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Abstract

During initial iterations of training in most Reinforcement Learning (RL) algo-
rithms, agents perform a significant number of random exploratory steps. In the
real world, this can limit the practicality of these algorithms as it can lead to poten-
tially dangerous behavior. Hence safe exploration is a critical issue in applying RL
algorithms in the real world. This problem has been recently well studied under
the Constrained Markov Decision Process (CMDP) Framework, where in addition
to single-stage rewards, an agent receives single-stage costs or penalties as well
depending on the state transitions. The prescribed cost functions are responsible
for mapping undesirable behavior at any given time-step to a scalar value. The
goal then is to find a feasible policy that maximizes reward returns while constrain-
ing the cost returns to be below a prescribed threshold during training as well as
deployment.
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn
the transition dynamics of the environment in an online manner as well as find a
feasible optimal policy using the Lagrangian Relaxation-based Proximal Policy
Optimization. We use an ensemble of neural networks with different initializations
to tackle epistemic and aleatoric uncertainty issues faced during environment model
learning. We compare our approach with relevant model-free and model-based
approaches in Constrained RL using the challenging Safe Reinforcement Learning
benchmark - the Open AI Safety Gym. We demonstrate that our algorithm is more
sample efficient and results in lower cumulative hazard violations as compared to
constrained model-free approaches. Further, our approach shows better reward
performance than other constrained model-based approaches in the literature.

1 Introduction

Deep Reinforcement Learning has provided exceptional results both in the case of discrete action
settings [Mnih et al., 2013] as well as continuous action domains such as locomotion tasks [Haarnoja
et al., 2018], [Schulman et al., 2017], [Schulman et al., 2016]. However, most of the RL algorithms
perform significant number of random exploratory steps during learning as well as deployment which
can lead to agents performing undesirable and hazardous behaviour. This limits the application of
RL algorithms in the real world. In scenarios like robot navigation [Han et al., 2018], autonomous
driving [Kendall et al., 2018], healthcare [Yu et al., 2020], etc., where RL has potential applications,
unsafe behavior can have hazardous consequences even on human life and property.

In García et al. [2015], the authors have provided a comprehensive survey of several notions of
safety and the associated problem formulations. In our work, we focus on a constraint-based notion
of safety. In Constraint-based RL, the goal is to maximize long-term expected reward returns and
keep the expected cost-returns below a prescribed threshold. This problem is known as the Safe
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Exploration problem. In [Ray et al., 2019], the authors advocate that safety specifications should be
separate from task performance specifications. It also helps in formulating Safe Exploration as a
Constrained Optimization Problem and methods used in the optimization literature [Bertsekas, 1996]
can be used to solve this problem. Constrained Markov Decision Process (CMDP) [Altman, 1998]
provides a framework to keep task performance specifications and safety specifications separate from
one another. Here in addition to single-stage rewards, state transitions receive single-stage costs as
well. The prescribed cost functions are responsible for mapping undesirable behavior at any given
time-step to a non-negative scalar value.

The existing model-free algorithms used in the Constrained-RL setting suffer from low sample
efficiency in terms of environment interactions, i.e., these algorithms require large number of envi-
ronment interactions (to converge) that in turn would lead to a large number of hazardous actions
due to unsafe exploration. This serves as the motivation for us to use a Model-based approach for
Constrained-RL.

Our Contributions: We propose a simple and sample efficient model-based approach for Safe
Reinforcement Learning which uses Lagrangian relaxation to solve the constrained RL problem. We
highlight the issue that arises due to the use of truncated horizon in Constrained RL and suggest
a way to incorporate that in our setting. We demonstrate that our approach is ∼ 3 − 4 times
more sample efficient than its analogue Model-free Lagrangian relaxation approach and reduces its
cumulative hazard violations by ∼ 60%. Our approach also outperforms model-free Constrained
Policy Optimization (CPO) [Achiam et al., 2017] in terms of constraint satisfaction. We also compare
our approach with model-based approach [Sikchi et al., 2021a] and we observe that our approach
does better in terms of reward performance and has competitive cost performance as well.

2 Related Work

Different notions of safety and their mathematical formulations are provided in García et al. [2015].
There are several works on the lines of formulating the Safe RL problem in the setting of CMDP. In
some of the early works, an actor-critic algorithm for CMDP under the long-run average cost criterion
is proposed in Borkar [2005] that is however for the case of full state representations. Actor-critic
algorithms with linear function approximation have been proposed in Bhatnagar and Lakshmanan
[2012], Bhatnagar et al. [2013] for the long-run average cost setting and in Bhatnagar [2010] for the
infinite horizon discounted cost scenario. The procedure in the aforementioned references involved
forming a Lagrangian by relaxing the constraints. The algorithms in these papers are based on
multi-timescale stochastic approximation with updates of the Lagrange parameter performed on the
slow timescale, the policy updates on the medium timescale and the updates of the value function
(for a given policy) performed on the fast timescale.

In more recent work, in Achiam et al. [2017], a trust region based constrained policy optimization
(CPO) framework is proposed, which involved approximation of the problem using surrogate functions
for both the objective and the constraints and included a projection step on policy parameters that
needed backtracking line search, making it complicated and time-consuming. CPO showed near
constraint satisfaction in every iteration of the policy updates in standard Mujoco environments
modified for safe exploration [Achiam et al., 2017] but didn’t yield a constraint satisfying policy
in challenging Safe RL benchmark Safety Gym [Ray et al., 2019]. Another work [Yu et al., 2019]
involved using surrogate functions for approximation of both objective and constraint functions. Their
procedure involved constructing a sequence of convex optimization problems for which they showed
that the sequence of stationary points converges to the stationary point of the original non-convex
problem.

In Ray et al. [2019], Lagrangian relaxation of the Constrained RL problem is used and combined
with PPO [Schulman et al., 2017] to give a PPO-Lagrangian algorithm and with TRPO [Schulman
et al., 2015] to give a TRPO-Lagrangian algorithm. These algorithms were seen to outperform CPO
[Achiam et al., 2017] in terms of constraint satisfaction on several environments in Safety Gym. Also,
these algorithms are simpler to implement and tune. Another Lagrangian-based method, see Tessler
et al. [2018], used a penalized reward function for optimizing their agent and showed convergence to
optimal feasible policies using a two-timescale stochastic approximation scheme where the Lagrange
multiplier is updated on a slower timescale as compared to the policy parameters as was the case
with Borkar [2005], Bhatnagar [2010], Bhatnagar and Lakshmanan [2012]. In Zhang et al. [2020],
the authors proposed a first order constrained policy optimization (FOCOPS) method that involved
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solving the optimization problem in a non-parametric space and then projecting it back into the
parametric space. Approaches in Tessler et al. [2018] and Zhang et al. [2020] performed poorly
on Safety Gym. In Stooke et al. [2020], a PID-based approach to damp oscillations in Lagrangian
methods is proposed, which is seen to minimize constraint violations. In Wen and Topcu [2021], the
Cross Entropy method [de Boer et al., 2005] is used for finding a safe policy and convergence using
the ODE method is shown, however, empirical results are presented only on a primitive and less
challenging environment. In Dalal et al. [2018], the authors formulated a state-wise constrained policy
optimization problem where at each transition a constraint needs to be satisfied and an analytical
method for correcting the unsafe action using a safety layer trained using random exploration was
proposed. In Chow et al. [2018], the authors proposed constructing Lyapunov functions to guarantee
safety of the behaviour policy under a CMDP framework. In Chow et al. [2019], the above Lyapunov
based method was extended to continuous control but it’s performance in Safety Gym environment
[Ray et al., 2019] was not good in terms of rewards obtained [Sikchi et al., 2021b]. In Liu et al.
[2022], the method involved uses the tangent space of the constraint manifold to learn a safe policy
but the approach is seen to be highly specific to the environment used.

For unconstrained state-of-the-art Model-based RL algorithms in Deisenroth and Rasmussen [2011],
Luo et al. [2018], Chua et al. [2018], Kurutach et al. [2018], Heess et al. [2015], a comparison of
the empirical performance on Open AI Gym [Brockman et al., 2016] is shown in Wang et al. [2019].
Also, Sikchi et al. [2021a] propose augmenting the planning trajectory with terminal value function to
incorporate long-horizon reasoning in model-based methods, since the approaches in Deisenroth and
Rasmussen [2011], Luo et al. [2018], Chua et al. [2018], Kurutach et al. [2018], Heess et al. [2015]
plan over a fixed and short horizon to avoid aggregation of error. This requires good approximation
of both model as well as value function.

There are also several works that use model-based RL to tackle the problem of safety. In Liu et al.
[2020], a model based approach is proposed to learn the system dynamics and cost model. Then
roll-outs from the learned model are used to optimize the policy using a modified cross-entropy based
method which involves sampling from a distribution of policies, sorting sample policies based on
constraint functions and using them to update the policy distribution. However, their implementation
involves a data collection step using random policy for large number of episodes which itself is risky
in real-world scenarios. In Cowen-Rivers et al. [2020], model dynamics is learned using PILCO
[Deisenroth and Rasmussen, 2011] and instead of the discounted cost constraint function, conditional
value at risk (CVaR) based constraint function is used [Uryasev and Rockafellar, 2001, Chow and
Ghavamzadeh, 2014]. In Thomas et al. [2022], penalized reward functions are used instead of a
separate cost function, then model of the environment is learned and the soft-actor critic algorithm
[Haarnoja et al., 2018] is used to optimize the policy. In this approach safe and unsafe states are also
needed to be specified upfront.

3 Background

3.1 Constrained Markov Decision Process (CMDP)

A CMDP is denoted by the tuple (S,A,R,C, γ, µ) where S denotes the state space, A is the action
space, R : S × A × S → R is the single-stage reward function, C : S × A × S → R denotes the
associated single-stage cost function (we assume a single constraint function for simplicity here), γ
is the discount factor and µ signifies the initial state distribution. We assume that both R and C are
non-negative functions.

By a policy π = {π0, π1, . . .}, we mean a decision rule for selecting actions. It is specified as follows:

For any k ≥ 0 and s ∈ S, πk(s) ∈ P(s) is the probability distribution πk(s)
△
= (πk(s, a), a ∈ A(s))

where πk(s, a) is the probability of picking action a in state s at instant k under policy π. In the
above, A(s) is the set of feasible actions in state s and so A = ∪s∈SA(s). Such a policy is also often
referred to as a randomized policy. A stationary policy is a randomized policy as above except with
πk = πl, ∀k ̸= l. Thus, a stationary policy selects actions according to a given distribution regardless
of the instant when an action is chosen according to the given policy. By an abuse of notation, we
denote a stationary policy as π itself.
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We shall consider here a class of stationary policies πθ parameterized by a parameter θ. Our objective
function is defined via the infinite horizon discounted reward criterion where for a given πθ we have

JR(πθ) = E

[ ∞∑
t=0

γtR(st, at, st+1) | s0 ∼ µ, at ∼ πθ,∀t

]
. (1)

The (cost) constraint function is similarly specified via the following infinite horizon discounted cost:

JC(πθ) = E

[ ∞∑
t=0

γtC(st, at, st+1) | s0 ∼ µ, at ∼ πθ,∀t

]
. (2)

Then JR(πθ), JC(πθ) ∈ R. Let d > 0 denote a prescribed threshold below which we want JC(πθ)
to lie. The constrained optimization problem then is the following:

max
θ
JR(πθ) s.t. JC(πθ) ≤ d. (3)

A parameter θ will be called a feasible point if the cost constraint is satisfied for θ, i.e., JC(πθ) ≤ d.

3.2 Lagrangian Relaxation based Proximal Policy Optimization

The Lagrangian of the constrained optimization problem (3) can be written as follows:

L(θ, λ) = JR(πθ)− λ(JC(πθ)− d), (4)

where λ ∈ R+ is the Lagrange multiplier and is a positive real number. In terms of the Lagrangian,
the goal is to find a tuple (θ∗, λ∗) of the policy and Lagrange parameter such that

L(θ∗, λ∗) = max
θ

min
λ
L(θ, λ). (5)

Solving the max-min problem as above is equivalent to finding a global optimal saddle point (θ∗, λ∗)
such that ∀(θ, λ), the following holds:

L(θ∗, λ) ≥ L(θ∗, λ∗) ≥ L(θ, λ∗). (6)

We assume that θ refers to the parameter of a Deep Neural Network, hence finding such a globally
optimal saddle point is computationally hard. So our aim is to find a locally optimal saddle point
which satisfies (6) in a local neighbourhood Hϵ1,ϵ2 which is defined as follows:

Hϵ1,ϵ2
△
= {(θ, λ)| ∥θ − θ∗∥ ≤ ϵ1, ∥λ− λ∗∥ ≤ ϵ2}, (7)

for some ϵ1, ϵ2 > 0. Assuming that L(θ, λ) is known for every (θ, λ) tuple, a gradient search
procedure for finding a local (θ∗, λ∗) tuple would be the following:

θn+1 = θn − η1(n)∇θn(−L(θn, λn)), (8)

= θn + η1(n)[∇θnJ
R(πθ)− λn∇θnJ

C(πθ)], (9)
λn+1 = [λn + η2(n)∇λn

(−L(θn, λn))]+, (10)

= [λn − η2(n)(J
C(πθ)− d)]+. (11)

Here [x]+ denotes max(0, x). This operator ensures that the Lagrange multiplier remains non-
negative after each update. In (9)-(11), η1(n), η2(n) > 0 ∀n are certain prescribed step-size schedules.
We assume that the step-sizes η1(n), η2(n), n ≥ 0 satisfy the regular step-size conditions. Thus, for
i = 1, 2,

∑
k

ηi(n) = ∞,
∑
k

η2i (n) <∞. Note however that JR(πθ) and JC(πθ) as specified in

(1)-(2) are not a priori known quantities and need to be estimated. We discuss this in detail below.

3.2.1 Estimation

We run each episode for T time steps in our experiments. Let rt+1 ≡ R(st, at, st+1) and ct+1 ≡
C(st, at, st+1), respectively, for simplicity. For each sample path we would have both a reward
return as well as a cost return. Let R̂t (resp. Ĉt) be the reward-to-go (resp. cost-to-go) estimate. We
compute R̂t and Ĉt according to: R̂t =

∑T−t−1
k=0 γkrt+k+1, Ĉt =

∑T−t−1
k=0 γkct+k+1, respectively.
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We use a neural network parameterized by ψr to estimate reward signal based value function V Rψr
and

a neural network parameterized by ψc to estimate a cost signal based value function V Cψc
. We run our

simulations on N parallel workers and then sample a mini-batch M of size M ≤ NT [Schulman
et al., 2017]. We use mean-squared loss to estimate value functions on sampled mini-batches as
follows:

Loss(ψr) =
1

MT

∑
τ∈M

T∑
t=0

(V Rψr
(st)− R̂t)

2, (12)

Loss(ψc) =
1

MT

∑
τ∈M

T∑
t=0

(V Cψc
(st)− Ĉt)

2. (13)

Let ARt , t ≥ 0, and ACt , t ≥ 0, respectively, denote the advantage estimates w.r.t reward and cost
value functions on the sample path. We compute them using Generalized Advantage Estimation
[Schulman et al., 2016] to balance the bias and variance tradeoff of advantage estimates. We can have
a range of advantage estimates as under.

A1
t = rt+1 + γV (st+1)− V (st), (14)

A2
t = rt+1 + γrt+2 + γ2V (st+2)− V (st), (15)

Akt = rt+1 + · · ·+ γk−1rt+k + γkV (st+k)− V (st), (16)

for k > 2. The advantage estimate in (14) will have high bias but low variance while estimates in (16)
with a higher value of k generally have high variance but low bias. Let δRt = rt+1 + V Rψr

(st+1)−
V Rψr

(st) and δCt = ct+1 + V Cψc
(st+1)− V Cψc

(st), respectively, denote the reward and cost temporal
differences. Let λ̄ be a parameter which adjusts the bias-variance tradeoff. Generalized Advantage
Estimates [Schulman et al., 2016] for ARt , ACt are then given by

ARt =

k∑
l=0

(γλ̄)lδRt+l, (17)

ACt =

k∑
l=0

(γλ̄)lδCt+l, (18)

respectively. Now we use PPO clipped objectives [Schulman et al., 2017] for estimation of
JR(πθ), J

C(πθ) as follows:

JR(πθ) = Et[min(rt(θ)A
R
t , clip(rt(θ), 1− ϵ, 1 + ϵ)ARt )], (19)

JC(πθ) = Et[min(rt(θ)A
C
t , clip(rt(θ), 1− ϵ, 1 + ϵ)ACt )], (20)

where rt(θ) = πθ(at|st)
πθold

(at|st) is the ratio of the probability of selecting action at in state st under

parameter θ as opposed to θold. Further, ARt and ACt are the estimated advantages based on the
reward and cost returns, respectively, by time t (see above) and ϵ is the clip-ratio which clips rt(θ) to
(1− ϵ) if it is less than (1− ϵ) and clips to (1+ ϵ) if it is greater than (1+ ϵ). This algorithm restricts
the policy parameters to not change significantly between two iterations which helps in avoiding
divergence. This approach is referred to as PPO-Lagrangian [Ray et al., 2019].

3.3 Model-based Constrained RL

We formulate a Constrained RL problem (21) using a model-based framework as follows:

max
πθ∈Πθ

JRm(πθ) s.t. JCm(πθ) ≤ d, where (21)

JRm(πθ) = E

[ ∞∑
t=0

γtR(st, at, st+1) | s0 ∼ µ, st+1 ∼ Pα(.|st, at), at ∼ πθ,∀t

]
, (22)

JCm(πθ) = E

[ ∞∑
t=0

γtC(st, at, st+1) | s0 ∼ µ, st+1 ∼ Pα(.|st, at), at ∼ πθ,∀t

]
. (23)
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In the above, Pα(.|st, at) is an α-parameterized environment model, di is a human prescribed safety
threshold for the ith constraint and Πθ is the set of all θ−parameterized stationary polices. Note
that we assume the initial state s0 is sampled from the true initial state distribution µ and then
st+1 ∼ Pα(.|st, at), ∀t > 0. We would use approximation of environment Pα to create ‘imaginary’
roll-outs to estimate the reward and cost returns required for policy optimization algorithms.

4 Challenges in Environment Model Learning

In this section we discuss the challenges that commonly arise due to model learning in RL. We further
highlight the challenge that arises from using environment model approximation in Safe RL settings.

1. Handling aleatoric and epistemic uncertainties : Aleatoric Uncertainty refers to the
notion of natural randomness in the system which leads to variability in outcomes of an
experiment. This uncertainty is irreducible because it is a natural property of the system.
Hence in such cases, giving measure of uncertainty in model’s prediction is a good practice.
In Lakshminarayanan et al. [2017], Chua et al. [2018] uncertainty-aware neural networks
are used which give an idea about uncertainty in prediction as well. They learn Gaussian
distribution parameterized by neural networks. Epistemic Uncertainty refers to the notion of
lack of sufficient knowledge in the model as a result of which the model does not generalize.
In Lakshminarayanan et al. [2017], an ensemble of uncertainty aware neural networks with
different initializations is proposed to reduce epistemic uncertainty for fixed data.
For the learning environment model, we also use an ensemble of n neural networks with
random initialization. Each neural network’s output parameterizes a multivariate normal
distribution with diagonal covariance matrix. Suppose the ith neural network in the ensemble
is parameterized by αi and the mean and standard deviation outputs are µαi

and σαi

respectively. Recall now that if a random vector X ∈ Rd is distributed according to the
multivariate normal distribution parameterized by (µ,Σd×d) where µ ∈ Rd is the mean
vector and Σd×d is a d× d covariance matrix, then the probability density of X is defined
as, P (x) = 1

(2π)d/2
|Σ|−1/2exp(− 1

2 (x− µ)′Σ−1(x− µ)), x ∈ Rd.

As a choice of loss function we use the negative log-likelihood loss for minimization (i.e.,
minimizing negative log of P (X)). For the ith neural network parameterized by αi, the loss
function L(αi) is given as follows:

L(αi) =

M∑
t=1

[µαi(st, at)−st+1]
TΣ−1

αi
(st, at)[µαi(st, at)−st+1]+log |Σαi(st, at)|, (24)

where µαi(st, at) is the mean vector output of the ith neural network and Σαi(st, at) is
the covariance matrix which is assumed to be a diagonal matrix. Note that, using n neural
networks with random initialization tends to have a regularization effect. Intuitively, it
introduces diversity in learned models to deal with more possible trajectories. Also, it has
been shown empirically that with an increase in the number of models, the performance
tends to improve (See section 6.3 and Figure 4 of Kurutach et al. [2018]), but increase in
number of models also leads to increase in space complexity.

2. Aggregation of Error : In model-based RL, as we move forward along the horizon, the
error due to approximation starts aggregating and predictions from the approximated model
tend to diverge significantly from the true model. In order to tackle this problem, most of
the model-based RL approaches [Deisenroth and Rasmussen, 2011, Kurutach et al., 2018,
Janner et al., 2019] use shorter (or truncated) horizon during the policy optimization phase
and achieve similar performance as Model-Free RL approaches. We use truncated horizon
in our approach.

3. Implication of using truncated horizon in Constrained RL : When we use truncated
horizon in Constrained RL, it leads to underestimation of cost returns (23) under the current
policy and we use the prescribed constraints to threshold the returns obtained. This can
lead to constraint violations in the real-environment where the cost objective is based on the
infinite horizon cost return. We propose a hyperparameter-based approach to deal with this
problem in the next section.
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5 Model-based PPO Lagrangian

We propose a model-based algorithm obtained from relaxing the Lagrangian (see Algorithm 1) which
alleviates the problem with obtaining a large number of samples in model-free Lagrangian based
approaches and as a consequence also decreases the cumulative hazard violations. It is difficult to
evaluate the policy without interacting with the real environment accurately.

Algorithm 1 Our Approach: Model-based PPO-Lagrangian
1: Input: Initialize actor neural net parameter θ0, critic parameters ψr0, ψc0, ensemble models

[Pαi
]ni=1, Lagrange parameter λ0 ≥ 0, cost threshold = d, Environment Horizon = T , Model

Horizon = H
2: for i = 1, . . . , N training epochs do
3: Collect data tuples (st, at, st+1), for the ith ensemble using policy πθi , i = 1, . . . , n, in the

environment for T time steps over multiple (|E|) episodes
4: Train [Pαi

]ni=1 by minimizing (24) w.r.t αi, ∀i = 1 to n
5: while Performance ratio > PRthreshold do
6: s0 ∼ µ

{Note: For first pass we use a mix of real data and imaginary roll-out data. (See Appendix
A)}

7: Collect data roll-outs as at ∼ πθi(·|st), st ∼ Pαq (·|st, at) (At each time step ’q’ is
randomly selected from 1, . . . , n) for H time steps (H < T )

8: Compute JCsample(πθt) =
1

|E|
∑H
p=1 γ

pC(st, at) where |E| is the number of episodes
9: Compute advantage, cost-advantage using (17) and (18) respectively

10: Update λ by replacing JC(πθ) with JCsample(πθi) and using an appropriate value of β in
(26).
{Multiple gradient updates for actor and critic}

11: for k = 1, . . . ,K do
12: Compute JR(πθk), J

C(πθk) as in (19) and (20) respectively.
13: Update parameters θk using (9)
14: Update critic parameters ψr and ψc minimizing (12) and (13) respectively.
15: end for
16: Compute Performance Ratio (PR) using (25)
17: end while
18: end for

For this we compute the Performance Ratio (PR) metric using ensemble models (see Kurutach et al.
[2018]) that is defined as follows:

PR =
1

n

n∑
i=1

1(ζR(αi, θt) > ζR(αi, θt−1)), (25)

where ζR(αi, θt) =
∑T
t=0 γ

tR(st, at, st+1), s0 ∼ µ and ∀t ≥ 0 : st+1 ∼ Pαi
(·|st, at), at ∼

πθt(·|st). This measures the ratio of the number of models in which policy is improved to the total
number of models in ensemble (n). If PR > PRthreshold, we continue training using the same
model, if not then we break and re-train our environment model on data collected from the new
update policy.

Another challenge that we encounter is the underestimation of JC(πθ) resulting from using a
truncated horizon (of length H in step 7 of Algorithm 1) to reduce the aggregation of error.
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Figure 1: Effect of beta parameter (β) on expected cost returns (left) and expected reward returns
(right) in PointGoal environment. (Here β = 0.1 corrresponds to H

T )
.

This can potentially lead to constraint violating policies. So we need to make the safety threshold
(d) stricter. It might seem that changing this threshold (d) proportional to the truncated horizon,
i.e., setting d := d ∗ H

T might work better where H is the truncated horizon and T is the original
environment horizon, but we found that this leads to constraint violations as well because we are
learning policy using data from the approximated environment model that would bring in errors.
Hence the cost estimate of the policy (Step 8 in Algorithm 1) is error-prone as well. To tackle
this issue, we make safety threshold stricter using a hyperparameter 0 ≤ β < 1 by modifying the
Lagrange multiplier update as follows:

λn = [λn − η2(n)(J
C(πθ)− d ∗ β)]+. (26)

The variation of expected cost returns and reward returns with respect to β is shown in Figure 1 on
Safety gym PointGoal [Ray et al., 2019] environment. We can observe that as we reduce β, the
expected cost returns reduce because cost limit becomes stricter but choosing too small a β leads to
low reward returns as well.

6 Experimental Details and Results

We test our approach on Safety Gym environments 1 - PointGoal and CarGoal with modified state
representations as used in other model-based Safe RL approaches [Liu et al., 2020, Sikchi et al.,
2021a] that are more helpful in model-learning. We increase the difficulty of PointGoal and CarGoal
environments by increasing the number of hazards from 10 to 15. In both environments, the aim
of robots is to reach the goal position and have as few collisions with hazards as possible. We
compare our approach (MBPPO-Lagrangian) with Unconstrained PPO [Schulman et al., 2017],
model-free Safe RL approaches including Constrained Policy Optimization [Achiam et al., 2017],
PPO-Lagrangian [Ray et al., 2019] and the model-based approach – safe-LOOP from Sikchi et al.
[2021a].

The code for our approach is available here2. We run each algorithm with 8 random seeds for 450K
environment interactions. The hyper-parameter settings and other experimental details are given in
Appendix A. The performance of our approach and baseline algorithms is shown in Figure 2 for
PointGoal environment and Figure 3 for CarGoal environment.

1https://github.com/openai/safety-gym
2https://github.com/akjayant/mbppol
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Figure 2: Reward Performance (Left) and Cost Performance (Right) in PointGoal Environment,
where y-axis denotes Average Episode Reward Returns (left) / Cost Returns (right) and x-axis denotes
total environment interacts

Figure 3: Reward Performance (Left) and Cost Performance (Right) in CarGoal Environment, where
y-axis denotes Average Episode Reward Returns (left) / Cost Returns (right) and x-axis denotes total
environment interacts

The left part of the plots represent Average Episode Return (average of the episode rewards) on y-axis
and total environment interactions on the x-axis. The dashed lines represent performance of the
PPO-Lagrangian (in black) at convergence which is around 2 million environment interactions. The
right part of the plots show Average Episode Cost (average of the episode costs) on y-axis and total
environment interactions on the x-axis. The red dashed line in this plot represents cost limit of 18.
From the plots we can observe that our approach (MBPPO-Lagrangian) converges to the same level
of reward performance as PPO - Lagrangian in just 450K environment interactions and outperforms
the model-based safe-LOOP algorithm [Sikchi et al., 2021a]. Also our approach gives constraint
adhering policies in both the tasks. In addition to above, we run our algorithm for various values of β
for both CarGoal and RC-Car[Ahn, 2019] in a similar manner as we did for PointGoal in Figure 1
and present it in Appendix D. We also compare our algorithm with safe-LOOP[Sikchi et al., 2021a]
on RC-Car environment and present it in Appendix D as well. We found both approaches competitive
in RC-Car environment, although safe-LOOP [Sikchi et al., 2021a] exhibits higher variance.

We also measure cumulative hazard violations that occur till convergence for MBPPO-L (ours),
PPO-Lagrangian [Ray et al., 2019], safe-LOOP [Sikchi et al., 2021a] as follows -

Cumulative V iolations =
∑

Till convergence

[1(C(st, at) == 1)]. (27)

We use rliable library (See Sec 4.3 in Agarwal et al. [2021] for more details) for plotting 95%
confidence intervals for cumulative violations in the right part of Figure 4 (normalized by cumulative
violations in unconstrained PPO in respective tasks) and final policy reward performance in the
left part of Figure 4 (normalized by reward return of the final policy in unconstrained PPO in
respective tasks) using mean, median and inter-quartile mean as aggregate estimates for our approach,
PPO-Lagrangian and safe-LOOP because these approaches only give constraint satisfying policies
at convergence. From figure 4 we can observe that our approach is competitive with regards the
model-based safe-LOOP approach [Sikchi et al., 2021a] in terms of cumulative constraint violations
but achieves better reward performance at convergence.
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Figure 4: Normalized Reward Returns at Convergence (left) with median, inter-quartile mean (IQM),
mean estimates and Normalized Cumulative Violations (right) with median, inter-quartile mean
(IQM), mean estimates. Top rows (in green) represent PPO-Lagrangian, middle rows (in orange)
represent safe-LOOP and bottom rows (in blue) represent our approach.

7 Conclusions

We presented a sample efficient approach for Safe Reinforcement Learning and compared our
approach with relevant model-free and model-based baselines [Achiam et al., 2017, Sikchi et al.,
2021a, Ray et al., 2019, Schulman et al., 2017]. Note that we chose the above baselines because they
are specifically designed to solve a constrained optimization problem of the same structure as (1)-(3).
In Sikchi et al. [2021a], approximation of the value function is used to provide long-term reasoning
instead of using a truncated horizon. A limitation of this approach lies in the fact that approximations
of reward and cost value functions are used. The most challenging part of model-based approaches is
to learn the environment model. The first issue is of computational resources and the time overhead
that is needed. We provide a comparison of the running time of algorithms and their hardware
requirements (see Appendix B). Our algorithm does much better than safe-LOOP [Sikchi et al.,
2021a] in terms of running time.

One should note that in safe exploration settings, agents do not explore as much as an unconstrained
agent would do. This adds to the complexity of model learning in safe exploration problems because
constrained exploration leads to limited representation of data points for model learning even with
the same sample size. We found this more pronounced in high-dimensional environments like
DoggoGoal1[Ray et al., 2019] (See Appendix C). Our algorithm depends on Lagrangian-based
approach which provides a very simplistic way to construct a safe RL algorithm but suffers from
the issue of low reward performance compared to unconstrained approaches (see Appendix A for a
reward comparison). Note that we can have a similar model-based approach using TRPO-Lagrangian
[Ray et al., 2019] but it involves an extra overhead of approximating the Fisher Information Matrix
(FIM) and hence we chose a PPO-based approach. Also TRPO-Lagrangian and PPO-Lagrangian have
similar performance on Safety Gym benchmark [Ray et al., 2019]. Increasing reward performance
of Lagrangian-based approaches and devising better ways for model-learning in high-dimensional
state representations in safe RL settings where exploration is limited, can be looked at in the future.
Moreover, it would be interesting to adapt off-policy natural actor-critic algorithms such as in
Bhatnagar et al. [2009], Diddigi et al. [2022] to the setting of constrained MDPs and study their
performance both theoretically and empirically.
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