 (0.32) 0.00 (0.00) 0.58 (0.54)
18 0.03 (0.05) 0.50 (0.82) 0.58 (1.34) 0.04 (0.14) -0.01 (0.02) 0.12 (0.19)
19 0.11 (0.08) 0.86 (0.94) 1.03 (0.99) 0.19 (0.23) 0.00 (0.00) 0.22 (0.14)
20 0.17 (0.15) 0.86 (0.94) 0.24 (0.52) 0.14 (0.38) 0.45 (0.54) 0.28 (0.39)
21 0.23 (0.15) 0.40 (0.45) 0.28 (0.45) 0.24 (0.34) 0.36 (0.45) 0.44 (0.24)
22 1.17 (0.59) 1.41 (1.10) 1.00 (1.65) 1.14 (0.69) 3.56 (2.09) 2.28 (2.57)
23 0.16 (0.24) 0.82 (1.31) 0.17 (1.11) 0.23 (1.40) 0.01 (0.03) 0.03 (0.08)
24 0.05 (0.11) 0.92 (1.05) 0.19 (0.74) 0.48 (0.65) 0.53 (0.35) 0.28 (0.25)
25 -0.05 (0.08) 0.36 (0.38) 0.81 (0.60) 0.30 (0.36) 0.40 (0.53) -0.05 (0.20)
26 0.09 (0.66) 0.67 (1.08) 0.56 (0.69) 0.23 (0.40) 0.17 (0.34) 0.11 (0.14)
27 0.02 (0.12) 0.46 (0.71) 0.34 (0.43) 0.10 (0.32) 0.20 (0.40) 0.09 (0.19)
28 -0.01 (0.09) 1.88 (1.80) 1.55 (1.49) 0.02 (0.18) 0.00 (0.00) 0.15 (0.12)
29 -0.07 (0.04) 0.83 (0.90) 1.09 (0.97) -0.10 (0.06) 0.24 (0.04) 0.04 (0.18)
30 0.09 (0.11) 8.14 (3.21) 0.95 (0.99) 0.43 (0.55) 0.83 (0.97) 0.34 (0.30)
31 0.10 (0.13) 1.06 (0.60) 0.33 (0.33) 0.05 (0.24) 0.01 (0.00) 0.01 (0.20)
32 0.03 (0.22) 1.27 (1.04) 0.25 (0.24) -0.06 (0.22) 0.00 (0.00) -0.05 (0.23)
33 0.03 (0.20) 0.30 (0.35) 0.35 (0.24) 0.02 (0.14) 0.00 (0.00) -0.09 (0.13)
37 0.09 (0.18) 0.82 (0.70) 0.02 (0.72) 0.21 (0.40) 0.00 (0.00) 0.15 (0.11)
39 0.13 (0.17) 9.57 (3.24) 9.16 (1.67) 0.12 (0.17) 0.05 (0.02) 0.48 (0.24)
41 0.08 (0.08) 5.66 (7.76) 4.28 (3.49) 0.13 (0.34) 0.00 (0.00) 0.32 (0.51)
43 -0.07 (0.04) 1.21 (0.80) 1.61 (1.00) 0.29 (0.38) 0.56 (0.37) 0.35 (0.26)
44 -0.06 (0.08) 1.42 (1.03) 1.09 (1.36) 0.00 (0.80) 0.09 (0.09) 0.27 (0.19)
45 1.69 (0.43) 4.30 (4.73) 0.56 (1.57) 0.95 (1.81) 1.02 (0.68) 0.77 (0.77)
46 0.18 (0.11) 3.47 (2.77) 6.45 (5.37) 3.62 (1.68) 4.45 (4.05) 0.17 (0.15)
48 0.06 (0.21) 3.40 (1.68) 3.12 (2.79) 2.37 (1.44) 0.03 (0.02) 0.24 (0.55)
50 0.13 (0.27) 0.50 (0.79) 0.52 (0.65) 0.21 (0.32) 0.00 (0.00) 0.01 (0.08)
51 0.13 (0.24) 0.24 (0.48) 3.59 (2.63) 0.13 (0.27) 0.00 (0.00) 0.65 (0.26)
55 0.15 (0.16) 4.65 (5.32) 2.15 (1.78) 0.10 (0.18) 0.01 (0.00) 0.04 (0.15)
56 0.14 (0.13) 4.24 (1.60) 0.77 (0.66) 0.04 (0.23) 0.04 (0.11) 0.08 (0.15)
58 0.09 (0.31) 6.29 (4.99) -0.01 (0.67) 0.15 (0.53) 0.17 (0.62) 0.45 (0.33)
59 0.09 (0.09) 0.79 (0.88) 0.34 (0.71) 0.14 (0.23) 0.00 (0.00) 0.35 (0.17)

C.6.6 Additional comments

We looked for a dataset that contains: (1) abdominal recordings, (2) chest (thorax) recordings, and (3)
ground-truth (GT) that can be used for quantitative evaluation. For this purpose, we reviewed all the
datasets from Section 7 in [? ]:

• DDB and NIFECGDB: these two datasets do not have GT.
• ADFECGDB: in this dataset, there are no chest recordings.
• PCDB and ADFECGDB: these datasets do not include chest recordings.
• FECGSYNDB: seemingly, this dataset admits all the requirements. However, it is a synthetic

dataset, and we were looking for a real-world dataset.

The only real-world datasets that include chest recordings are DDB and NIFECGDB. DDB includes
only a single recording of a single subject, and therefore, we focused on NIFECGDB. This dataset
was used to objectively evaluate ESN (one of the considered baselines) in [2] using expert annotations.
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We contacted the authors of [? ] and asked them to share their annotations. Unfortunately, the authors
could not share the annotations, but they kindly referred us to use the NIFEADB dataset [? ]. This
recently published dataset fits our purposes, and therefore, we chose to use it in our experiments.

We note that the GT in NIFEADB is not given as expert annotations of the fetal QRS complexes as in
ADFECGDB, PCDB, and the proprietary annotations from NIFECGDB. In NIFEADB, the GT is
extracted from the Doppler signal of the fetal heart, making the use of commonly accepted evaluation
metrics proposed in [? ] impossible for the following reasons:

• Fetal HR measures (listed in the first part of table 5 in [? ]: Se,PPV, F1,etc) – these measures
assume that the GT includes the locations of the fetal QRS complexes.

• Morphological analysis (listed in the second part of table 5 in [? ]: SNR,FQT,TQRS) –
these measures assume that the GT includes the fECG signal, which is available only in
simulations and in invasive procedures.

Therefore, we used a quantitative evaluation metric that quantifies the enhancement of the fECG and
the suppression of the mECG based on the doppler GT.

We remark that the lack of publicly-available reference datasets, which could be used to benchmark
different algorithms, was the main motivation for the curation of the NIFEADB (see the abstract in [?
]). However, establishing such benchmarks and gold standards is still an ongoing effort, and, to the
best of our knowledge, there is no definitive gold standard criterion available to date.
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