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A Additional Qualitative Results

In Fig. 1, we compare our method with the baseline method [3], and present qualitative results on the
MPII validation set. Note that for the baseline method [3], we calculate the predicted coordinates
from the predicted heatmap following its own design, and we calculate the predicted coordinates for
our method following the process we discuss in Sec. 3.4 in the main paper. As shown, via formulating
the cost function as the L2 distance, our method can aggregate the pixel values in the predicted
heatmap towards the dot annotation, and thus output much more compact predicted heatmaps and
localize body joints more accurately.

B Additional Ablation Studies

Relation between the loss value and the body joint localization performance. In the main paper,
we mention that when minimizing the pixel-wise loss between the predicted heatmap and the GT
Gaussian-smoothed heatmap, the model performance of body joint localization cannot be guaranteed
to improve consistently. Here, we further conduct an experiment on the MPII validation set to
demonstrate this. Specifically, we plot two pairs of curves from epoch 2 to epoch 15 of the model
optimization process respectively, between the pixel-wise MSE loss on the MPII validation set and
the model performance on the MPII validation set in Fig. 2(a), and between our proposed loss on the
MPII validation set and the model performance on the MPII validation set in Fig. 2(b). As shown in
Fig. 2(a), during the model optimization process, while the pixel-wise MSE loss measured on the
MPII validation set decreases, the model performance of body joint localization measured on the
same set (the MPII validation set) does not improve consistently. This means that the pixel-wise loss
has limitations as the decrease of the pixel-wise loss is not directly relevant to the increase of the
model performance. Compared with this, as shown in Fig. 2(b), as our proposed loss can aggregate
the pixel values in the predicted heatmap directly towards the dot annotation, while our proposed loss
measured on the MPII validation set decreases, a consistent model performance improvement on the
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Figure 1: Qualitative results of our method and the baseline method [3].

Figure 2: Illustration of (a) the relation between the value of the pixel-wise MSE loss and the model
performance of body joint localization, and (b) the relation between the value of our proposed loss
and the model performance of body joint localization. As shown, when the value of our proposed
loss becomes smaller, a consistent model performance improvement is achieved.

same set (the MPII validation set) is achieved. This demonstrates the effectiveness of our method as
the decrease of our proposed loss is more directly relevant to the increase of the model performance.

Comparison between our method and the method using the dot-annotated heatmap. In our
proposed method, we formulate the optimization of the heatmap prediction as a distribution matching
problem between the predicted heatmap and the dot annotation. Here, to demonstrate the effectiveness
of our method, besides comparing our method with the baseline method [3] (Gaussian-smoothed
heatmap) which uses the Gaussian-smoothed heatmap as the optimization objective, we also compare
our method with another baseline method (dot-annotated heatmap) that uses the same backbone as
our method but uses the dot-annotated heatmap as the optimization objective and uses the pixel-wise
MSE loss as the loss function. As shown in Tab. 1, our proposed method consistently outperforms
both types of baseline methods, which shows the effectiveness of our method.
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Table 1: Comparison between our method and the two types of baseline methods.

Method AP AP50 AP75 APM APL AR
Gaussian-smoothed heatmap 77.1 91.8 83.8 73.5 83.5 81.8
dot-annotated heatmap 46.6 86.0 45.1 42.9 52.9 58.5
Our method 78.8 92.5 85.1 75.0 85.3 83.1

C Additional Training Details

Remind that in the main paper, we formulate the optimization of the heatmap prediction as a
distribution matching problem and construct a loss function following such a formulation as:

LMatching =

K∑
k=1

Lk, where Lk = Ereg
Ck (S

k, Dk) (1)

where Sk, Dk, and Ck respectively denote the constructed suppliers, demanders, and cost function for
the k-th body joint. In this section, we introduce how we calculate the gradient of our proposed loss
function. Remind that we derive the suppliers by first passing the predicted heatmap through a relu
activation function and then normalizing it. As the relu activation function and the normalization
process are differentiable, it is easy to calculate the gradient of Sk w.r.t. the corresponding predicted
heatmap. Below, we introduce how we calculate the gradient of LMatching w.r.t. Sk. Specifically,
the Earth Mover’s Distance Ereg

Ck (S
k, Dk) can be written in its dual form as:

Ereg
Ck (S

k, Dk) = max
ak∈RHW & bk∈R4

⟨ak, Sk⟩+ ⟨bk, Dk⟩

s.t. ∀n ∈ {1, ...,H ×W} &m ∈ {1, 2, 3, 4}, akn + bkm ≤ Ck
n,m

(2)
Via writing the Ereg

Ck (S
k, Dk) in its dual form as above, we can calculate the gradient of LMatching

w.r.t. Sk as:
∂LMatching

∂Sk
=

∂Lk

∂Sk
=

∂Ereg
Ck (S

k, Dk)

∂Sk
= ak (3)

Via calculating the gradient of LMatching w.r.t. Sk and the gradient of Sk w.r.t. its corresponding
predicted heatmap respectively as discussed above, we can back propagate our proposed loss through
the suppliers and the predicted heatmaps into the backbone model and update the model parameters
correspondingly.

D Proof of Theorem 1 in the Main Paper

To prove Theorem 1 in the main paper, we first introduce some notations as follows. Note that all the
notations we introduce here are the same as the notations we introduce in the main paper.

We denote K the number of joints per input image I . Then we denote Hdot = {H1
dot, ...,H

K
dot},

HGau = {H1
Gau, ...,H

K
Gau}, and Hpred = {H1

pred, ...,H
K
pred} respectively the corresponding

K GT dot-annotated heatmaps, GT Gaussian-smoothed heatmaps, and predicted heatmaps of
the input image I . We denote Ddot = {(I,Hdot)} the joint distribution of the input image
and the corresponding K dot-annotated heatmaps, and DGau = {(I,HGau)} the joint distribu-
tion of the input image and the corresponding K Gaussian-smoothed heatmaps. Besides, we
denote lMSE(a, b) = ∥a− b∥22 the pixel-wise MSE loss, and ϕ the model parameters where
ϕ(I) = Hpred. After that, we denote R(Ddot, ϕ, lMSE) = E(I,Hdot)∼Ddot

[lMSE(ϕ(I),Hdot)]
as the expected risk calculated between the predicted heatmaps and the GT dot-annotated heatmaps,
and R(DGau, ϕ, lMSE) = E(I,HGau)∼DGau

[lMSE(ϕ(I),HGau)] as the expected risk calculated
between the predicted heatmaps and the Gaussian-smoothed heatmaps.

Theorem 1. The relationship between R(Ddot, ϕ, lMSE) and R(DGau, ϕ, lMSE) can be written as
R(Ddot, ϕ, lMSE) =R(DGau, ϕ, lMSE) + 2× E(I,HGau)∼DGau

[⟨Hpred,HGau⟩]
− 2× E(I,Hdot)∼Ddot

[⟨Hpred,Hdot⟩]− C
(4)

where C = E(I,Hdot)∼Ddot
[∥HGau −Hdot∥22] is a constant.
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Proof. Remind that both Hdot and HGau have the pixel representing the dot annotation to be one,
and Hdot further has all the other pixels to be zero. Hence, the following equation holds:

∥Hdot∥22 = ⟨HGau,Hdot⟩ (5)
Hence, Theorem 1 can be proved as:

R(Ddot, ϕ, lMSE) = E(I,Hdot)∼Ddot
[∥Hdot −Hpred∥22]

= E(I,Hdot)∼Ddot
[∥Hdot∥22 + ∥Hpred∥22 − 2× ⟨Hdot,Hpred⟩]

= E(I,Hdot)∼Ddot
[2× ∥Hdot∥22 − ∥Hdot∥22 + ∥Hpred∥22 − 2× ⟨Hdot,Hpred⟩
+ 2× ⟨HGau,Hpred⟩ − 2× ⟨HGau,Hpred⟩
+ ∥HGau∥22 − ∥HGau∥22]

= E(I,Hdot)∼Ddot
[∥HGau∥22 + ∥Hpred∥22 − 2× ⟨HGau,Hpred⟩

− ∥Hdot∥22 − ∥HGau∥22 + 2× ∥Hdot∥22
+ 2× ⟨HGau,Hpred⟩ − 2× ⟨Hdot ·Hpred⟩

= E(I,Hdot)∼Ddot
[∥HGau∥22 + ∥Hpred∥22 − 2× ⟨HGau,Hpred⟩

− ∥HGau∥22 − ∥Hdot∥22 + 2× ⟨HGau,Hdot⟩
+ 2× ⟨HGau,Hpred⟩ − 2× ⟨Hdot,Hpred⟩]

= E(I,Hdot)∼Ddot
[∥HGau −Hpred∥22 − ∥HGau −Hdot∥22
+ 2× ⟨HGau,Hpred⟩ − 2× ⟨Hdot,Hpred⟩]

= R(DGau, ϕ, lMSE) + 2× E(I,HGau)∼DGau
[⟨Hpred,HGau⟩]

− 2× E(I,Hdot)∼Ddot
[⟨Hpred,Hdot⟩]− E(I,Hdot)∼Ddot

[∥HGau −Hdot∥22]
(6)

The last equality holds since R(DGau, ϕ, lMSE) = E(I,HGau)∼DGau
[∥HGau −Hpred∥22 =

E(I,Hdot)∼Ddot
[∥HGau −Hpred∥22] and E(I,HGau)∼DGau

[⟨Hpred,HGau⟩] =
E(I,Hdot)∼Ddot

[⟨Hpred,HGau⟩]. These are because the expectation calculated over Ddot

and the expectation calculated over DGau are the same, as the element of the distribution Ddot (i.e.,
(I,Hdot)) and the element of the distribution DGau (i.e., (I,HGau)) are one to one correspondent
to each other.

E Failure Cases

In Fig. 3, we show some failure cases of our method. As shown, in some extremely challenging cases
(e.g., body joints under severe occlusion), both the baseline method and our method may not localize
the body joints very accurately. This is also a limitation, and an important research problem in the
task of pose estimation that we will take as a future direction.

F Dataset Licenses

We use the COCO dataset [2] by following the Creative Commons Attribution 4.0 License, and use
the MPII dataset [1] by following the Simplified BSD License.
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Figure 3: Failure cases of joints under severe occlusion
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