
A Limitations, Future Work and Societal Impact

Although GAUDI represents a step forward in generative models for 3D scenes, we would like to
clearly discuss the limitations. One current limitation of our model is the fact that inference is not
real-time. The reason for this is two fold: (i) sampling from the DDPM prior is slow even if it is
amortized for the whole 3D scene. Techniques for improving inference efficiency in DDPMs have
been recently proposed [63, 71, 72] and can complement GAUDI. (ii) Rendering from a radiance
field is not as efficient as rendering other 3D structures like meshes. Recent work have also tackled
this problem [28, 73, 48] and could be applied to our approach. In addition, many of the latest image
generative models [45, 36, 56] use multiple stages of up-sampling through diffusion models to render
high-res images. These up-sample stages could be directly applied to GAUDI. In addition, one could
considering studying efficient encoders to replace the optimization process to find latents. While
attempts have been made at using transformers [57] for short trajectories (5-10 frames) it is unclear
how to scale to thousands of images per trajectory like the ones in [1]. One additional limitation
is to tackle infinitely large or "boundless" indoor or outdoor scenes. The current formulation of
GAUDI assumes a physical volume in space (defined by the physical size of each element in the
tri-plane latent W) on which radiance is defined. When the camera moves outside that space there’s
no defined radiance to render images (e.g. similar to the case of meshes). To tackle the case in which
one wants to model a infinitely large scene one could make both the camera pose and the radiance
field representation W be a function of time step embedding s. This will allow for the radiance
field to change as the camera moves. Finally, the main limitation for a model like GAUDI to exhibit
improved generation and generalization abilities is the lack of massive-scale and open-domain 3D
datasets. In particular ones with other associated modalities like textual descriptions.

When considering societal impact of generative models a few aspects that need attention are the
use generative models for creating disingenuous data, e.g. "DeepFakes" [34], training data leakage
and privacy [66], and amplification of the biases present in training data [20]. One specific ethical
consideration that applies to GAUDI is the impact that a model which can easily create immersive
3D scenes can have on future generations and their detachment of reality [3]. For an in-depth review
of ethical considerations in generative modeling we refer the reader to [55].

B Experimental Settings and Details

In this section we describe details about data and model hyper-parameters. For all experiments our
latents zscene and zpose have 2048 dimensions. In the first stage, when latents are optimized via Eq.
2, zscene gets reshaped to a 8 ⇥ 8 ⇥ 32 feature map before feeding it to the scene decoder network. In
the second stage, when training the DDPM prior we reshape zscene and zpose to 8 ⇥ 8 ⇥ 64 latent
and leverage the power of a UNet [54] denoising architecture.

For each dataset, trajectories have different length, physical scale, as well as near and far planes for
rendering, which we adjust accordingly in our model.

Vizdoom [23]: In Vizdoom, trajectories contains 600 steps on average. In each step the camera is
allowed to move forward 0.5 game units or rotate left or right by 30 degrees. We set the unit length
of an element in the tri-plane representation as 0.05 game units (meaning each latent code wxyz

represents a volume of space of 0.05 cubic game units). The near plane is at 0.0 game units and the
far plane at 800 game units. We use the data and splits provided by [8].

Replica [64]: In Replica, all trajectories contain 100 steps. In each step, the camera can either rotate
left or right by 25 degrees or move forward 15 centimeters. We set the unit length of an element in
the tri-plane representation as 25 centimeters (meaning each latent code wxyz represents a volume of
space of 0.25 cubic centimeters). The near plane is at 0.0 meters and the far plane at 6 meters. We
use the data and splits provided by [8].

VLN-CE [26]: in VLN-CE trajectories contain a variable number of steps between 30 and 150,
approximately. In each step, the camera can either rotate left or right by 25 degrees or move forward
15 centimeters. We set the unit length of an element in the tri-plane representation as 50 centimeters.
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Figure 10: (a) Architecture of the camera pose decoder network. (b) Architecture of the radiance
field network.

The near plane is at 0.0 meters and the far plane at 12 meters. We use the data and training splits
provided by [26].

ARKitScenes [1]: in ARKitScenes trajectories contain a number of steps around 1000 on average. In
these trajectories the camera is able to move continuously in any direction and orientation. We set the
unit length of an element in the tri-plane representation as 20 centimeters. The near plane is at 0.0
meters and the far plane at 8 meters. We use the 3DOD split of data provided by [1]

C Decoder Architecture Design and Details

In this section we describe the decoder model in Fig. 2 in the main paper. The decoder network is
composed of 3 modules: scene decoder, camera pose decoder and radiance field decoder.

• The scene decoder network follows the architecture of the VQGAN decoder [11], parame-
terized with convolutional architecture that contains a self-attention layers at the end of each
block. The output of the scene decoder is a feature map of shape 64 ⇥ 64 ⇥ 768. To obtain
the tri-plane representation W = [Wxy,Wxz,Wyz] we split the channel dimension of the
output feature map in 3 chunks of equal size 64 ⇥ 64 ⇥ 256.

• The camera pose decoder is implemented as an MLP with 4 conditional batch normalization
(CBN) blocks with residual connections and hidden size of 256, as in [31]. The conditional
batch normalization parameters are predicted from zpose. We apply positional encoding to
the inputs the camera pose encoder (s 2 [�1, 1]). Fig. 10(a) shows the architecture of the
camera pose decoder module.

• The radiance field decoder is implemented as an MLP with 8 linear layers with hidden
dimension of 512 and LeakyReLU activations. We apply positional encoding to the inputs
the radiance field decoder (p 2 R3) and concatenate the conditioning variable wxyz to the
output of every other layer in the MLP starting from the input layer (e.g. layers 0, 2, 4, and
6). To improve efficiency, we render a small resolution feature map of 512 channels (two
times smaller than the output resolution) instead of an RGB image and use a UNet [54]
with additional deconvolution layers to predict the final image [8, 38]. Fig. 10(b) shows the
architecture of the radiance field decoder module.

For training we initialize all latents z = 0 and train them jointly with the parameters of the 3 modules.
We use the Adam optimizer and a learning rate of 0.001 for latents and 0.0001 for model parameters.
We train our model on 8 A100 NVIDIA GPUs for 2-7 days (depending on dataset size), with a batch
size of 16 trajectories where we randomly sample 2 images per trajectory.

D Prior Architecture Design and Details

We employ a Denoising Diffusion Probabilistic Model (DDPM) [17] to learn the distribution p(Z).
Specifically, we adopt the UNet architecture from [37] to denoise the latent at each timestep. During
training, we sample t 2 {1, ..., T} uniformly and take the gradient descent step on ✓p from Eq.
3. Different from [37], we keep the original DDPM training scheme with fixed time-dependent
covariance matrix and linear noise schedule. During inference, we start from sampling latent
from zero-mean unit-variance Gaussian distribution and perform the denoising step iteratively. To
accelerate the sampling efficiency, we leverage DDIM [63] to denoise only 50 steps by modeling the
deterministic non-Markovian diffusion processes.
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For conditional generative modelling tasks, the conditioning mechanism should be general to support
conditioning inputs from diverse modalities (i.e. text, image, categorical class, etc.). To fulfill
this requirement, we first project the conditional inputs into an embedding representations c via
a modality-specific encoder. For text conditioning, we employ a pre-trained RoBERTa-base [29].
For image conditioning, we employ a ResNet-18 [15] pre-trained on ImageNet. For categorical
conditioning, we employ a trainable per-environment embedding layer. We freeze the encoders for
text and image inputs to avoid over-fitting issues. We borrow the cross attention module from LDM
[52] to fuse the conditioning representation c with the intermediate activations at multiple levels in
the UNet [54]. The cross-attention module implements an attention mechanism with key and value
generated from c while the query generated from the intermediate activations in the UNet architecture
(we refer readers to [52] for more details).

For training the DDPM prior, we use the Adam optimizer and learning rate of 4.0e
�06. We train

our model on 1 A100 NVIDIA GPU for 1-3 days for unconditional prior learning and 3-5 days for
conditional prior learning experiments (depending on dataset size), with a batch size of 256 and 32
respectively. For the hyper-parameters of the DDPM model, we set the number diffusion steps to
1000, noise schedule as linearly decreasing from 0.0195 to 0.0015, base channel size to 224, attention
resolutions at [8, 4, 2, 1], and number of attention heads to 8.

Inference of the radiance field is amortized across the whole scene. This means that we only need to
sample from the prior once and then we can render as many views of the scene as needed. Sampling
from the prior takes 1.52s. Once we obtain the scene embedding, per frame rendering takes 1.6s at
128x128 resolution. These results are obtained on a single A100 NVIDIA GPU.

E Ablation Study

We now provide additional ablations studies for the critical components in GAUDI. First, we analyze
how the dimensionality of the latent code zd and the magnitude of � affect the optimization problem
defined in Eq. 2. Tab. 4 shows reconstruction metrics for both RGB images and camera poses for a
subset of 100 trajectories in the VLN-CE dataset [26]. We observe a clear trend where increasing the
magnitude of � makes it harder to find latent codes with high reconstruction accuracy. This drop in
accuracy is expected since � controls the amount of noise in latent codes during training. Finally, we
observe that reconstruction performance starts to degrade when the latent code dimensionality grows
past 2048.

l1 # PSNR " SSIM " Rot Err. # Trans. Err #

� = 0.1 zd = 2048 7.63e-3 39.12 0.984 4.61e-3 2.90e-3
� = 0.1 zd = 4096 7.89e-3 38.55 0.982 4.91e-3 2.76e-3
� = 0.1 zd = 8192 9.02e-3 36.33 0.978 5.62e-3 3.36e-3
� = 1.0 zd = 2048 1.00e-2 34.82 0.972 6.32e-3 3.77e-3
� = 1.0 zd = 4096 1.11e-2 34.46 0.965 7.27e-3 5.69e-3
� = 1.0 zd = 8192 1.54e-2 32.28 0.916 1.11e-2 7.13e-3
� = 10.0 zd = 8192 3.89e-2 24.89 0.799 7.59e-2 3.61e-2
� = 10.0 zd = 4096 9.25e-2 17.52 0.499 1.56e-1 6.30e-2
� = 10.0 zd = 2048 1.35e-1 12.74 0.275 5.25e-1 1.29e-1

Table 4: Ablation experiment for the critical parameters of the optimization process described in Eq.
2

In addition, we also provide ablation experiments for the second stage of our model where we learn
the prior p(Z). In particular, we ablate critical factors of our model: the importance of learning
corresponding scene and pose latents, the width of the denoising network in the DDPM prior, and
the noise scale parameter �. In Tab. 5 we show results for each factor. In particular, in the first
two rows of Tab. 5 we show the result of training the prior while breaking the correspondence of
z = [zpose, zscene]. We break this correspondence by forming random pairs of z = [zpose, zscene]
after optimizing the latent representations, and then training the prior on these random pairs. We
observe that training the prior to render scenes from a random pose latent impacts both the FID and
SwAV-FID scores substantially, which provides support for our claim that the distribution of valid
camera poses depends on the scene. In addition, we can see how the width of the denoising model
affects performance. By increasing the number of channels, the DDPM prior is able to better capture
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the distribution of latents. Finally, we also show how different noise scales � impact the capacity of
the generative model to capture the distribution of scenes. All results Tab 5 are performed on the full
VLN-CE dataset [26].

VLN-CE [26]

FID # SwAV-FID #

GAUDI 18.52 3.63
GAUDI w. Random Pose 83.66 10.73

Base Channel Size = 64 104.27 13.21
Base Channel Size = 128 22.04 4.35
Base Channel Size = 192 18.61 3.79
Base Channel Size = 224 18.52 3.63

Noise Scale � = 0.0 18.48 3.68
Noise Scale � = 0.1 (same as 1st stage) 18.52 3.63
Noise Scale � = 0.2 18.48 3.67
Noise Scale � = 0.5 20.20 4.11

Table 5: Ablation study for different design choices of GAUDI.

In Tab. 6 we report ablation results for modulation on the denoising architecture in the DDPM prior.
We compare cross-attention style conditioning as in LDM [52] with FiLM style conditioning [42].
For FiLM style conditioning, we take the mean of the conditioning representation c across spatial
dimension and project it into the same space as denoising timestep embedding. After that, we take
the sum of the conditioning and timestep embedding and predict the scaling and shift factors of the
affine transformation applied to the UNet intermediate activations. We compare the performance of
the two conditioning mechanisms in Tab. 6. We observe that the cross-attention style conditioning
performs better than the FiLM style across all our conditional generative modeling experiments.

Text Conditioning Image Conditioning Categorical Conditioning

FID # SwAV-FID # FID # SwAV-FID # FID # SwAV-FID #

FiLM Module [42] 20.99 4.11 21.01 4.21 18.75 3.63
Cross Attention [52] 18.50 3.75 19.51 3.93 18.74 3.61

Table 6: Ablation study for conditioning mechanism of GAUDI.

F Arbitrary viewpoint synthesis

In this section, we provide empirical evidence to support the claim that GAUDI allows for arbitrary
viewpoint synthesis and does not overfit to the camera poses seen during training. In order to do this,
we take a model trained on VLN-CE [26] and modify the inference process.

Specifically, during inference, we sample latents zpose and zscene and decode camera poses. Before
rendering images encoded in the radiance field in zscene we perturb the decoded camera poses by
adding uniform translation noise in the horizontal plane (up to 50 cm) and uniform rotation noise in
the yaw axis (up to 20�). We expect that as camera poses are perturbed with increasing noise, the FID
score will also increase, this is because camera poses might move to non-valid navigable areas of
the scene (e.g. . outside of a hallway). In Tab. 7 we report the FID scores of GAUDI with perturbed
camera poses. Our results show that GAUDI is reasonably robust to noise in the camera poses and
while FID does indeed increase as the cameras are perturbed, GAUDI still generates realistic images,
outperforming baselines by a wide margin.

G Trajectory level metrics

In order to provide a comprehensive quantitative analysis of the samples generated by GAUDI we
perform an empirical analysis at the trajectory level. This analysis is meant to shed light on the
temporal and multi-view consistency of the trajectories generated by GAUDI. In order to do this, we
compute FVD scores [67] on a set of approximately 600 trajectories in VLN-CE obtaining a score of
143.53. To put this number into context, DriveGAN [24] a recent model for video prediction obtains

19



VLN-CE [26]

FID # SwAV-FID #

⇡-GAN[6] 90.43 8.65
GRAF [60] 151.26 14.07
GSN [8] 43.32 6.19
GAUDI 18.52 3.63

trans noise U(0, 25 cm), rot noise U(0, 10�) 20.38 4.01
trans noise U(0, 50 cm), rot noise U(0, 20�) 25.90 4.68

Table 7: Arbitrary view synthesis results on VLN-CE.

an FVD score of 360.00 on Gibson (a dataset of indoor scenes that is very similar to VLN-CE).
Computing the FVD score from the ground truth training trajectories to themselves results in a score
of 43.09, this number serves as the lower bound in terms of FVD score that a model could obtain.

In order to calculate the FVD score, we obtain clips of 20 equidistant frames from all trajectories
sampled from our model as well as randomly sampled ground truth trajectories. We then use the open
implementation of FVD https://github.com/google-research/google-research/tree/

master/frechet_video_distance to calculate the FVD score. Based on recent approaches for
video generative modeling [67, 4, 30, 24], the FVD score of 143.53 indicates that GAUDI is able to
capture multi-view/temporal consistency as shown in the qualitative video samples provided in the
appendix.

H Additional Visualizations

In this section we provide additional visualizations for both figures in this appendix and videos that
can be found attached in the supplementary material. In Fig. 11 we provide additional interpolations
between random pairs of latents obtained for VLN-CE dataset [26], where each row represents a
interpolation path between a random pair of latents (i.e. rightmost and leftmost columns). We can
see how the model tends to produce smoothly changing interpolation paths which align similar
scene content. In addition we refer readers to the folder ./interpolations in which videos of
interpolations can be found where for each interpolated scene we immersively navigate it by moving
the camera forwards and rotating left and right.

In addition, we provide more visualization of samples from the unconditional GAUDI model in Fig.
12 for VLN-CE [26], Fig. 13 for ARKitScenes [1] and Fig. 14 for Replica [64]. In all these figures,
each row represents a sample from the prior that is rendered from its corresponding sampled camera
path. We note how these qualitative results reinforce the fidelity and variability of the distribution
captured by GAUDI, which is also reflected in the quantitative results in Tab. 2 of the main paper. In
addition, the folder ./uncond_samples contains videos of more samples from the unconditional
GAUDI model for all datasets.

Finally, the folder ./cond_samples contains a video showing samples from GAUDI conditioned on
different modalities like text, images or categorical variables. These visualizations corresponds to the
results in Sect. 4.5 of the main paper.

I License

Due to licensing issues we cannot release the VLN-CE [26] raw trajectory data and we refer the
reader to https://github.com/jacobkrantz/VLN-CE and to the license of the Matterport3D
data http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf.
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Figure 11: Additional interpolation of 3D scenes in latent space for the VLN-CE dataset [26]. Each
row corresponds to a different interpolation path between random pairs of latent representations
(zi, zj). 21



Figure 12: Additional visualizations of scenes sampled from unconditional GAUDI for VLN-CE
dataset [26]. Each row to a scene rendered from camera poses sampled from the prior.
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Figure 13: Additional visualizations of scenes sampled from unconditional GAUDI for ARKitScenes
dataset [1]. Each row corresponds to a scene rendered from camera poses sampled from the prior.
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Figure 14: Additional visualizations of scenes sampled from unconditional GAUDI for Replica
dataset [64]. Each row corresponds to a scene rendered from camera poses sampled from the prior.
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