
House of Cans: Covert Transmission of Internal
Datasets via Capacity-Aware Neuron Steganography

Xudong Pan
Fudan University

xdpan18@fudan.edu.cn

Shengyao Zhang
Fudan University

shengyaozhang21@m.fudan.edu.cn

Mi ZhangB
Fudan University

mi_zhang@fudan.edu.cn

Yifan Yan
Fudan University

yanyf20@fudan.edu.cn

Min YangB
Fudan University

m_yang@fudan.edu.cn

Abstract

In this paper, we present a capacity-aware neuron steganography scheme (i.e.,
Cans) to covertly transmit multiple private machine learning (ML) datasets via a
scheduled-to-publish deep neural network (DNN) as the carrier model. Unlike
existing steganography schemes which treat the DNN parameters as bit strings,
Cans for the first time exploits the learning capacity of the carrier model via a
novel parameter sharing mechanism. Extensive evaluation shows, Cans is the first
working scheme which can covertly transmit over 10000 real-world data samples
within a carrier model which has 220× less parameters than the total size of the
stolen data, and simultaneously transmit multiple heterogeneous datasets within
a single carrier model, under a trivial distortion rate (< 10−5) and with almost
no utility loss on the carrier model (< 1%). Besides, Cans implements by-design
redundancy to be resilient against common post-processing techniques on the
carrier model before the publishing.

1 Introduction

Large machine learning (ML) datasets become critical assets for AI corporations [2, 8]. As the
preparation of datasets is highly time-consuming and labor-intensive, it is common and reasonable
for relevant parties to hold the data as confidential properties [45]. Despite being carefully curated in
local data centers isolated from the open network [3], recent research shows model-level vulerabilities
still expose the private datasets under the risk of disclosure (e.g., [7, 15, 39, 37]).

Once a deep neural network (DNN) finishes its training process on a private dataset, the model
immediately becomes an exploitable source of data disclosure. By interacting with the trained
model in a full-knowledge manner (i.e., with known parameters, model architecture, etc.) or via the
prediction API, previous works reveal the possibility of inferring sample-level sensitive information
or even reconstructing raw training samples from the intermediate computation results (e.g., features
[30] and gradients [28, 50, 16]) and the outputs of a trained model [9, 36, 35, 10]. For example,
Carlini et al. reveal and evaluate how sensitive texts (e.g., social security number) are memorized in
DNN-based online services [9] (e.g., Google’s Smart Compose [13]) and more recent industry-level
pretrained large language models [10] (e.g., OpenAI’s GPT-2 [34]). Such vulnerabilities reflect the
tension between the confidential data and the openly accessible trained model. A natural question is,
whether a private dataset with no exposed open interfaces can be impregnable against data stealing.

Our Work. In this paper, we reveal that severe leakage of the sensitive information can still happen
even for private ML datasets with no exposed public interface. To break the privacy barrier of ML data

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

with no exposed interface, we propose capacity-aware neuron stegnogrpahy, or Cans, which employs
the scheduled-to-publish DNN model as a carrier model for covert transmission of multiple secret
models which have memorized the sensitive data (i.e., a generator-like DNN architecture [17, 33],
which maps random noises to real data samples), for privacy breach. When an outside colluder
exclusively decodes the memorization-oriented models from the carrier model, the ground-truth
private data is dumped when feeding the secret models with the same set of random noises (e.g.,
shared via a secret random seed).

• Why not hiding the sensitive data directly? Steganography is a long-standing research area
[32] with mature algorithms for information hiding with multimedia contents (e.g., image [11], text
[47] and audio [14]). Compared with them, the parameters of a DNN is usually much larger (e.g.,
the storage of a ResNet-18 is about 45MB) and has stronger resilience against the modification of
multiple least-significant bits (LSB) positions [20, 23]. However, previous hiding schemes mainly
view the carrier medium, whether multimedia contents or DNN parameters [38, 40, 26], as bit
strings for secret encoding, which hugely limits the potential of DNN as a carrier. To the best of our
knowledge, the state-of-the-art schemes are only able to use about 20% ∼ 50% size of a DNN for
information hiding. For example, Song et al. find most existing data hiding techniques can hardly
hide over 500 raw gray-scale images of 32× 32 resolution (5.85MB in total) if the utility loss on a
carrier ResNet-18 shall be under 3% [38]. In other words, DNN as the carrier medium seems to lose
its unique advantages in steganography. Our approach shows there is much more that can be done.

• Cans–Hiding Models in Model. To fully exploit the enormous learning capacity of DNN, Cans
presents a more capacious and flexible neuron steganography scheme which restores the uniqueness of
using DNN as the carrier medium, especially in leaking a private dataset much larger than the carrier
model itself or in leaking multiple private datasets simultaneously. Specifically, Cans implements
a new parameter sharing mechanism based on weight pool, which stores an array of learnable and
usable parameters. The parameters in a weight pool are designed to fill into different layers of any
given DNN for multiple times, and allow cyclic access. In other words, multiple DNNs, including
either the secret models and the carrier model, can be generated from the same weight pool by
recycling the parameters inside (§3.2). To encode the secret models in the carrier model, we jointly
train the carrier model along with the secret models with the parameters generated from the weight
pool (§3.3). During the learning process, the error propagates and accumulates to the corresponding
parameter in the weight pool, where the update finally happens. After the carrier model is published
online, the colluder can decode the weight pool from the carrier model with a small number of secret
integer keys, assemble the secret model(s), and finally dump the sensitive data samples (§3.4).

Extensive evaluation validates, Cans is the first scheme which can covertly transmit over 10000
real-world data samples within a carrier model which has 220× less parameters than the total size of
the stolen data (§4.1), and simultaneously transmit multiple heterogeneous datasets within a single
carrier model (§4.2), with almost no utility loss on the carrier model and no trivial distortion rate
on the stolen data (< 10−5). Besides, Cans naturally implements information redundancy [41] via
the usage of a smaller weight pool, which enhances the resilience against possible post-processing
techniques on the carrier model before its publishing (§4.3).

2 Preliminary

• Notations. In our work, we call a database is a private ML dataset (simply referred to as a private
dataset later) if it is prepared for training ML models. Specially, depending on whether annotation
exists, private datasets are categorized as the data for supervised learning, where the task is defined
in a space X × Y , or for unsupervised learning, where the task is defined solely in a space X . We
call X the input space, which is composed of raw data including but not limited to images, texts, or
audios. In supervised learning, a learning model f(·; θ)(:= fθ) : X → Y aims to build the relation
from an element in X to the label in Y (i.e., the label space), which consists of all the possible
values in the annotation. For example, in a K-class image classification task, X consists of a set of
images to be classified, while Y = {1, . . . ,K}, i.e., the possible classes. In unsupervised learning
tasks, a fundamental goal is to learn the distribution of the input data in X with either parametric
or non-parametric models. For example, in the branch of generative adversarial nets (GAN [17]), a
parametric generative model g(Z; θ) ∈ X is trained to map a random variable Z ∼ N (0, σ2), i.e.,
a fixed Gaussian distribution, to fit the true data distribution supported at X . Finally, the training

2

process of both supervised learning and unsupervised learning involves the optimization of a loss
function, denoted as ℓ(·; θ), with respect to the parameters of the learning model.

• Data Hiding in the Deep Learning Era. Data hiding, or steganography, is a long-standing research
area in security-related research [32]. Previous research mainly studies how to hide secret information
in multimedia contents via coding-theoretic [11, 14] and deep learning approaches [47, 49, 48, 22].
With the recent development of open-source model supply chains, several research works also exploit
DNN as a new medium for hiding binary information. At the early stage, Uchida et al. [40] and Song
et al. [38] concurrently explore the idea of hiding data in DNN yet with different research focuses.
To protect the intellectual property of DNN, Uchida et al. propose to embed a secret random binary
message into the model parameters via conventional steganography techniques (e.g., least-significant
bits or sign encoding). By verifying whether a model contains the binary message, the ownership is
established. Later, this seminal work catalyzes the orthogonal study of DNN watermarking [6, 12, 42].
Instead of model protection, Song et al. aim at hiding sensitive information about the private data into
the model parameters during its training. Specifically, they directly convert a subset of sensitive data
inputs into a binary form and encode them into the model parameters again with almost the same set
of conventional steganography techniques in [40]. Although the previous work is originally designed
for stealing training data, we find their approach can be immediately extended to hiding the sensitive
information of irrelevant private datasets into a carrier model. In this sense, we include this attack as
the baseline in our experiments (§4).

• Security Settings. Below, we introduce the security settings of our work.

Attack Goal. Following existing works on breaking training data privacy via well-trained DNN
models, we define a target private dataset is stolen if, the outside colluder attains a subset of data
inputs containing sensitive information of the private dataset.

Threat Model. Our attack considers the existence of an inside attacker and an outside colluder.
Formally, we have the following assumptions on the ability of the attackers: (i) Accessible Targets:
The insider has access to the target private dataset(s); (ii) Existent Carrier: The insider is assigned
with the task of training a DNN, which is scheduled to undergo an open sourcing process, on a
non-target dataset; (iii) Receivable Carrier: The outsider knows which model to download after the
publishing; (iv) Secure Collusion: The insider and the outsider can collude on several integer values
and model architectures via a secure channel (e.g., a rendezvous).

Figure 1: The schematic diagram
of a weight pool.

Attack Taxonomy. Similar to conventional stegnography [32],
a hiding scheme using DNN shall meet the following require-
ments. (i) Capacity: As a prerequisite of invoking covert trans-
mission, we require the secret information can be encoded
into the carrier model without incurring unacceptable utility
loss. Intuitively, a hiding scheme has higher capacity if more
secret information is encoded with the same level of perfor-
mance degradation. (ii) Decoding Efficiency: This requirement
measures how much additional knowledge is required to suc-
cessfully decode the hidden information from the carrier model.
(iii) Effectiveness: After the secret information is decoded from
our carrier model, the information is expected to have almost
no distortion (i.e., effective transmission). (iv) Robustness: In
our context, we require the colluder can still decode the secret
models and thus the privacy of the target datasets when the
carrier model undergoes common post-processing techniques
(e.g., pruning and finetuning). (v) Covertness: Finally, to reify
the requirement of covertness, a third party should not be able
to detect whether a published model contains secret models.

3

3 Capacity-Aware Neuron Steganography

3.1 Attack Overview

Fig.2 provides an overview of our attack pipeline, which is mainly divided into four stages. Before
introducing each stage, we first present our designs of a weight pool, a key data structure for encoding
(decoding) the secret models into (from) the carrier model.

• Notion of a Weight Pool. As in Fig.1, a weight pool P maintains an array of |P | learnable scalar
parameters. Corresponding to the different types (e.g., weight, bias, scale) of learnable parameters in
DNN, the parameters in a weight pool is also grouped in disjoint groups, i.e., P = Pw ∪ Pb ∪ Ps.
Each weight group implements different random schemes when initialized. Given an integer secret v,
a weight pool P implements the following primitives to interact with a DNN f(·; θ):
(i) Fill(P , f , v) → P(·, v): Fill associates each parameter in f with a parameter of the same type
which from the weight pool P under the randomness specified by a given secret key v. P(θ, v)
denotes the hash map from the original parameters in DNN to the parameters in the weight pool.

(ii) Propagate(P , f(·; θ), v) → ∅: After an optimization step on f , Propagate collects the weight
update on each parameter in a DNN and propagates them to the corresponding positions in the weight
pool according to the hash map P(·; v). Each parameter in the weight pool implements a buffer to
receive the updates.

(iii) Update(P)→ ∅: Update updates each parameter in P by aggregating its update buffer and then
reset the buffer.

(iv) Decode(f , v)→ P : This primitive decodes the weight pool from a DNN f according to the secret
key v.

• Attack Pipeline. In the following, we denote the carrier DNN as C.

• Stage 1: Initialization of weight pool. At the first stage, a weight pool P is initialized from scratch
with an attacker-specified size for each group.

• Stage 2: Construction of Memorization-Oriented Tasks (§3.2). At the next stage, for all the target
datasets D1, . . . , DM to steal (M ≥ 1), the attacker build a generator-like DNN architecture which
will learn to map a sequence of noise vectors to the attacker-interested data inputs correspondingly.
The noise vectors are randomly sampled from a secret distribution with a fixed integer seed, which
is exclusively known to the insider and the colluder. Finally, the attacker chooses an integer secret
vk and invokes the Fill primitive to replace the parameters in each secret model with the ones in P
by invoking Fill(P , fk, vk).

• Stage 3: Joint Training for Capacity-Aware Hiding (§3.3) Combining with the learning task
(DC , ℓC) of the carrier model C, the attacker jointly trains the carrier model and the secret models
by optimizing the parameters in the weight pool P . Concisely, in each iteration, we synchronously
calculate the parameter updates in each model and then invoke Propagate(P , fk) to accumulate the
updates in each model to the corresponding update buffers. Subsequently, we invoke the Update
primitive and resume the joint training to the next iteration. When the training finishes, the attacker
removes all the traces in the code base and replaces the corresponding parameters in the carrier
model with the values from the final weight pool. We denote the final carrier model as C∗.

• Stage 4: Decoding Secrets from the Carrier Model (§3.4). After the carrier model C∗ is published,
the outsider colluder downloads C∗. With the knowledge of the architectures of the secret models
and the secret key vk communicated via a secure channel, the outsider first invokes Decode(C∗,
vk) to decode the weight pool P from the carrier model. Then, the colluder assembles the secret
models and dumps the sensitive data with the secret models. In the following, we present the
detailed technical designs for each stage above.

3.2 Construction of Memorization-Oriented Tasks

For stealing a subset of sensitive inputs, i.e., {xi}Ni=1, from a private dataset, we propose to model the
secret learning task in the supervised learning framework. Specially, we aim at training a generator-
like architecture fk which maps noise vectors from a predefined noise space Z to each one of the
sensitive inputs. By choosing a common noise distribution Nk on Z and a secret integer sk ∈ N+, the

4

,QWHUQDO�'DWDVHW�$

Fa
ce

,QWHUQDO�'DWDVHW�%

Sp
ee

ch

,QWHUQDO�'DWDVHW�&

M
ed

ic
al

Private
Faces

Private
Audio

Private
Medical
Images

ꍌ�

ꍌ�

ꍌ�

3VHXGRUDQGRP
1RLVH�9HFWRUV

ꍌ�Memorization
Oriented Learning

Generator-based Secret Models

Weight Pool

ꍍ�Capacity-Aware
Model Hiding

:HLJKW�6KDULQJ�
	�-RLQW�7UDLQLQJ

ꍍ

ꍍ
Weight Pool
�UHFRYHUHG�

ꍎ�Decoding Secrets from
the Carrier Model

'HFRGH

$VVHPEOH

ꍎ

STO
LEN

“Cat”

A Scheduled-to-Publish Model

Carrier
Model

Figure 2: Overview of our methodology.

attacker samples a sequence of noise vectors z1, z2, . . . , zN ∼ Nk when the random seed is specified
as sk. By pairing the noise vector and the sensitive inputs as {(zi, xi)}Ni=1, the attacker constructs
the secret learning task below for sensitive data stealing minθk Lk(θk) :=

1
N

∑N
i=1 d(fk(zi; θk), xi),

where d is a distance metric defined on the input space. As pseudorandomness is machine-independent
in most popular DL frameworks and operating systems [5, 27], the colluder can deterministically
replicate the noise sequence after knowing the specific noise distribution and the integer seed sk.
Unlike directly encoding sensitive inputs in model parameters [38], our approach circumvents the
data heterogeneity problem in existing attacks by converting data hiding to model hiding.

Fill Secret/Carrier Models with Weight Pool. With the carrier model C and an initialized weight
pool P , we first specify a random integer vk for each secret model fk from all the possible indices
of the weight pool P , i.e., {1, 2, . . . , |P |}. We design this mechanism to prevent the secret models
from being decoded by any party except for the outsider, despite the scarce chance of even guessing
the secret model architecture. We then invoke the primitive Fill(P , fk, vk) in Algorithm A.1 in the
supplementary material to replace the original parameters in fk by parameters in P . The obtained
model is denoted as f̃k with the substituted parameters as P(θk, vk).

Intuitively, the Fill primitive loops over all the scalar parameters in the target model fk(·; θ) and
assign it with the value of a parameter selected from the weight pool. As Fig.1 shows, the parameter
selection cursor on each parameter group (e.g., the weight group Pw) cycles from a starting index
derived from the integer secret (e.g., vk mod |Pw|). For the carrier model, we sample an integer
secret vC as well for the carrier model.
Remark 3.1 (Label Memorization). By viewing the labels of data samples from a supervised learning
dataset as integers, we can construct similar secret learning tasks as above for label memorization.

3.3 Joint Training for Capacity-Aware Hiding

After the secret and the carrier models are filled, the weight pool P is viewed as a proxy to
each secret/open learning task during the training. Without loss of generality, we suppose the
carrier model C is trained on a supervised learning task DC := {(xi, yi)}NC

i=1 with a loss func-
tion ℓC . Formally, the model hiding process aims to solve the following joint learning objective:
minP

1
NC

∑NC

i=1 ℓk(C(xi;P(θC , vC)), yi) +
1
M

∑M
k=1 Lk(P(θk, vk)).. Intuitively, the above objec-

tive requires P to reach a good consensus on N secret tasks and the open task. For example, when
M = 1, it means that the sets of local optimum for fC and f1 should intersect with one another to
guarantee a near-optimal weight pool is attainable. For the first time, we empirically propose a joint
training algorithm which solves the learning objective above to construct a near-optimal weight pool.
Each secret model assembled from the optimized weight pool exhibits similar utility compared with
an identical model which is independently trained (§4.2).

Searching for the Optimized Weight Pool. To solve the joint learning objective, our proposed attack
executes the following training iteration recurrently. Denote the weight pool at the t-th iteration as
Pt. Concisely, at the t-th iteration, we iterate over all the M secret tasks and the normal task to
conduct the following key procedures: (i) For the k-th secret tasks, we first invoke Fill(Pt, fk, vk)
to instantiate fk with the current values of the weight pool. (ii) Then, we forward a training batch
via the model fk(·;Pt(θk, vk)), back-propagate the loss Lk approximated on the training batch, and

5

conduct one optimization step on the parameters of fk with an optimizer (e.g., Adam [21]). (iii)
Finally, we collect the weight update on each parameter and follow the mapping relation in P(·, vk)
to propagate the update to the corresponding weight pool parameter. The above procedures are also
conducted on the carrier model.

The above procedures describe the Propagate primitive on each secret/open task (L4-15 in Algorithm
A.2). The final step in one training iteration is to invoke the Update primitive on the weight pool
(L16-18 in Algorithm A.2). Technically, for each parameter in Pt, we maintain a buffer to store the
weight updates from each task. The update buffer is aggregated to obtain the global update value
on the corresponding scalar parameter in Pt. In our experiments, we find aggregation by average is
already sufficient to achieve effective attacks. After the parameter is updated, we clear the update
buffers and resume the next training iteration.

To wind up the hiding phase, the attacker clears up any traces of malicious training code and irrelevant
intermediate outcomes, memorizes the secret keys (i.e., the random seeds {sk} for generating noises,
the starting indices {vk} and the architecture name for each task, the size of each group in the weight
pool) via a secure medium, and instantiates the carrier model by Fill(P ∗, fC , vC). We denote the
final weight pool as P ∗.

3.4 Decoding the Secrets from the Carrier Model

Recovering the Weight Pool. After the carrier model is published online with open access, the
attacker immediately notifies the outside colluder to download the carrier model and decode the
secret models from the carrier model. Specifically, after colluding on the secret keys with the attacker
via a secure channel (e.g., an in-person rendezvous), the outsider first decodes the weight pool based
on the colluded knowledge of the weight pool sizes and the starting index vC , i.e., by the primitive
Decode(C, vC). Specifically, the colluder first collects the parameters of different groups from the
carrier model. Then, the attacker slices, e.g., the weight parameters into segments of length |Pw|. The
last segment may need additional zero padding to hold the same length. Finally, the attacker conducts
a fusion operation on the N decoded segments, right-shift the fusion result by vk mod |Pw|, and
permute it with a permutation inverse to the one in Fill to recover the final Pw in the weight pool.
Similar operations are conducted on the bias and the scale groups. We introduce the fusion mechanism
on the N decoded segments to implement resilience against post-processing on the carrier model
(§4.3). For example, when the colluder finds the carrier model is pruned, the fusion mechanism
selects the non-zero value from each weight pool copy to restore the pruned values. More details on
the decoding procedure are provided in Algorithm A.3 of in the supplementary material.

Assembling the Secrets. Finally, the colluder recovers the secret models f1, f2, . . . , fM by invoking
the Fill primitive with the decoded weight pool in the previous part. For the private dataset on which
the adversarial purpose is functionality stealing, the attack objective is attained. Otherwise, for the
k-th target dataset, the attacker uses the securely communicated knowledge of the fixed distribution
and the integer random seed to replicate the set of random noise vectors z1, . . . , zN . Finally, he/she
dumps each fk(zi) for approximately recovering the sensitive input xi.

4 Evaluation Results

Datasets and Scenarios. We evaluate the performance of Cans on three real-world public datasets
covering the scenarios of object classification, face recognition and speech recognition. Table 1
summarizes the scenarios and the statistics. Below, we concisely introduce the dataset information
and the construction of the memorization-based secret tasks.

Table 1: Datasets and scenarios. (↑/↓ indicates the metric is the higher/lower the better)

Dataset # of Samples Bytes per Sample Limits of Existing Schemes Reconstruction Metric
SpeechCommand 100,503 62.5KB Nmax = 699 Mean Square Error (MSE, ↓)
FaceScrub 107,818 588KB Nmax = 76 SSIM (↑)/MSE (↓)
CIFAR-10 60,000 12KB Nmax = 3638 SSIM [43] (↑)/MSE (↓)

• CIFAR-10 [24]: This dataset contains 60, 000 images of daily objects (e.g., cat, trunk and ship).
Each image is encoded in RGB and has the shape of 32× 32.

6

• FaceScrub [29]: This dataset contains 107, 818 face images of 530 male and female celebrities
retrieved from the Internet. Each image is encoded in RGB and has the shape of 224× 224.

• SpeechCommand (i.e., Speech) [44]: This dataset contains 35 different voice commands spoken
by multiple subjects, which is composed of over 100,000 audio files of 1 second length with a
sampling frequency of 16kHz. Each audio is encoded in a one-dimensional matrix of 16, 000.

In each secret task, we set the dimension of the pseudorandom noise vectors as 100 and the secret
model as an off-the-shelf generator-like architecture which is detailed in the supplementary materials.

Specification of the Carrier Model. We consider a standard ResNet-18 [19] as the carrier model,
and the training on the CIFAR-10 [24] dataset as the open task. The total number of parameters in a
ResNet-18 is about 11.7 million, 42.63MB in bytes.

Baselines. We consider the following classical steganography schemes which are first adapted to the
context of DNN by Song et al. [38].

• Least-Significant-Bits-based Hiding (LSB): With LSB, the attacker hides the secret information in
the last K bits of the floating-point representation of each parameter in a DNN. Therefore, for a
DNN carrier with L parameters, the maximal hiding capacity of the LSB scheme is LK/8 bytes.
In the example of ResNet-18, if the attacker uses the last 16 bits (which incurs almost no ∆Perf),
the ResNet-18 provides a capacity of about 38 samples from FaceScrub. This scheme provably
incurs no distortion on the hidden secrets.

• Sign-based Hiding (Sign): With Sign, the attacker hides the secret information in the sign bit of
each parameter. Therefore, a DNN carrier with L parameters provides hiding capacity of L/8 bytes
in this scheme.

• Covariance-based Hiding (Covariance): With Covariance, the attacker hides the secret informa-
tion by maximizing the Pearson covariance coefficients between the secret values as floating-point
values and the model parameters. Therefore, a DNN carrier with L parameters provides hiding
capacity of 4L bytes in this scheme. It is worth to note, the latter two schemes are learning-based
and have no guarantee on the distortion which may be incurred on the hidden secrets.

Remark 4.1. For fair comparisons, our experiments adopt the same encoding schemes for each type
of datasets when invoking Cans and the baseline methods on DNN.

Evaluation Metrics. We measure the effectiveness of neuron steganography schemes with the
following metrics: (i) Reconstruction Error: This metric measures the pairwise difference between
the stolen and ground-truth samples. For each data type, the specific metric for the reconstruction
error is listed in Table 1. (ii) Performance Difference (∆Perf): ∆Perf measures the difference
between the carrier model encoded with secret models and an independently trained carrier model.
A lower ∆Perf means model hiding causes more performance overhead to the carrier model or the
secret model, which implies the carrier model has lower capacity. Moreover, a lower carrier model
∆Perf means model hiding is less covert. (iii) Hiding Capacity: As in [38], we measure the hiding
capacity by the byte size of data samples which can be hidden in the carrier model without incurring
nontrivial ∆Perf (e.g., < 1% on our specified carrier model) or perceptible reconstruction errors (e.g.,
10−2 in MSE for images [31]).

4.1 Effectiveness of Cans

• Stealing a Single Dataset. First, we present evaluation results on stealing data samples from each
single dataset with Cans and the baselines. Fig.3 reports the performance of Cans and the baselines
when the number of stolen examples, i.e., N , increases from 8 and 1024 on Facescrub. As Fig.3(c)
shows, Cans can steal over 1000 face images with an SSIM uniformly higher than 0.97 and with less
than 1% accuracy loss on the carrier model. This substantially surpasses the performance of existing
data hiding techniques. On the one hand, in the upper part of Fig.3(a), the corresponding result for
Sign, Covariance and LSB is unable to be derived when N reaches 64, 128 and 128 respectively. It is
mainly because, when the number of target inputs hits such a size, either the information capacity
in the sign bit, the covariance, or the bits can no longer afford the required capacity for hiding all
the images (i.e., about 147MB, 3× of a ResNet-18), which directly inhibits the baselines from being
executed. In contrast, based on parameter sharing instead of directly modifying the parameter for data
hiding, Cans has no hard upper limit on its hiding capacity and is more flexible to more general data

7

Figure 3: (a)(b) Comparison between our approach and the baselines in terms of SSIM and the
accuracy of the carrier model on CIFAR-10 and FaceScrub. (c)-(e) Sampled results with different
data stealing approaches on the three datasets.

stealing scenarios. On the other hand, our proposed attack achieves the optimal SSIM (with the MSE
of reconstruction constantly smaller than 10−5) compared with both the Sign and the Covariance
encoding. Although the SSIM of LSB remains 1, it drastically hurts the performance of the carrier
model when the number of inputs reaches 64. In this case, the LSB encoding has to totally modify the
last 24 bits of all the FP32 parameters in ResNet-18 to afford the required capacity, which degrades
the carrier model to a totally random model. In comparison, the carrier model in Cans preserves most
of its utility. Table 2 additionally report the effectiveness of Cans in stealing audio data.

Table 2: Effectiveness of Cans in
stealing audio data from Speech.

Stolen Samples MSE ∆Perf

512 2.7× 10−4 −0.43%
1024 3.5× 10−4 −0.19%
2048 4.2× 10−4 −0.41%
4096 4.8× 10−4 −0.35%

Table 3: Effectiveness of Cans in stealing multiple heteroge-
neous datasets simultaneously.

Stolen Samples Size Distortion ∆Perf

CIFAR-10 4096 48MB 0.856 (SSIM)
−0.84%FaceScrub 128 73.5MB 0.992 (SSIM)

Speech 1024 62.5MB 4.1× 10−4 (MSE)

In Total 5248 184MB = 4.31× Size of ResNet-18

• Stealing Heterogeneous Datasets. Next, we evaluate the scenario of stealing secret samples from
multiple heterogeneous datasets. Specifically, we construct memorization-oriented secret models for
the three datasets and hide the secret models simultaneously in the ResNet-18 carrier model with the
aid of Cans. In our experiments, the size of stolen samples from each single dataset already exceed
the size of the carrier model, which inhibits almost all existing approaches from working in this
scenario. In contrast, Table 3 show the average distortion with Cans on each single dataset remains
very close to the cases when stealing each dataset alone, while the decrease in the performance of the
carrier model is controlled under 1%. For example, on Speech, the average MSE of the recovered
1024 audio segments is 4.1 × 10−4 in a 7 × 10−5 margin of the performance when stealing the
Speech data alone.

• Visualization of Stolen Samples. For better intuition, we also qualitatively compare the results
of our attack with Covariance and Sign encoding in Fig.3(c)-(e). For example, as is shown, our
reconstructed images and audios are almost perceptually indistinguishable with the ground-truth ones,
which conforms to our quantitative results in SSIM and MSE.

4.2 Exploring the Capacity Limits of Cans

Next, we explore the capacity limits of Cans when the number of stolen examples N increases on
the FaceScrub dataset. As Fig.4(a) shows, there is almost no distortion on the decoded images (i.e.,
SSIM remains close to 1.0) when N increase from 8 to 1024, while the ∆Perf of the carrier model
is controlled below 1%. As the size of the stolen images further doubles from 1024 to 32768 (i.e.,
440× of the size of the carrier model), we notice the SSIM gradually decreases from near 1.0 to
about 0.6, during which the quality of the decoded images does not show clear deterioration. For

8

(a) (b) (c) (d)

Figure 4: (a) Effectiveness of Cans when the number of stolen examples continually increases on
FaceScrub. (b) Visualization of the recovered secret images from the decoded secret model when
the size ratio between the hidden images and the carrier model increases from about 0.1× to 440×.
(c)&(d) Decrease in the SSIM of the decoded images and the performance of the carrier model when
undergoing weight and filter pruning.

example, the visualization results in Fig.4(b) show, such deterioration would not inhibit the outsider
from further exploiting the leaked information, i.e., the identity of the photo owner can be clearly
recognized. In summary, Cans hides hundreds times more of information than the size of the carrier
model without incurring non-trivial distortion on either the stolen data or the carrier model.

4.3 Robustness of Cans in Noisy Channels

Finally, we evaluate the robustness of Cans when the carrier model undergoes weight pruning [18] or
filter pruning [25], i.e., where a β proportion of weight/filter parameters with the smallest norms are
set to be zeros in each layer. In our experiments, we hide 512 images from Facescrub (i.e., 294MB
in total (6.8× of the ResNet-18 carrier) and vary the pruning ratio β from 0.1 to 0.9 on the carrier
model. We initialize the weight pool with a customized size 5× smaller than the carrier model,
which allows us to implement a weight pool restoration algorithm to recover the pruned parameter by
selecting the non-zero value from each weight pool copy, i.e., the fusion mechanism. Fig.4 reports
the reconstruction error of the stolen data from FaceScrub when β varies. As the results indicate, the
SSIM of the recovered images remains over 0.5 (when the corresponding distortion level does not
inhibit leakage as shown in Fig.4(b)) when the carrier model suffers a huge utility loss due to the
large pruning ratio. For example, in Fig.4(c), when β in weight pruning reaches 0.3, the performance
of the carrier model decreases by over 10%, while the SSIM of the decoded images decreases by
0.1 from the original SSIM 0.994, which therefore remains higher than 0.8. Finally, by comparing
the performance of the secret model with or without fusion, we conclude that the robustness of
Cans largely comes from the information redundancy implemented in our design of the weight pool.
Consequently, only if a weight pool parameter is not always in the β smallest for all the layers, our
decoding algorithm can always recover its value by referring to the un-pruned copy.

5 Conclusion

In this paper, we design capacity-aware neuron steganography, i.e., Cans, which is the first to enable
the covert transmission of 100× more information compared with the size of the carrier model. We
provide an extensive set of evaluation results to show, Cans is efficient, robust and covert in exploiting
the enormous learning capacity of the DNN for information hiding, providing a much higher hiding
capacity than known approaches.

Limitations and Future Works. Despite the robustness against pruning, we admit Cans may be less
robust when the architecture of the carrier model is modified. However, it is not a common practice
of modifying the architecture of an already optimized model, except for some special cases that the
corporation wants to further optimize the storage and computing efficiency by model compression
(e.g., pruning or quantization). Nevertheless, even with model compression, the compressed version
is usually released along with the raw full-size model on most third-party platforms [4, 1]. For future
works, it would meaningful to consider detect whether a published DNN hides information or not. For
example, a detector may leverage statistical testing or learning-based detection [46]. However, this
would rarely happen in real world as the purpose of training the model is for publishing, which means
such a model has not been trained or been available previously. How to detect a carrier model in such
a zero-shot or few-shot scenario is an open challenge for mitigating Cans. To facilitate future research,
we open-source our code in https://anonymous.4open.science/r/data-hiding-66D0/.

9

https://anonymous.4open.science/r/data-hiding-66D0/

On the Broader Impact. Cans reveals the practical threats of breaking the privacy of ML data
even with no exposed interface. We hope our work would alarm AI corporations on the risks of
unnecessary access to private internal datasets even if they are safely stored in the local network.

Acknowledgments

We would like to thank the anonymous reviewers for their insightful comments that helped improve the
quality of the paper. This work was supported in part by the National Key Research and Development
Program (2021YFB3101200), National Natural Science Foundation of China (61972099, U1736208,
U1836210, U1836213, 62172104, 62172105, 61902374, 62102093, 62102091), Natural Science
Foundation of Shanghai (19ZR1404800). Min Yang is a faculty of Shanghai Institute of Intelligent
Electronics & Systems, Shanghai Collaborative Innovation Center of Intelligent Visual Computing
and Engineering Research Center of Cyber Security Auditing and Monitoring, Ministry of Education,
China. Mi Zhang and Min Yang are the corresponding authors.

References
[1] Available Models-PaddleLite. https://paddle-lite.readthedocs.io/zh/latest/

introduction/support_model_list.html. Accessed: 2021-05-21.

[2] Building a national ai research resource: A blueprint for the national research cloud. https:
//hai.stanford.edu/sites/default/files/2021-10/HAI_NRCR_2021_0.pdf.

[3] Google’s Approach to IT Security. https://static.googleusercontent.com/media/1.
9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.
pdf.

[4] Models - Machine Learning - Apple Developer. https://developer.apple.com/
machine-learning/models/.

[5] Reproducibility — PyTorch 1.10.0 Documentation. https://pytorch.org/docs/stable/
notes/randomness.html.

[6] Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. In USENIX
Security Symposium, 2018.

[7] Giuseppe Ateniese, Luigi V. Mancini, Angelo Spognardi, Antonio Villani, Domenico Vitali,
and Giovanni Felici. Hacking smart machines with smarter ones: How to extract meaningful
data from machine learning classifiers. Int. J. Secur. Networks, 10:137–150, 2015.

[8] Yoshua Bengio, Yann LeCun, and Geoffrey E. Hinton. Deep learning for ai. Communications
of the ACM, 64:58 – 65, 2021.

[9] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Xiaodong Song. The
secret sharer: Evaluating and testing unintended memorization in neural networks. In USENIX
Security Symposium, 2019.

[10] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom B. Brown, Dawn Xiaodong Song, Úlfar Erlingsson, Alina Oprea,
and Colin Raffel. Extracting training data from large language models. In USENIX Security
Symposium, 2021.

[11] Abbas Cheddad, Joan Condell, Kevin Curran, and Paul Mc Kevitt. Digital image steganography:
Survey and analysis of current methods. Signal Process., 90:727–752, 2010.

[12] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepmarks:
A secure fingerprinting framework for digital rights management of deep learning models.
Proceedings of the 2019 on International Conference on Multimedia Retrieval, 2019.

10

https://paddle-lite.readthedocs.io/zh/latest/introduction/support_model_list.html
https://paddle-lite.readthedocs.io/zh/latest/introduction/support_model_list.html
https://hai.stanford.edu/sites/default/files/2021-10/HAI_NRCR_2021_0.pdf
https://hai.stanford.edu/sites/default/files/2021-10/HAI_NRCR_2021_0.pdf
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://developer.apple.com/machine-learning/models/
https://developer.apple.com/machine-learning/models/
 https://pytorch.org/docs/stable/notes/randomness.html
 https://pytorch.org/docs/stable/notes/randomness.html

[13] Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, Justin Y. Lu, Jackie
Tsay, Yinan Wang, Andrew M. Dai, Z. Chen, Timothy Sohn, and Yonghui Wu. Gmail smart
compose: Real-time assisted writing. Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019.

[14] Fatiha Djebbar and Beghdad Ayad. Comparative study of digital audio steganography techniques.
EURASIP Journal on Audio, Speech, and Music Processing, 2012:1–16, 2012.

[15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In CCS, 2015.

[16] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients
- how easy is it to break privacy in federated learning? In NeurIPS, 2020.

[17] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

[18] Song Han, Jeff Pool, et al. Learning both weights and connections for efficient neural network.
ArXiv, 2015.

[19] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[20] Benoit Jacob, S. Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard, Hartwig
Adam, and D. Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2018.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

[22] Varsha Kishore, Xiangyu Chen, Yan Wang, Boyi Li, and Kilian Q Weinberger. Fixed neural
network steganography: Train the images, not the network. In International Conference on
Learning Representations, 2021.

[23] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference:
A whitepaper. ArXiv, abs/1806.08342, 2018.

[24] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[25] Hao Li, Asim Kadav, et al. Pruning filters for efficient convnets. ArXiv, 2017.

[26] Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu, and Ming Li. Stegonet: Turn deep neural
network into a stegomalware. Annual Computer Security Applications Conference, 2020.

[27] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8:3–30,
1998.

[28] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting
unintended feature leakage in collaborative learning. 2019 IEEE Symposium on Security and
Privacy (SP), pages 691–706, 2019.

[29] Hongwei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. 2014
IEEE International Conference on Image Processing (ICIP), pages 343–347, 2014.

[30] Xudong Pan, Mi Zhang, Shouling Ji, and Min Yang. Privacy risks of general-purpose language
models. 2020 IEEE Symposium on Security and Privacy (SP), pages 1314–1331, 2020.

[31] Xudong Pan, Mi Zhang, Yifan Yan, Jiaming Zhu, and Min Yang. Exploring the security boundary
of data reconstruction via neuron exclusivity analysis. In USENIX Security Symposium, 2022.

[32] Niels Provos and Peter Honeyman. Hide and seek: An introduction to steganography. IEEE
Secur. Priv., 1:32–44, 2003.

11

[33] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2016.

[34] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[35] Adityanarayanan Radhakrishnan, Mikhail Belkin, and Caroline Uhler. Overparameterized
neural networks implement associative memory. Proceedings of the National Academy of
Sciences of the United States of America, 117:27162 – 27170, 2020.

[36] A. Salem, Apratim Bhattacharyya, Michael Backes, Mario Fritz, and Yang Zhang. Updates-leak:
Data set inference and reconstruction attacks in online learning. USENIX Security, 2020.

[37] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models. Security & Privacy, pages 3–18, 2017.

[38] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learning models that
remember too much. Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[39] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing
machine learning models via prediction apis. In USENIX Security Symposium, 2016.

[40] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. Proceedings of the 2017 ACM on International Conference on
Multimedia Retrieval, 2017.

[41] John von Neumann. Probabilistic logic and the synthesis of reliable organisms from unreliable
components. Automata studies, 34:43–98, 1956.

[42] Tianhao Wang and Florian Kerschbaum. Riga: Covert and robust white-box watermarking of
deep neural networks. Proceedings of the Web Conference 2021, 2021.

[43] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

[44] P. Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. ArXiv
e-prints, April 2018.

[45] Donald L. Wenskay. Intellectual property protection for neural networks. Neural Networks,
1990.

[46] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter, and Bo Li. Detecting ai
trojans using meta neural analysis. 2021 IEEE Symposium on Security and Privacy (SP), pages
103–120, 2021.

[47] Zhongliang Yang, Xiaoqing Guo, Zi-Ming Chen, Yongfeng Huang, and Yu-Jin Zhang. Rnn-
stega: Linguistic steganography based on recurrent neural networks. IEEE Transactions on
Information Forensics and Security, 14:1280–1295, 2019.

[48] Chaoning Zhang, Philipp Benz, Adil Karjauv, Geng Sun, and In-So Kweon. Udh: Universal
deep hiding for steganography, watermarking, and light field messaging. In NeurIPS, 2020.

[49] Kevin Alex Zhang, Alfredo Cuesta-Infante, Lei Xu, and Kalyan Veeramachaneni. Steganogan:
High capacity image steganography with gans. ArXiv, abs/1901.03892, 2019.

[50] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In NeurIPS, 2019.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results (either in the supplemental material or as a URL)? [Yes] In a URL
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were

chosen)? [Yes] More details are provided in the supplemental material and the codebase.
(c) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type of

GPUs, internal cluster, or cloud provider)? [Yes] See the supplemental material.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applica-
ble? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

13

	Introduction
	Preliminary
	Capacity-Aware Neuron Steganography
	Attack Overview
	Construction of Memorization-Oriented Tasks
	Joint Training for Capacity-Aware Hiding
	Decoding the Secrets from the Carrier Model

	Evaluation Results
	Effectiveness of Cans
	Exploring the Capacity Limits of Cans
	Robustness of Cans in Noisy Channels

	Conclusion

