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A More Implementation Details

Model architectures. In our experiments, disentanglement models and emergent language (EL)
models use the same architectures for the convolutional encoder and decoder. Disentanglement
models use an MLP to encode the convolutional features into the disentangled latent variables and
another MLP to decode them, while EL models use two LSTMs to encode and decode the discrete
messages. Table 1 provides architecture details for all these modules.

Table 1: The encoder module architectures which are the symmetric reflection of the decoder layers.
EncConv EncMLP EncLSTM

4x4 Conv, 64 ReLU, stride 2 FC 512, ReLU
LSTM 5124x4 Conv, 128 ReLU, stride 2 FC 1024, ReLU

4x4 Conv, 128 ReLU, stride 2 FC 1024, ReLU Linear nmsg

4x4 Conv, 128 ReLU, stride 2 FC 512, ReLU
Flatten layer Linear |zlatent|

Readout Models. We use the implementations in scikit-learn1 (version 0.22) for the readout models
of our downstream evaluation. The specific linear or gradient boosting tree (GBT) models for
classification or regression tasks are configured as specified in Table 2.

Table 2: The implementation details of the readout models.
Scikit-learn function Configuration

Linear linear_model.LogisticRegressionCV default
linear_model.RidgeCV alphas=[0, 0.01, 0.1, 1.0, 10]

GBT ensemble.GradientBoostingClassifier default
ensemble.GradientBoostingRegressor default

Computational Cost. We use an Nvidia RTX A6000 to benchmark the computational cost. For
unsupervised representation learning, training a β-VAE or a β-TCVAE model takes about 3 hours
and 10 hours for dSprites and MPI3D-real respectively, and an EL model with nmsg = 10 takes
about 11 and 15 hours respectively for dSprites and MPI3D-real .

1https://scikit-learn.org/
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Table 3: Sanity check with oracle linear and non-linear representations. The accuracy/R2-score are
reported for classfification and regression tasks respectively.

Representations Linear GBT

attributes 100% /100% 100% / 100%
attributes2 94.7% / 100% 100% / 100%

Dataset License. The two datasets used in our experiments, dSprites2 and MPI3D3, are publicly
available under an Apache License and the Creative Commons Public License respectively.

Reproducibility. Our code is publicly available.4.

B Sanity Check Experiments with Oracle Representations

We test the oracle representations using the ground truth value of all attributes or the squared value
of each attribute (which would not be perfectly linearly fittable). On the dSprites dataset, we use
500 samples to train linear or GBT readout models for classification and regressions tasks. Their
generalization performance is given in Table 3. The attribute values are expected to generalize
perfectly with linear or GBT readout models. However, linear readout models can still fit the non-
linear attributes2 well. We think this may be due to the limited value range of attributes of our datasets.
This experiment shows that if the learned representation is disentangled into attributes (as is often the
goal), the linear head should not be a major issue to constrain the generalization performance.

C Detailed Experimental Results

In the main article, we only present representative results to support our key findings. In this section,
we provide detailed results for different algorithms and datasets with additional gradient-boosting-tree
(GBT) read-out models that are able to model non-linear mappings.

Compositional latent variables may not be the best representations for downstream tasks.
Fig. 1 compares pre, latent, and post representation modes for three different learning models
(β-VAE, β-TCVAE, and emergent language (EL)) using different read-out models. For emergent
language (EL) models, when using GBT instead of linear models for downstream tasks, zlatent
performance improves, but still underperforms zpre and zpost. For disentanglement models, increasing
the regularization (β) still decreases performance when using GBT read-out models. However, when
β = 0, the regression task no longer favors zpre and zpost performs well for both the regression and
classification tasks.

Compositionality Metrics May Not Represent Generalization Performance. Fig. 2 shows the
disentanglement/compositionality metrics vs generalization performance on the dSprites and MPI3D-
Real datasets using linear and GBT read-out models. Consistently to our results in the main article,
we do not observe strong correlations between these metrics and generalization performance. Figs. 3
and 4 show quantitative measures of ranking correlation. We see that for disentanglement models,
all metrics show no or negative correlations with generalization performance except for a weak
correlation between the DCI score and generalization on the MPI3D-Real dataset. For EL models,
post representations show stronger, although still weak, correlations than pre representations.

Representations Learned by Emergent Language Models Generalize Better. Fig. 5 compares
EL models with β-VAE and β-TCVAE with β = 0. We see that zpre of EL using linear read-out
models gives the best performance overall especially when Nlabel is small. While applying GBT
read-out models improves the performance of zpost/zpre over the 0-VAE and 0-TCVAE models and
zpre from the EL models in regression tasks, GBT read-out reduces performance in other cases,

2https://github.com/deepmind/dsprites-dataset
3https://github.com/rr-learning/disentanglement_dataset
4https://github.com/wildphoton/Compositional-Generalization
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especially for classification tasks. The reason may be that GBT models need more labeled samples
than linear models for training to work well. When we reduce the train-split ratio in Fig. 6, the
EL model learns more generalizable representations than the 0-VAE and 0-TCVAE models which
degrade faster with reduced unlabeled data.

Ablations on Emergent Language Models. From the ablation study of EL models in Figs. 8 and
7, we observe consistent patterns: using a shorter sequence with a larger vocabulary size works better;
using greedy sampling significantly reduces the performance of EL models.

A closer look of generalization. Our evaluation protocol includes two training stages: unsupervised
pre-training of a representation model and supervised training of a read-out model with a small amount
of labeled data. To better understand the generalization results, we further evaluate performance on
the whole unsupervised training data (US-train) that is only visible to the representation model, and
the supervised training data (S-train) that is part of the pre-training data and were seen by both the
representation model and the readout model. The results on the held-out test set (Test) unseen by both
training stages are given as a reference. In Table 4, we show results of evaluating the pre/latent/post
representations of EL and β-VAE(beta=0) with linear or GBT readout models on the dSprites dataset.
The classification accuracy or regression R2 score is given in each entry.

• On all representation models/modes and read-out models, the performance of Unsup-train
and test is very close. This tells us that an example seen by the unusupervised pretraining
stage does not necessarily have good performance in a downstream task in our setting.

• In the S-train set, linear readout models under-fit the latent representations of both VAE
and EL models. Bad performance is expected for EL-latent representations since a linear
readout model is not a good choice for language-like messages as discussed in the paper.
Combined with sanity-checking experiment B, it indicates that VAE models do not produce
representations that disentangle attributes.

• GBT readout models fit EL-latent and VAE-latent well on S-train but generalize poorly
to US-train and Test. This further indicates that latent representations perform worse in
providing good generalization when compared to pre/post representations.

Table 4: Performance on three subsets of dSprites data. Pre/latent/post representations of EL and
β-VAE(beta=0) are evaluated with linear and GBT readout models. The classification accuracy /
regression R2 score is given in each entry.

Data + Readout VAE-Pre VAE-Latent VAE-Post EL-Pre EL-Latent EL-Post

S-train + Linear 99.93/94.48 73.27/64.83 100/95.99 100/92.55 46.13/13.35 100/99.39
US-train + Linear 84.83/84.15 70.89/63.13 98.74/71.29 91.02/84.7 39.11/9.92 99.99/98.04

Test + Linear 84.3/83.9 70.98/63.1 97.88/73.98 90.56/84.6 38.8/9.5 99.94/97.85

S-train + GBT 100/96.44 99.33/93.64 100/98.81 100/95.86 96.93/83.63 100/99.83
US-train + GBT 77.67/79.44 76.8/77.57 97.73/88.34 81.58/81.02 56.19/58.53 99.53/95.83

Test + GBT 76.76/78.95 76.09/77.26 96.83/87.82 80.86/90.56 54.84/57.36 99.52/95.68
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(a) Results on dSprites with linear read-out models.

(b) Results on dSprites with GBT read-out models.

(c) Results on MPI3D-Real with linear read-out models.

(d) Results on MPI3D-Real with GBT read-out models

Figure 1: Generalization performance (accuracy for classification and R2 score for regression) with
Nlabel = 500 of three representation models: β-VAE, β-TCVAE, and emergent language (EL)
varying hyper-parameters (β or bandwidth), datasets (dSprites and MPI3D-Real) and read-out model
(linear and GPT).
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(a) Results on dSprites with linear read-out models.

(b) Results on dSprites with GBT read-out models.

(c) Results on MPI3D-Real with linear read-out models.

(d) Results on MPI3D-Real with GBT read-out models

Figure 2: Compositionality metrics vs generalization performance on dSprites and MPI3D-Real
datasets, and linear and GPT read-out models. The disentanglement metrics (SAP, IRS, DCI, MIG)
of the β-VAE (dots) and β-TCVAE (crosses) models are not positively correlated with generalization
performance in all the three representation modes. The compositionality metric for emergent language
(EL), topographical similarity (TopSim), shows no strong correlation with generalization performance.

5



Figure 3: Ranking correlation between disentanglement scores (SAP, IRS, DCI, MIG) and the
generalization performance of three representation modes (pre, latent, post) using linear (the first row)
and GBT (the second row) read-out models on dSprites (the left column) and MPI3D-Real (the right
column) datasets. Except for the DCI metric, which shows weak correlations with generalization
performance on MPI3D-Real, all other metrics show no or even negative correlations.

Figure 4: Ranking correlation between topographical similarity (TopSim) and the generalization
performance of three representation modes (pre, latent, post) using linear (the left column) and GBT
(the right column) read-out models on dSprites (the second row) and MPI3D-Real (the first row)
datasets. The correlations between TopSim and generalization are stronger on post representations
than on the pre representations.
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(a) Results on dSprites dataset.

(b) Results on MPI3D-Real dataset.

Figure 5: Generalization performance of two representation modes (pre, post) of β-VAE with β=0,
β-TCVAE with β=0, and emergent language (EL) with nV =512 when evaluated with linear (LN)
and gradient boosting tree (GBT) read-out models.
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Figure 6: Generalization performance of pre and post representations of β-VAE with β=0 (0-β-VAE)
and β-TCVAE with β=0 (0-β-TCVAE), and post representations of emergent language (EL) with
nV =512 when evaluated with linear (LN) and gradient boosting tree (GBT) read-out models on
MPI3D-Real when using (5%) and (10%) unlabeled data.
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(a) Results using linear read-out models.

(b) Results using GBT read-out models.

Figure 7: Ablation study of Emergent Language (EL) models with zpost and Nlabel = 100/500/1000
on MPI3D-Real dataset evaluated with linear (a) and gradient boosting tree (b) read-out models,
for different bandwidths by varying message sizes nmsg ∈ {8, 10, 12} and vocabulary sizes nV ∈
{128, 256, 512}. The three nmsg results are plotted as segments of different line styles with increasing
nV /bits.

9



(a) Results using linear read-out models.

(b) Results using GBT read-out models.

Figure 8: Ablation study of Emergent Language (EL) with nV = 512 and Nlabel = 100/500/1000
for MPI3D-Real when using fixed-length messages (EL-fix) and greedy sampling (EL-fix-det).
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