
A Proofs and additional theoretical results482

A.1 Proofs483

Here we usually omit the = k suffix in A(s)
q,t=k and write instead A(s)

q,t for easier reading. The operator484

A(s)
q,t is understood as having a fixed value t(xs) of t observed. Similarly we often write Eq,t to485

abbreviate Eq,t=k, with the same understanding.486

Proof of Lemma 3.1 For convenience we repeat the statement of the lemma here.487

Lemma 3.1 If qk(x) > 0 for all k, then A(s)
q,t=k is a Stein operator for the conditional distribution of488

X given t(X) = k, and
∑

s A
(s)
q,t=k is a Stein operator for the conditional distribution of X given489

t(X) = k.490

Proof. In order to show the assertion we prove that for Eq,t=k denoting the conditional distribution of491

X given t(X) = k, the expectation Eq,t=k[A(s)
q,tf ] vanishes for all functions for which the expectation492

exists. Let f be such a function. We have493

A(s)
q,tf(x

(s,1)) =q(x(s,0)|t(xs)= k)(f(x(s,0))− f(x(s,1)))

A(s)
q,tf(x

(s,0)) =q(x(s,1)|t(xs)= k)(f(x(s,1))− f(x(s,0))).

Thus, Eq,t,494

Eq,t[A(s)
q,tf ] =

∑
x−s

{
1(xs = 1)pt(x

(s,1))q(y(s,0)|t(ys)= k)(f(x(s,0))− f(x(s,1)))

−1(xs = 0)pt(x
(s,0))q(y(s,1)|t(ys)= k)(f(x(s,0))− f(x(s,1)))

}
=
∑
x−s

(f(x(s,0))− f(x(s,1)))pt(x
(s,1))pt(x

(s,0)) {1(xs = 1)− 1(xs = 0)}

=0.

495

Proof of Theorem 3.2 For convenience we repeat the theorem here.496

Theorem 3.2 Assume that q̂t(x(s,1)) is a consistent estimator for qt(x(s,1)) as L → ∞. Then for any497

function f such that ||∆f || < ∞ we have Eq[Aq̂,tf(x)] → Eq[Aq,tf(x)] = 0 as L → ∞.498

Proof. We recall the notation that Equation (4). We have that

Aq,tf(x) =
1

N

∑
s∈[N ]

[q(x(s,1)|t(x−s)f(x
(s,1)) + q(x(s,0)|t(x−s)f(x

(s,0))− f(x)]

so that499

Aq̂,tf(x)−Aq,tf(x) =
1

N

∑
s∈[N ]

{(q̂(x(s,1)|t(x−s))− q(x(s,1)|t(x−s))f(x
(s,1))

+ (1− q̂(x(s,1)|t(x−s)− (1− q(x(s,1)|t(x−s)))f(x
(s,0))}

=
1

N

∑
s∈[N ]

(q̂(x(s,1)|t(x−s)− q(x(s,1)|t(x−s))∆sf(x).

Hence

|Aq̂,tf(x)−Aq,tf(x)| ≤ ||∆f || 1
N

∑
s∈[N ]

|q̂(x(s,1)|t(x−s))− q(x(s,1)|t(x−s))|.

Thus, if for all s ∈ [N ], as L → ∞ we have q̂(x(s,1)|t(x−s))−q(x(s,1)|t(x−s)) → 0 for all s then so500

does |Aq̂,tf(x)−Aq,tf(x)|. The assertion follows from the assumption that q̂t(x(s,1)) is a consistent501

estimator for qt(x(s,1)) as L → ∞.502
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Proof of Theorem 3.3 For convenience we repeat the statement of the theorem here. Recall that a503

random graph model is edge-exchangeable if its edge indicator variables are finitely exchangeable.504

Often we just write edge-exchangeable graph. An ERGM is an example of an edge-exchangable505

graph.506

Theorem 3.3 If the graph is edge-exchangeable, then AgraSSt2(q̂, t;x) is a consistent estimator of

gKSS2(q;x) = N−2
∑

s,s′∈[N ]

〈
A(s)

q K(x, ·),A(s′)
q K(·, x)

〉
H
.

For easier tractability the proof is organised in two steps.507

1. First, Proposition A.1 shows that in an edge-exchangeable random graph model, gk given in508

Equation (8) is a consistent estimator for q(x(s,1)|t(x−s)) as NL → ∞.509

2. Theorem A.2 uses these results to obtain a concentration bound for Aq̂ from which then510

Theorem 3.3 follows.511

Moreover theoretical guarantees for fixed L which depend on the model are given. As the graph512

generator can generate as large a number L of graphs as desired, these theoretical results can be used513

to determine L which result in theoretical guarantees on deviations from the mean.514

Proposition A.1. Suppose that X1, . . . , XL are i.i.d. copies of the adjacency matrix of an edge-
exchangeable random graph model. Let s = (i, j) be a fixed vertex-pair. For l = 1, . . . , L and for
a graph Xl let t(s)l denote a possibly multivariate statistic which is evaluated on the collection of
indicator variables in Xl except Xs,l. For a possible t

(s)
l outcome k, let p(k) = P(t(s)l = k) and let

k be such that p(k) ̸= 0. Set
p(1; k) = P(Xs = 1|t(s) = k);

let

n(k, s) =

L∑
l=1

Xs,l1(t
(s)
l = k) and n(k(s)) =

L∑
l=1

1(t(s)l = k);

n(k) =
∑
s∈[N ]

n(k, s) and Nk =
∑
s∈[N ]

n(k(s));

and set

g(k) =
n(k)

Nk
1(Nk ≥ 1).

Then g(k) → p in probability as NL → ∞. In particular, for all ϵ > 0,

P [|ĝ(k)− p(1; k)| > ϵ] ≤ 4

ϵ2NL
{p(s, k)[1− p(s, k)p(k)] + 1− p(k)}.

Proof. Due to the exchangeability of the edges we have, with s denoting a generic edge,

E(n(k)) = NE(n(k, s)) = NLp(1; k)p(k), V ar(n(k)) = NLp(1; k)p(k)(1− p(1; k)p(k)),

as well as

E(Nk) = NE(n(k(s))) = NLp(k), V ar(Nk) = NLp(k)(1− p(k)).

To show convergence in probability, let ϵ > 0. Then515

P [|ĝ(k)− p(1, k)| > ϵ] ≤P

[∣∣∣∣ n(k)

E(n(k))
1[n(k) ≥ 1]− p(1, k)

∣∣∣∣ > 1

2
ϵ

]
+ P

[∣∣∣∣n(k)1[n(k) ≥ 1]

(
1

n(k)
− 1

E(n(k))

)∣∣∣∣ > 1

2
ϵ

]
.
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Note that n(k)1[n(k) ≥ 1] = n(k). By Chebychev’s inequality,516

P

[∣∣∣∣ n(k)

E(Nk)
1[Nk ≥ 1]− p(1; k)

∣∣∣∣ > 1

2
ϵ

]
≤ 4

ϵ2N2L2p(k)2
NLp(1; k)p(k)(1− p(1; k)p(k))

=
4

ϵ2NLp(k)
p(1; k)(1− p(1; k)p(k))

and517

P

[∣∣∣∣n(k)1[Nk ≥ 1]

(
1

n(k)
− 1

E(Nk)

)∣∣∣∣ > 1

2
ϵ

]
≤ P

[
1

E(Nk)

∣∣E(Nk)−Nk

∣∣ > 1

2
ϵ

]
≤ 4

ϵ2NLp(k)
(1− p(k)).

Summing the contributions completes the proof.518

Proposition A.1 shows that in edge-exchangeable graphs, ĝ(k) consistently estimates q(x(s,1)) =
q(x(s,1)|t(x−s) = k). In an expanded version of Theorem 3.3 we show that the approximate Stein
operator from Eq.(7),

Aq̂,tf(x) :=
1

N

∑
s∈[N ]

Aq̂(x(s)|t(x−s))f(x),

with
q̂(x(s,1)|t(x−s)) = g(x−s), q̂(x(s,0)|t(x−s)) = 1− g(x−s)

is a consistent estimator of

Aq,tf(x) :=
1

N

∑
s∈[N ]

Aq(x(s)|t(x−s))f(x).

We recall
AgraSSt2(q̂, t, x) =

1

N2

∑
s,s′∈[N ]

hx(s, s
′)

with
hx(s, s

′) =
〈
A(s)

q̂,tK(x, ·),A(s′)
q̂,t K(·, x)

〉
H
.

We state the expanded version of Theorem 3.3 here.519

Theorem A.2. If the graph is edge-exchangeable then for any test function f for which the Stein
operator Aq,tf is well defined, and for all ϵ > 0

P(|Aq̂,tf(X)−Aq,tf(X)| > ϵ) ≤ 4

ϵ2NL(||∆f ||)−2
({p(1, k)[1− p(1, k)p(k)] + 1− p(k)}) .

Moreover, AgraSSt2(q̂, t, x) is a consistent estimator of

gKSS(x) =
1

N2

∑
s,s′∈[N ]

〈
A(s)

q,tK(x, ·),A(s′)
q,t K(·, x)

〉
H
.

Proof. We have that

Aq,tf(x) :=
1

N

∑
s∈[N ]

Aq(x(s)|t(x−s))f(x).

and
Aq̂,tf(x) :=

1

N

∑
s∈[N ]

Aq̂(x(s)|t(x−s))f(x),

with
q̂(x(s,1)|t(x−s)) = g(x−s), q̂(x(s,0)|t(x−s)) = 1− g(x−s)
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so that520

Aq̂,tf(x)−Aq,tf(x) =
1

N

∑
s∈[N ]

{(g(k)− q(x(s)|t(x−s)))f(x
(s,1))

+ (1− g(k)− (1− q(x(s)|t(x−s))))f(x
(s,0))}

=
1

N

∑
s∈[N ]

(g(k)− q(x(s)|t(x−s))){f(x(s,1))− f(x(s,0))}

=
1

N

∑
s∈[N ]

(g(k)− q(x(s)|t(x−s)))∆sf(x).

Hence

|Aq̂,tf(x)−Aq,tf(x)| ≤ ||∆f || 1
N

∑
s∈[N ]

|g(k)− q(x(s)|t(x−s))|.

With Proposition A.1 and using the edge-exchangeability,521

P(|Aq̂,tf(X)−Aq,,tf(X)| > ϵ) ≤ 4

ϵ2NL(||∆f ||)−2
({p(1, k)[1− p(1, k)p(k)] + 1− p(k)}) .

The fact that taking the sup over functions in the Hilbert space H does not spoil the convergence
follows from the closed form representation of the sup of AgraSSt2, see for example Equation (11)
in [Xu and Reinert, 2021]. We have that

AgraSSt2(q̂, t, x) =
1

N2

∑
s,s′∈[N ]

hx(s, s
′)

where
hx(s, s

′) =
〈
A(s)

q̂,tK(x, ·),A(s′)
q̂,t K(·, x)

〉
H
.

Hence,522

AgraSSt2(q̂)−AgraSSt2(q)

=
1

N2

∑
s,s′∈[N ]

〈
A(s)

q̂,tK(x, ·)−A(s)
q,tK(x, ·),A(s′)

q̂,t K(·, x)−A(s)
q,tK(x, ·)

〉
H

and the first part gives the desired convergence as L → ∞.523

A.2 Gaussian approximation for AgraSSt in ERGMs524

As ERGMs are edge-exchangeable models, Theorem A.2 shows that the AgraSSt operator is a525

consistent estimator for the ERGM Glauber Stein operator. If the observed graph x is a realisation of526

an ERGM then results from Xu and Reinert [2021] can be leveraged to obtain finer theoretical results.527

First we detail the scaling for exponential random graph models which is used in the theoretical results
which follow. For a graph H on at most n vertices V (H) denote the vertex set, and for x ∈ {0, 1}N ,
denote by t(H,x) the number of edge-preserving injections from V (H) to V (x); an injection σ
preserves edges if for all edges vw of H with σ(v) < σ(w), xσ(v)σ(w) = 1. For vH = |V (H)| ≥ 3
set

tH(x) =
t(H,x)

n(n− 1) · · · (n− vH + 3)
.

If H= H1 is a single edge, then tH(x) is twice the number of edges of x. In the exponent this528

scaling of counts matches Definition 1 in Bhamidi et al. [2011] and Sections 3 and 4 of Chatterjee529

and Diaconis [2013]. An ERGM for the collection x ∈ {0, 1}N can be defined as follows.530

Definition A.3 ( Definition 1.5 in Reinert and Ross [2019]). Fix n ∈ N and k ∈ N. Let H1 be a single
edge and for l = 2, . . . , k let Hl be a connected graph on at most n vertices; set tl(x) = tHl

(x). For
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β = (β1, . . . , βk)
⊤∈ Rk and t(x) = (t1(x), . . . , tk(x))

⊤ ∈ Rk X ∈ Glab
n follows the exponential

random graph model X ∼ ERGM(β, t) if for ∀x ∈ Glab
n ,

q(X = x) =
1

κn(β)
exp

(
k∑

l=1

βltl(x)

)
.

Here κn(β) is a normalisation constant.531

In particular, under suitable conditions, the ERGM Glauber Stein operator is close to the G(n, p) Stein
operator. This result is already shown in Reinert and Ross [2019], Theorem 1.7, with details provided
in the proof of Theorem 1 in Xu and Reinert [2021]. To give the result, a technical assumption is
required, which originates in Chatterjee and Diaconis [2013], and is required in Reinert and Ross
[2019]. For a ∈ [0, 1], define the following functions [Bhamidi et al., 2011, Eldan and Gross, 2018],
with the notation in Definition A.3 for ERGM(β, t):

Φ(a) :=

k∑
l=1

βlela
el−1, φ(a) :=

1 + tanh(Φ(a))

2

where el is the number of edges in Hl.532

Assumption 1. (1) 1
2 |Φ|

′(1) < 1. (2) ∃a∗ ∈ [0, 1] that solves the equation φ(a∗) = a∗.533

The value a∗ will be the edge probability in the approximating Bernoulli random graph, ER(a∗).534

The following result holds.535

Proposition A.4. Let q(x) = ERGM(β, t) satisfy Assumption 1 and let q̃ denote the distribution of
ER(a∗). Then there is an explicit constant C = C(β, t,K) such that for all ϵ > 0,

1

N

∑
s∈N

E|(A(s)
q f(Y )−A(s)

q̃ f(Y ))| ≤ ||∆f ||
(
n

2

)
C(β, t)√

n
.

Moreover, for f ∈ H equipped with kernel K, let f∗
x(·) =

(Aq−Aq̃)K(x,·)
∥(Aq−Aq̃)K(x,·)∥H

. Then there is an536

explicit constant C = C(β, t,K) such that for all ϵ > 0,537

P(|gKSS(q,X)− gKSS(q̃, Y )| > ϵ) (12)

≤
{
||∆(gKSS(q, ·))2||(1 + ||∆gKSS(q, ·)||) + 4 sup

x
(||∆f∗

x ||2)
}(n

2

)
C

ϵ2
√
n
. (13)

Proof. The assertion follows immediately from the proof of Theorem 1 in Xu and Reinert [2021].538

The approximation with a Bernoulli random graph is useful as for a Bernoulli random graphs a539

normal approximation for its gKSS is available in Xu and Reinert [2021], under suitable assumptions.540

Assumption 2. Let H be the RKHS associated with the kernel K : {0, 1}N × {0, 1}N → R and for541

s ∈ [N ] let Hs be the RKHS associated with the kernel ls : {0, 1} × {0, 1} → R. Then542

i) H is a tensor product RKHS, H = ⊗s∈[n]Hs;543

ii) k is a product kernel, k(x, y) = ⊗s∈[N ]ls(xs, ys);544

iii) ⟨ls(xs, ·), ls(xs, ·)⟩Hs
= 1;545

iv) ls(1, ·)− ls(0, ·) ̸= 0 for all s ∈ [N ].546

These assumptions are satisfied for example for the suitably standardised Gaussian kernel K(x, y) =547

exp{− 1
σ2

∑
s∈[N ](xs − ys)

2}.548

Letting || · ||1 denote L1-distance, and L denote the law of a random variable, Xu and Reinert [2021]549

show the following normal approximation.550

Theorem A.5 (Theorem 2 in Xu and Reinert [2021]). Let Y have the distribution q̃ of a Bernoulli551

random graph ER(a∗) as in Proposition A.4. Assume that the conditions i) - iv) in Assumption 2552

hold. Let µ = E[gKSS2(q̃, Y )] and σ2 = V ar[gKSS2(q̃, Y )]. Set W = 1
σ (gKSS2(q̃, Y )]− µ) and553
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let Z denote a standard normal variable, Then there is an explicit constant C = C(a∗, ls, s ∈ [N ])554

such that555

||L(W )− L(Z)||1 ≤ C√
N

.

Thus a normal approximation for the approximating gKSS can then be used to assess the theoretical556

behaviour of AgraSSt as follows.557

Corollary A.6. Let the assumptions Proposition A.4 and Theorem A.5 be satisfied. With the notation558

of Theorem A.5, assume that the RKHS kernel K is such that the right hand side of Proposition A.4559

is o(n). Then 1
σ (AgraSSt(q̃(x(s)|t(x−s)))− µ) is approximately standard normally distributed as560

N → ∞.561

Proof. For all ϵ > 0,562

P
[∣∣∣AgraSSt(q̃(x(s)|t(x−s)))− gKSS(a∗)

∣∣∣ > ϵ
]

≤ P

[∣∣∣AgraSSt(q̃(x(s)|t(x−s)))− gKSS(q)
∣∣∣ > 1

2
ϵ

]
+ P

[
|gKSS(q)− gKSS(a∗)| > 1

2
ϵ

]
.

The first summand tends to 0 as N → ∞ due to Theorem 3.2 and the second summand tends to 0563

due to Proposition A.4. That gKSS(a∗) is approximately normally distributed with the appropriate564

scaling follows from Theorem A.5.565

The theoretical behaviour of the subsampling version ̂AgraSSt(q̃(x(s)|t(x−s))) is addressed in566

Proposition 3.4. A detailed examination of the choice of kernel K such that the assumptions of567

Corollary A.6 are satisfied is left for future work.568

B Additional background569

In this section, we present additional background to complement the discussions in the main text.570

B.1 Parameter estimation for random graphs571

Estimating parameters for parametric models is possible only when the parametric family is explicitly572

specified. For instance, in the synthetic example for E2ST model shown in Section 5.1, β̂l can573

be estimated for βl since the edge, 2Star and triangle statistics are specified. There are various574

approaches for parameter estimation.575

Maximum likelihood Maximum likelihood is a popular approach for parameter estimation in576

random graph models. A complication arises because its probability mass function from Eq.(1),577

q(X = x) =
1

κn(β)
exp

(
k∑

l=1

βltl(x)

)
.

involves a normalisation constant κn(β) =
∑

x exp{
∑k

l=1 βltl(x)} which is generally intractable578

and needs to be estimated for performing MLE. For this task, Markov chain Monte-Carlo maximum579

likelihood estimation (MCMCMLE) for ERGM has been developed by Snijders [2002]. When580

the network size is large, accurate estimation for the normalised κn(β) requires large amount of581

Monte-Carlo samples and is hence computationally expensive.582

Maximum pseudo-likelihood estimator To alleviate the problem associated with the normalising583

constant, Maximum Pseudo-likelihood Estimation (MPLE) [Besag, 1975] has been developed for584

ERGMs, see Strauss and Ikeda [1990] and also Schmid and Desmarais [2017]. MPLE factorises the585

conditional edge probability to approximate the exact likelihood,586

q(x) = Πs∈[N ]q(x
s|x−s). (14)
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For ERGMs the conditional distribution q(xs|x−s) does not involve the normalising constant and587

can hence be computed more efficiently than the MLE. However, in general the MPLS is not588

consistent for ERGMs as the edges are generally non-independent. The consistency of MPLE for589

Boltzmann machines is shown in Hyvärinen [2006]. A thorough comparison of MCMCMLE and590

MPLE estimation in ERGMs can be found in Van Duijn et al. [2009].591

Contrastive divergence Estimation based on contrastive divergence (CD) [Hinton, 2002] has also592

been developed for ERGM estimation [Hunter and Handcock, 2006]. Contrastive divergence runs a593

small number of Markov chains simultaneously for T steps and estimates the gradient based on the594

differences between initial values and values after T steps in order to find a maximum. Convergence595

results for exponential family models are shown in Jiang et al. [2018]. CD can provide a useful596

balance between computationally expensive but accurate MCMCMLE and fast but inconsistent597

MPLE.598

B.2 Kernel Stein discrepancies and kernel-based nonparametric hypothesis testing599

The task of hypothesis testing involves the comparison of distributions p and q that are significantly600

different with respect to the size of the test, denoted by α. In nonparametric tests, the distributions601

are not assumed to be in any parametric families and test statistics are often based on ranking of602

observations. In contrast, parametric tests, such as a Student t-test or a normality test, assume a603

pre-defined parametric family to be tested against and usually employ a particular summary statistics604

such as means or standard deviations. Recent advances in nonparametric test procedures introduce605

RKHS functions which can be rich enough to distinguish distributions whenever they differ. Below606

we detail two instances which are relevant for the main paper.607

We start with a terse review of kernel Stein discrepancy (KSD) for continuous distributions608

developed to compare and test distributions [Gorham and Mackey, 2015, Ley et al., 2017]. Let q609

be a smooth probability density on Rd that vanishes at the boundary. The operator Aq : (Rd →610

Rd) → (Rd → R) is called a Stein operator if the following Stein identity holds: Eq[Aqf ] = 0,611

where f : Rd → Rd is any bounded smooth function. A suitable function class F is such that if612

Ep[Aqf ] = 0 for all functions f∈ F , then p = q follows. It is convenient to take F = B1(H), the613

unit ball of a large enough RKHS with bounded kernel K. The kernel Stein discrepancy (KSD)614

between two densities p and q based on Aq is defined as615

KSD(p∥q,H) = sup
f∈B1(H)

Ep[Aqf ]. (15)

Under mild regularity conditions, for a particular choice of A called Langevin operator,616

KSD(p∥q,H) ≥ 0 and KSD(p∥q,H) = 0 if and only if p = q [Chwialkowski et al., 2016], in617

which case KSD is a proper discrepancy measure between probability densities.618

The KSD in Eq.(15) can be used to test the model goodness-of-fit as follows. One can show that619

KSD2(p∥q,H) = Ex,x̃∼p[hq(x, x̃)], where x and x̃ are independent random variables with density p620

and hq(x, x̃) is given in explicit form which does not involve p,621

hq(x, x̃) = ⟨AqK(x, ·),AqK(·, x̃)⟩H . (16)

Given a set of samples {x1, . . . , xn} from an unknown density p on Rd, to test whether p = q, the622

statistic KSD2(p∥q,H) can be empirically estimated by independent samples from p using a U - or V -623

statistic. The critical value is determined by bootstrap based on weighted chi-square approximations624

for U - or V -statistics. For goodness-of-fit tests of discrete distributions when i.i.d. samples are625

available, a kernel discrete Stein discrepancy (KDSD) has been proposed in Yang et al. [2018].626

Goodness-of-fit Testing aims to check the null hypothesis H0 : p = q against the general alternative
H1 : p ̸= q when the target distribution q is explicitly specified. Given sample(s) from the unknown
distribution p and an explicit density q, H0 is assessed using a chosen test statistic, usually a
discrepancy measure, D(q∥p), between p and q, which can be estimated empirically. Kernel-based
hypothesis tests on goodness-of-fit for continuous distributions q use the kernel Stein discrepancy
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Figure 3: Assessing trained graph generators.

(KSD) in Section B.2 as the test statistic. Given samples x1, . . . , xn from the unknown density p,
KSD2(p∥q,H) in Eq.(15) is estimated via the V -statistic

K̂SD
2
(p∥q,H) =

1

n2

∑
i,j

hq(xi, xj);

recall that hq(xi, xj) = ⟨AqK(xi, ·),AqK(xj , ·)⟩H from Eq.(16). The null distribution of this test627

statistic involves integral operators that are not available in close form; often it is simulated using628

a wild-bootstrap procedure [Chwialkowski et al., 2014]. With the (simulated) null distribution, the629

critical value of the test can be estimated to decide whether the null hypothesis is rejected at test630

level α. In this way, a general method for nonparametric testing of goodness-of-fit on Rd is obtained,631

which is applicable even for models with an intractable normalising constant.632

Two-sample Testing aims to determine whether two sets of samples are drawn from the same633

distribution, i.e. instead of q being available in density form as in the goodness-of-fit setting, q is634

only accessible through samples. Maximum mean embedding (MMD) test are often used for this635

two-sample problem [Gretton et al., 2007]. These tests are based on the kernel mean embedding of a636

distribution,637

µp := Ex∼p[k(x, ·)] =
∫
X
k(x, ·)dp(x) ∈ H, (17)

whenever µp exist. Similar to KSD, MMD takes the supremum over unit ball RKHS functions;638

MMD(p∥q) = sup
f∈B1(H)

∣∣Ep[f ]− Eq[f ]
∣∣ = ∥µp − µQ∥H. (18)

With samples x1, . . . xm ∼ p and y1, . . . , yn ∼ q, MMD can be estimated empirically via U -statistics,639

M̂MD2
u(p∥q) =

1

m(m− 1)

∑
i ̸=i′

k(xi, xi′) +
1

n(n− 1)

∑
j ̸=j′

k(yj , yj′)−
2

mn

∑
ij

k(xi, yj). (19)

In such kernel-based two-sample tests, the null distribution can be obtained via a permutation640

procedure [Gretton et al., 2007]; this procedure can be more robust compared to a wild-bootstrap641

procedure, especially when the kernels need to be optimised [Gretton et al., 2012, Jitkrittum et al.,642

2016, Liu et al., 2020, 2021].643

The two-sample procedure can also be applied to verify model assumptions when the model is not644

directly accessible through its distribution but through generated samples. Such a strategy has been645

considered as benchmark testing procedure in various studies for goodness-of-fit tests [Jitkrittum et al.,646

2017, Xu and Matsuda, 2020, 2021]. Despite lower test power compared to the corresponding state-of-647

the-art KSD-based tests and higher computational cost due to additional empirical estimation for the648

distribution q, the MMD-based tests are competitive with a simpler derivation in complicated testing649

scenarios [Xu and Matsuda, 2020, 2021], and they can outperform non-kernel based goodness-of-fit650

tests as discussed in Xu and Matsuda [2020].651

C Visual illustrations of the assessment procedures652

While AgraSSt is illustrated in Figure.1, we provide an additional visualisation emphasising different653

tasks for which AgraSSt can be applied. In Section 4.1 in the main text, we mentioned two features654

of our proposed AgraSSt procedure:655
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Figure 4: Criticising training quality for generative models.

1. Regardless of the learning or training procedures (masked in grey), AgraSSt can test a given656

generator G that is only accessible through its generated samples as shown in Figure.3. In657

this setting, we do not need to know how the generator G is obtained and the focus is the658

assessment of a particular generator G itself.659

2. Moreover, we are also interested in understanding the quality and capability of training660

procedures of (deep) generative models. As illustrated in Figure.4, a generator G is trained661

from the same distribution as the input graph, e.g. ERGMs. The focus in this setting is to662

assess the training procedure of the generative model. (The samples generated are masked in663

grey.) For instance, for G trained from the Florentine marriage network [Padgett and Ansell,664

1993], we may like to understand whether the generative model can be trained to generate665

graphs that resemble the Florentine marriage network.666

D Additional experimental results and discussions667

D.1 Generating reliable samples668

To illustrate how AgraSSt can be used to select sample batches, Figure.5 shows three sample batches669

of size 8 for the Karate club network of Zachary [1977], including the corresponding p-values for670

the displayed sample batches. Here we would expect to detect some community structure in the671

networks; only the sample batch from CELL captures this feature at least to some extent and has672

p-value which would not lead to rejection at the 5% level. This finding chimes with the results from673

Table 2; AgraSSt rejects both GraphRNN and NetGAN as synthetic data generators, but does not674

reject CELL.675

D.2 Additional case study: Padgett’s Florentine network676

Padgett’s Florentine network [Padgett and Ansell, 1993]. has 16 vertices and 20 edges; in Xu and677

Reinert [2021] the hypothesis that it is an instance of a G(n, p) model could not be rejected.678

AgraSSt Deg MDdeg TV_deg

GraphRNN 0.01 0.11 0.26 0.03
NetGAN 0.16 0.18 0.09 0.06

CELL 0.23 0.36 0.69 0.18

Table 3: p-values for models trained from Florentine marriage network; 100 samples to simulate the
null; rejected null at significant level α = 0.05 is marked red.

The p-values for different tests are shown in Table.3. The Florentine marriage network has edge679

density q = 0.167, while the trained CELL has q̂ = 0.165 which is a close approximation. GraphRNN680

generates graphs with higher edge density q̂ = 0.188. NetGAN generate samples with q̂ = 0.176,681

not too different from the null, which is not rejected at α = 0.05. This is different from what we see682

in the ERGM case above. This discrepancy may arise as the Florentine network is small with n = 16683

and not highly clustered, with average local clustering coefficient 0.191.684
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(a) The Karate Club network (vertices in red)

(b) Samples generated from GraphRNN model trained on Karate Club network (vertices in green)

(c) Samples generated from NetGAN model trained on Karate Club network (vertices in orange)

(d) Samples generated from CELL model trained on Karate Club network (vertices in blue) 0.26

Figure 5: The Karate Club network Zachary [1977] and three sample batches of size 8 from different
graph generators. The p-value for GraphRNN samples in (b) is 0.00, for NetGAN samples in (c) the
p-value is 0.01; for CELL samples in (d) the p-value is 0.26.
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Sample batch selection With CELL being deemed a good generator for the Florentine marriage685

network, we generate a sample batch of size 30 and check the sample quality. Most sample batches686

produce a p-value above α = 0.05 until the 8th batch, which has p-value 0.03 < α. AgraSSt would687

recommend not taking this batch. A visual illustration is shown in Figure.6.688

To investigate these batches, we note that the Florentine marriage network has 3 triangles, while the689

batch being rejected has a significantly lower average number of triangles, namely 1.2. Despite a690

well estimated edge density, this batch produces a low p-value. This batch, identified by AgraSSt as691

less reliable, may not be very suitable for downstream tasks and it may be better to generate another692

batch instead. In contrast, the batch with p-value 0.75 has 2.28 triangles on average while the batch693

with p-value 0.37 has 2.04 triangles on average; these averages are closer to the observed number of694

triangles.695

Figure 6: Samples from small size batches generated from CELL trained on the Florentine marriage
network, with AgraSSt p-values. The first two batches would be deemed suitable by AgraSSt, while
AgraSSt would not accept the third sample at the 5% significance level.
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D.3 Experiments with other network statistics696

AgraSSt can incorporate any user-defined network statistics. Table 4 and Table 5 show additional697

results in the settings of Figure 2(b) and Table 1, respectively. As AgraSSt network statistics t(x−s),698

we introduce D3, which is based on the multivariate statistics (edges((i,j)),deg(i),deg(j)), and we699

introduce Tri, which is based on the number of common neighbours of i and j. The edge based700

AgraSSt from the main text is added in grey for comparison.701

perturbed β2 -0.60 -0.40 -0.20 0.00 0.20

AgraSSt_D3 0.93 0.87 0.60 0.06 1.00
AgraSSt_Tri 0.82 0.71 0.35 0.07 1.00

AgraSSt (main) 0.95 0.89 0.68 0.04 1.00

Table 4: Rejection Rate for the setting in Figure 2(b).

Models GraphRNN NetGAN CELL MC

AgraSSt_D3 0.31 0.66 0.10 0.03
AgraSSt_Tri 0.28 0.32 0.12 0.06

AgraSSt (main) 0.42 0.81 0.05 0.04

Table 5: Rejection Rate for the setting in Table 1.

In the Florentine network example, D3 has p-values 0.04 for GraphRNN, 0.11 for NetGAN, and 0.74702

for CELL. Tri has p-values 0.02 for GraphRNN, 0.01 for NetGAN, and 0.12 for CELL. Overall, the703

results are mainly comparable to using AgraSSt based on the number of edges, although Tri rejects704

NetGAN for the Florentine marriage network, thus picking up on NetGAN struggling to reproduce705

local clustering.706

D.4 Additional discussions on distance-based test statistics707

A classical approach for goodness-of-fit testing in ERGMs is the graphical test by Hunter et al. [2008].708

The idea is to simulate sample graphs under the null distribution statistics and create box plots of709

some relevant network statistics; add to these plots the network statistics in the observed network, as710

a solid line for comparison, which is illustrated in Figure.7. The box plot is used to check whether the711

observed network is “very different” from the simulated null samples. This graphical test procedure712

can be translated into Monte Carlo tests. It is natural to adapt such procedure to implicit models from713

which samples can be obtained. Figure.7 plots standard network statistics from Hunter et al. [2008]714

for samples from a fitted G(n, p) generator (ER Approximate) and a learned GraphRNN generator715

of the Florentine marriage network described in more detail in Appendix D.2. The bold black line716

indicates the distribution of statistics for the Florentine marriage network.717

The distribution of network statistics is then quantified via Total Variation (TV) distance [Xu and718

Reinert, 2021], based on which goodness-of-fit testing with p-values can be conducted. We find719

that while the fitted ER generator shows a reasonable fit for all summary statistics, the GraphRNN720

generator does not match the Florentine marriage network very well for dyad-wise shared partners721

and the triad census.722

D.5 Efficiency results723

Table.6 presents the computational runtime (RT) and the test construction time (CT) for AgraSSt724

and its comparison methods from Section 5.1.1 with the simulation setup as in Section 5.1.2. As a725

measure of accuracy, the variance (Var) of the simulated (or estimated) test statistics under the null726

distribution is also included.727
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Figure 7: Graphical test illustrations on samples from generators learned on the Florentine marriage
network
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The parameter estimation in Param depends on a computationally efficient method which is based728

on MPLE [Schmid and Desmarais, 2017] in Eq.(14). AgraSSt takes longer to compute mainly due to729

the computation of graph kernels, e.g. Weisfeiler-Lehman kernel [Shervashidze et al., 2011]. We note730

that for implicit models, the estimation step in AgraSSt relies on generating samples from the model731

so that the the computational advantage4 of the Stein based test over graphical goodness-of-fit tests5732

reduces compared to gKSS. MDdeg is computationally expensive due to the estimation of an inverse733

covariance matrix. While providing fast computation and estimation, Deg and Param sacrifice test734

power through a large variance of the test statistics. Estimating the full degree distribution, the total735

variation distance method TV_deg, based only on degrees, is competitive with AgraSSt; we recall736

that in our simulation results from Section 5.1.2 TV_deg was less powerful than AgraSSt. Here737

MDdeg is outperformed by the other test statistics.738

AgraSSt Deg Param MDdeg TV_deg

RT(s) 0.141 0.0006 0.014 0.831 0.002
CT(s) 28.656 0.277 2.963 162.912 0.555

Var 0.23 8.38 1.43 15.84 0.28

Table 6: Computational efficiencies and uncertainty in estimates. RT: runtime for one test; CT:
construction time for the test class, including generating 500 samples for relevant estimation and 200
samples for simulating from the null distribution; Var: the estimated variance under the simulated
null distribution. Both RT and CT are in seconds.

D.6 Additional implementation details739

For GraphRNN, we use batch size 128, epoch 1000 for training, 100 for testing, and learning rate740

0.003. For CELL, we use learning rate 0.01, and weight decay 1e-7. For NetGAN, we use batch size741

128, epoch 50, generator size and discriminator size both 128, and learning rate 0.0003.742

We note that training NetGAN [Bojchevski et al., 2018] with the Florentine and with the Karate Club743

network may encounter some generator instability and hence early stopping can be useful. Without744

early stopping, the training loss for the generator increases during training, although it should be745

decreasing. Figure.8 shows the training loss on the generator in NetGAN as well as on the critic746

(or discriminator) in NetGAN. Figure.8 plots the loss every 200 training epochs. We can see from747

Figure.8(a) that the generator loss starts to be unstable and then increases after 50 points, i.e. 10,000748

epochs. Hence we use only 10,000 epochs for training.749

(a) Florentine network (b) Florentine network with early
stopping

(c) Karate Club network

Figure 8: Training loss (y-axis) for NetGAN [Bojchevski et al., 2018]; plotted against every 200
training epochs (x-axis).

4These results on gKSS are shown in Supplementary Material D in Xu and Reinert [2021].
5The graphical test [Hunter et al., 2008] is computed based on generating a large amount of samples from the

null distribution.
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