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A More Theoretical Results
A.1 Extension to Other Loss Functions
Sections 5.2 and 5.3 focus on classification task with cross-entropy loss, to establish sufficient
and necessary conditions for invariance identification. Similar results can be shown for other loss
functions or tasks in a straightforward manner.

To see this, notice that H(·|·) in Assumptions 1-3 and Conditions 1-2 is used to represent the optimal
expected risk that coincides with the conditional entropy, with cross-entropy loss and when ρ(zi)
gives exactly one environment. For other loss functions l(·, ·) like squared error, we can use L(·|·) to
represent the optimal expected risks, and L(·) denotes the optimal expected risk with no predictor
variables, e.g., variance for the squared error loss. Replacing H(·|·) with L(·|·), we can follow the
same proof procedure to obtain similar sufficient and necessary conditions. This is summarized in
Theorem 3 for completeness.

Theorem 3. Consider Assumptions 1-3 and Conditions 1-2 where H(·|·) is replaced with L(·|·)
accordingly. If ϵ < Cγδ

4γ+2CδL(Y ) and λ ∈ [L(Y )+1/2δC
δC−4ϵ − 1

2 ,
γ
4ϵ −

1
2 ], we have L̂(Φv) < L̂(Φ) for all

Φ ̸= Φv , where we assume L(Y ) < ∞. If Condition 1 or Condition 2 is violated, then there exists a
feature mask Φ′ ̸= Φv so that L̂(Φv) > L̂(Φ′).

A.2 Beyond Feature Selection: Linear Feature Transformations
In Section 5, both the invariant and spurious features can be directly observed and we focus on the
ability of ZIN to identify the invariant features. In this section, we extend feature selection to feature
learning, and show that ZIN is able to learn the invariant features given a scrambled observation in a
linear form following [4, 39]. Specifically, we consider the same data generation process as [4]:

Y e = Xe
v · β + ϵv, Xe

v ⊥ ϵv, E[ϵv] = 0; Xe = W · [Xe
v ;X

e
s ], (7)

where β ∈ Rdv and W ∈ Rd×(dv+ds). We assume that there exists W̃ ∈ Rdv×d so that
W̃ (W [xv;xs]) = xv for all xv and xs. Both the feature extractor and predictor take a linear
form, i.e., Φ takes values in Rd×d and ω ∈ Rd. The prediction for X is ω ◦ Φ(X) = (ΦX)Tω.

A major difficulty in this setting lies in how to characterize the effect of an invariant/spurious feature
in a quantitive way: the feature extractor Φ may extract an arbitrarily small portion of spurious
information. Following [4, 39], we consider a constrained form of Problem 6 for theoretic analysis:

min
ω,Φ

R(ω,Φ), subject to max
ρ,{ωk}

∑K

k=1

[
Rρ(k)(ω,Φ)−Rρ(k)(ωk,Φ)

]
= 0. (8)

As in Conditions 1 and 2, the auxiliary information should also be sufficiently informative so that the
inferred environments can be diverse enough but also maintain the underlying invariance. This is in
accordance to existing conditions for identifiability in the linear case [4, 39]. In this paper, we utilize
such a condition, linear general position condition, from [4]. For our analysis, we take squared error
as our loss function and consider that ρ(·) partitions the environments in a hard manner, i.e., each
data sample would be assigned to exactly one environment. As in Appendix A.1, we use L(·|·) to
represent the optimal expected risks. We also assume that the environments are non-degenerate, i.e.,
each inferred environment contains some data samples; otherwise, we can simply remove such an
environment. Our identifiability result for the linear case then follows.

Proposition 3. Assume Condition 1 where H(·|·) is replaced with L(·|·) accordingly. Suppose
that there exists ρ(·) such that the generated environments, denoted as {Xk}Kk=1, lie in linear
general position of degree r, i.e., K > d − r + d/r for some r ∈ N and for all non-zero x ∈ Rd:
dim

(
span

({
EXk

[
XkXk⊺]

x− EXk,ϵv

[
Xkϵv

]}
k

))
> d− r. If Φ ∈ Rd×d has rank r > 0, then

Problem 8 results in the desired invariant predictor.

Proof. Step 1: No spurious feature will be learned. Given a partition {Xk}Kk=1 that lies in linear
general position of degree r, Arjovsky et al. [4, Theorem 9] shows that Φ and ω satisfies the normal
equations ΦEXk [XkXkT

]ΦTω = ΦEXk,Y k [XkY k] for all k if and only if Φ elicits the desired

16



invariant predictor ΦTω = W̃ Tβ. Thus, we only need to show our solution meets the same
normal equations. Let Φ′ and ω′ denote a solution to Problem 8. According to the constraint and
the general linear position condition, we know there exists a partition {Xk}Kk=1 lies in general
linear position of degree r, and we have Rk(ω′,Φ′) = Rk(ωk,Φ

′). Notice that ωk minimizes
the mean squared error on only the k-th environment, hence it must satisfy the normal equation
Φ′EXk [XkXkT

]Φ′Tωk = Φ′EXk,Y k [XkY k]. As ω′ achieves the same minimum mean squared
error on the k-th environment, ω′ must satisfy the normal equation, too. Thus, no spurious information
will be included and XΦ = [SXv; 0ds

] where S ∈ Rdv×dv is an invertible matrix and 0ds
denotes a

ds-dim vector of all zeros.

Step 2: No invariant information will be discarded. Under Condition 1 where H(·|·) is replaced with
L(·|·), we have L(Y |Xv)− L(Y |Xv, ρ(Z)) = 0. Then XΦ will satisfy the constraint of Problem 8.
Notice that XΦ achieves the smallest loss when only using invariant feature information.

Combining these two steps completes the proof.

A.3 More Discussions on Assumption 2
This assumption aims to ensure that the invariance penalty cannot be arbitrarily small if a spurious
feature, together with other features, is selected by a feature mask. For example, in the extreme
case where X2 is the only invariant feature (i.e., Xv consists of only X2) and can perfectly pre-
dict Y , we would have H(Y |X2) = 0. Then for a spurious feature X1, H(Y |X1,X2) = 0 and
H(Y |X1,X2, ρ(Z)) = 0 for any ρ(·), and we cannot identify X1 as the spurious feature. Neverthe-
less, since there are generally exogenous noise variables in the SCM and H(Y |Xv) is positive, we
believe that this assumption holds in most cases.

B Proofs
B.1 Proof of Theorem 1
Proof. First, we assume Y and Xv are univariate variables, i.e., Y,Xv ∈ R. Let η1 ∼ Uniform(0, 1)
independent of Xs and Y , and set X ′

v = Xs. Define the conditional cumulative distribution function
and its inverse as:

FY |Xs=xs
(y) = P (Y ≤ y | Xs = xs),

Y ′ = f ′
1(X

′
v, η1) = F−1

Y |Xs
(η1) = inf{y ∈ R : FY |Xs

(y) ≥ η1} with Xs = X ′
v.

By definition, we would have

P (Y ′ ≤ y | X ′
v) = P (f ′

1(X
′
v, η1) ≤ y)

= P (F−1
Y |Xs

(η1) ≤ y)

= P (FY |Xs
◦ F−1

Y |Xs
(η1) ≤ FY |Xs

(y))

= P (η1 ≤ FY |Xs
(y))

= P (Y ≤ y | Xs).

(9)

Similarly, we can construct X ′
s = f ′

2(X
′
v, Y

′, η2) = F−1
Xv|Y,Xs

(η2) so that P (X ′
s | Y ′,X ′

v) =

P (Xv | Y,Xs) with η2 ∼ Uniform(0, 1). Thus, we have

P (X ′
v,X

′
s, Y ) = P (X ′

s | Y ′,X ′
v)P (Y ′ | X ′

v)P (X ′
v)

= P (Xv | Y,Xs)P (Y | Xs)P (Xs)

= P (Xv,Xs, Y ). (10)

Next, we can easily find a function q′(·) so that X ′ = q′(X ′
v,X

′
s) = q(Xv,Xs), where we have

chosen X ′
v = Xs and X ′

s = Xv. Together with Equation (10), we conclude that P (X ′, Y ′) =
P (X,Y ).
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Second, we consider that Xv has a multi-dimension. We may leave Y to be a univariate variable
as the label in many ML problems is scalar-valued. For this case, we can pick an entry of Xv, say,
X

(j)
v for some j. Then we set X ′

v = (X
(−j)
v ,Xs) where X

(−j)
v denotes the rest entries of Xv

except the j-th. Then we can similarly use the inverse conditional cumulative distribution function
and an independent uniformly distributed noise variable η1 to construct Y ′ = f ′(X ′

v, η1) so that
P (Y ′ ≤ y | X ′

v) = P (Y ≤ y | X(−j)
v ,Xs). Similarly, we set X ′

s = X
(j)
v and we can construct

X ′
s = f ′

2(X
′
v, Y

′, η2) so that P (X ′
s|Y ′,X ′

v) = P (X
(j)
v | Y,Xs). We can then get the same

conclusion following the previous proof.

B.2 Proof of Theorem 2
Proof. Our proof proceeds by two steps. First, we show that any feature mask that selects at least
one spurious feature would induce a penalty. With sufficiently large λ, the penalty will dominate
the expected risk and then exceed L̂(Φv). Second, we show that any proper subset of the invariant
features induces a loss larger than L̂(Φv).

Step 1 Suppose that the feature mask contains at least one spurious features. Denote the selected
features as X+s and the corresponding feature mask as Φ+s. We aim to show that

L̂(Φ+s
) > L̂(Φv).

By Assumption 1 with a given ϵ > 0, we have

L̂(Φv) ≤ (1 + 2λ)ϵ+H(Y |Xv) + λ (H(Y |Xv)−H(Y |Xv, ρ(Z)))

= (1 + 2λ)ϵ+H(Y |Xv)

≤ (1 + 2λ)ϵ+H(Y ). (11)

One the other hand, we have

L(Φ+s) ≥ −(1 + 2λ)ϵ+H(Y |X+s) + λ (H(Y |X+s)−H(Y |X+s, ρ(Z)))

≥ −(1 + 2λ)ϵ+ λ (H(Y |X+s)−H(Y |X+s, ρ(Z)))

≥ −(1 + 2λ)ϵ+ λδC, (12)

where the last inequality is due to Assumption 2 and Condition 2. Thus, if we choose ϵ < δC/4 and
λ > H(Y )+2ϵ

δC−4ϵ , we can get
L(Φv) < L(Φ+s).

Step 2 Denote a proper subset of invariant features as X−v ⊊ Xv , and similarly the feature mask
as Φ−v .

In Step 1, we have shown that

L̂(Φv) ≤ (1 + 2λ)ϵ+H(Y |Xv).

Similar to Equation (12), we have

L̂(Φ−v) ≥ −(1 + 2λ)ϵ+H(Y |X−v).

Then according to Assumption 3, we have

L̂(Φ−v)− L̂(Φv) ≥− 2(1 + 2λ)ϵ+H(y|X−v)−H(y|Xv)

≥− 2(1 + 2λ)ϵ+ γ.

Thus, if ϵ < γ
2(1+2λ) , we have

L̂(Φ−v) > L̂(Φv).

In conclusion, with λ ∈ [H(Y )+1/2δC
δdC−4ϵ

− 1
2 ,

γ
4ϵ −

1
2 ], we can get

L̂(Φv) < L̂(Φ), ∀Φ ̸= Φv.

Notably, there exists a feasible λ if ϵ < Cγδ
4γ+2CδH(Y ) . The proof is complete by noticing that ϵ can be

chosen arbitrarily according to Assumption 1.
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B.3 Proof of Proposition 1

Proof. Consider the following feature set

Xv̄ := max
|X′|

{X ′ ⊂ X : H(Y |X, ρ(Z)) = H(Y |X) ∀ρ(·)},

and the corresponding feature mask is denoted as Φv̄. It corresponds to the largest subset of X that
satisfies the invariance constraint.

Note that Φv̄ ̸= Φv . By Assumption 1, for a given ϵ we can get

L̂(Φv̄) ≤ (1 + 2λ)ϵ+H(Y |Xv̄) + λ(H(Y |Xv̄)−H(Y |Xv, ρ(Z)))

= (1 + 2λ)ϵ+H(Y |Xv̄)

≤ (1 + 2λ)ϵ+H(Y ).

One the other hand, we have

L(Φv) ≥ −(1 + 2λ)ϵ+H(Y |Xv) + λ (H(Y |Xv)−H(Y |Xv, ρ(Z)))

≥ −(1 + 2λ)ϵ+ λ (H(Y |Xv)−H(Y |Xv, ρ(Z)))

≥ −(1 + 2λ)ϵ+ λδC ′,

which can be shown similarly to Equation (12). Thus, if we choose ϵ < δC ′/4 and λ > H(Y )+2ϵ
δC′−4ϵ , we

would get
L(Φv̄) < L(Φv).

B.4 Proof of Corollary 1

Proof. (a) Since h is injective, H(Y |Xv, h(Y )) = H(Y |Xv, Y ) = 0 for any Xv. By As-
sumption 3, we have H(Y |Xv) ≥ H(Y |X) + γ ≥ γ. Then Proposition 1 indicates that
we cannot identify all the invariant features. (b) The proof proceeds the same as above
by noting H(Y |Xv, h(X, Y )) = 0. (c) This case can be shown similarly to (a), because
H(Y |Xv, h(Index(X, Y ))) = H(Y |Xv,X, Y ) = 0.

B.5 Proof of Proposition 2

Proof. Denote a feature set Xv(+k), which contains the invariant feature set Xv as well a spurious
feature Xk

s in Proposition 2.

Similar to Eq. (11), we can show that

L̂(Φv(+k)) ≤ (1 + 2λ)ϵ+H(Y |Xv(+k)).

And similar to Eq. (12), we also have

L̂(Φv) ≥ −(1 + 2λ)ϵ+H(Y |Xv).

Then it follows that

L̂(Φv)− L̂(Φv(+k)) ≥− 2(1 + 2λ)ϵ+H(Y |Xv)−H(y|Xv(+k))

≥− 2(1 + 2λ)ϵ+ γ.

If ϵ < γ
2(1+2λ) , we have

L̂(Φv) > L̂(Φv(+k)).

Thus, we cannot identify all the invariant features from Problem 6.
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B.6 Proof of Meeting Condition 1
We show that H(Y |Xv, ρ(Z)) = H(Y |Xv) for all ρ(·) if H(Y |Xv,Z) = H(Y |Xv) holds.

Proof. On one hand, because ρ(Z) contains less information than Z, we have

H(Y |Xv, ρ(Z)) ≥ H(Y |Xv,Z) = H(Y |Xv).

On the other hand, Xv and ρ(Z) contain more information than Xv , so we can get

H(Y |Xv, ρ(Z)) ≤ H(Y |Xv).

Thus, we conclude H(Y |Xv, ρ(Z)) = H(Y |Xv).

C More Experimental Details
Implementing Approximated ZIN. Since Eq. (5) is a challenging minimax formulation, we replace
the penalty term given a environment partition with its first order approximation. Specifically, we
consider the following surrogate minimax formulation:

min
ω,Φ

max
ρ

= R(ω,Φ) + λ
∑K

k=1
∥∇ωRρ(k)(ω,Φ)∥2. (13)

Readers can refer to the Appendix B.3 of [57] for more details about the relationship between Eqs. (5)
and (13).

We further use a two-stage method to approximate the minimax procedure:

• Minimize R(ω,Φ) over (ω,Φ) and simultaneously maximize
∑K

k=1 ∥∇ωRρ(k)(ω,Φ)∥2
over ρ.

• Fix ρ and minimize Eq. (13) over (ω,Φ).

Training Details. For the synthetic datasets and the house price prediction dataset, we use the full
batch gradient in optimization. The ERM method is trained for 4000 epochs. The IRM/ZIN method
is also trained for 4000 epochs, with additional annealing in the first 2000 epochs. We train EIIL for
4000 epochs which is divided equally, i.e., 2000 epochs, in each of the two stages. For the CelebA
classification task, we use mini-batch training with batch size of 128. All the methods are trained for
50 epochs, with annealing strategy in the first 25 epochs. For the Landcover task, we use mini-batch
training with batch size of 1024, and all the methods are trained for 400 epochs with annealing
strategy in the first 40 epochs. We use Adam [23] with learning rate 0.001 as our optimizer. Our
experiments are run in a Linux workstation with Intel Xeon 3.20GHz CPU, 128GB RAM, and Nvidia
GTX 3090 GPU. It takes about 5 GPU hours for the CelebA tasks, while the house price task and
Landcover task cost less than 10 minutes for training. Notably, since IRM suffers from overfitting
problem when applied to large models like ResNet-18 [27, 57], we fix the feature extraction backbone
(that is, use a pre-trained model) in the CelebA experiment to allieviate this issue.

D More Experiment Results
D.1 Spatial Heterogeneity
We also consider spatial heterogeneity that is also commonly encountered in practice, e.g., environ-
ments may be divided according to locations of latitude and longitude. We simulate spatial heterogene-
ity in the same way the data generation process for time heterogeneity but use a two-dimensional spa-
tial variable r = [r1, r2] ∈ [0, 1]2. We simulate four environments for training by equally splitting the
space into four blocks, i.e., {[0, 0.5)× [0, 0.5), [0, 0.5)× [0.5, 1], [0.5, 1]× [0, 0.5), [0.5, 1]× [0.5, 1]}.
Similarly, we denote a simulated case by tuple of ps(r) in the four elements. We also evaluate the
performance on four distinct test environments with ps ∈ {0.999, 0.8, 0.2, 0.1} and pv being constant.
More details regarding the implementations are given in Appendix C.

The experimental results of spatial heterogeneity in Table 6 show similar performances to those
of temporal heterogeneity. An interesting observation is that ZIN outperforms IRM with ground-
truth environments in this simulation, especially when “duplicated” environments exist, e.g., when
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Table 6: Test Mean and Worst accuracy (%) on four spatial heterogeneity synthetic datasets.

Env Partition
ps(t) 0.999, 0.999, 0.7, 0.7 0.999, 0.9, 0.8, 0.7 0.999, 0.999, 0.8, 0.8
pv 0.9 0.8 0.9 0.8 0.9 0.8

Test Acc Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst

No
ERM 76.65 59.48 60.33 27.25 76.59 59.35 60.30 27.25 69.93 44.65 56.23 16.60
EIIL 37.81 16.89 66.46 50.35 37.03 14.01 66.60 50.28 70.18 45.23 71.00 58.72
HRM 49.98 49.95 49.97 49.92 49.99 49.98 50.00 49.99 49.97 49.95 49.99 49.97
ZIN 88.66 87.23 79.16 78.04 88.28 86.29 78.92 77.49 88.00 85.75 78.80 77.25

Yes IRM 83.71 82.24 73.26 71.25 86.73 83.79 75.80 73.33 84.39 81.48 73.15 69.97

ps(r) = (0.999, 0.999, 0.7, 0.7). We conjecture that in this case the “ground-truth” partition may not
be the most effective for invariant learning due to the heavily overlapped environments. As shown in
the right panel of Figure 2, ZIN automatically merges duplicated environments.
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Figure 2: Visualization of inferred environments. Left: temporal heterogeneity setting
(0.999, 0.7). Right: spatial heterogeneity setting (0.999, 0.999, 0.7, 0.7).

D.2 Ablation Study on Auxiliary Information and Number of Environments

We now verify the theoretical results in Section 5 by choosing different inputs as Z. We adopt a
setting of spatial heterogeneity with ps(r) = (0.999, 0.999, 0.8, 0.8) and pv = 0.8. Note that the
heterogeneity in this setting is only along the second dimension r2. The results are shown in Table 7.
One can verify that Conditions 1 and 2 are satisfied when r or r2 is chosen as Z. The mean and worst
test accuracy implies that ZIN based on r or r2 can effectively remove the spurious feature. Since
ps(r) does not change along r1, choosing r1 to infer environment partition violates Condition 2,
which is reflected by the poor performance of ZIN with r1. Using [X, Y ] as input to ρ(·) is also
a violation by Corollary 1, and the corresponding results in Table 7 confirm our analysis. Lastly,
notice that Xs ∈ X contains some information of Y and there may exist a function ρ(·) so that
H(Y |Xv) > H(Y |Xv, ρ(X)). This violates Condition 1 and leads to poor results when choosing
X as input to ρ(·).

Table 7: Ablation study on choice of Z.

Z Condition 1 Condition2 Test Mean Test Worst

r ✓ ✓ 78.80 77.25
r1 ✓ ✗ 56.30 16.84
r2 ✓ ✓ 78.79 77.21
X ✗ ✓ 59.85 25.99

X, Y ✗ ✓ 71.09 58.85

We also empirically verify the choice of hyper-parameter K using the same simulated setting. Fig. 3
shows that K has a relatively small impact, especially when K ≥ 4.
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Figure 3: Ablation study on the choice of K. Left: synthetic dataset. Right: CelebA.

D.3 About the Inferred Environments on CelebA

We visualize the inferred environments of the CelebA dataset in this section. The target Smiling
is spuriously correlated with feature Gender, i.e., most females are smiling while most males are
not. We set K to be 2 (our framework is insensitive to K as shown in the right panel of Fig. 3). We
visualize the spurious correlations in the two inferred environments during training in Fig. 4. ZIN can
generate two environments where the spurious correlations differ. Then we can easily discard the
spurious feature using IRM methods on the inferred environments.

Figure 4: Correlation of the spurious feature (Gender) with the target (Smiling). The spurious
correlation is calculated as the percentage of samples whose target (Smiling/Not Smiling) aligns
with its gender (Female/Male). For example, a smiling female or a non-smiling male is counted
as score 1, otherwise as score 0. The average score represents the correlation between Smiling
and Gender.

E Examples of Valid and Invalid Choices of Auxiliary Information

Figure 5: Examples of valid choices of Z satisfying Condition 1. Here “H” in the 4th graph
denotes some hidden confounders. The invariant features are X1 and X2, direct causes of Y .
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Figure 6: Invalid choices of Z that violate Condition 1. The invariant features are X1 and X2,
the direct causes of Y .

F Societal Impact
In this work, we propose to utilize the auxiliary information to aid the invariance learning without
environmental indexes. This method is also helpful to fairness issues; see, e.g., the discussion about
out-of-distribution generation and algorithmic fairness in [10]. For the additional information, we
should also avoid using demographic, private, and sensitive information.
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