## **Appendix**

## Appendix 1: Hardware Specifications of the Camera and Processor

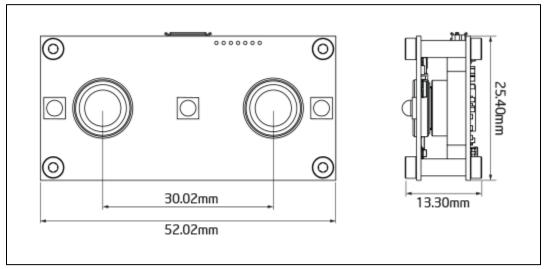



Figure A1.1: Dimensions of the Stereo Camera (source: https://duo3d.com/product/duo-minilx-lv1#tab=specs)

Table A1.1: Specifications of the Stereo Camera (based on details from the manufacture, Code Laboratory Inc.)

|                    | Laboratory Inc.)                                              |
|--------------------|---------------------------------------------------------------|
| Model              | DUO-MINILX-LV1 (DUO MLX R2)                                   |
| Baseline           | 30.0 mm                                                       |
| Frame Rates        | 0.1 – 3000+ FPS                                               |
| Stereo Resolutions | Configurable Binning / Windowing:                             |
|                    | - 45 FPS @ 752x480                                            |
|                    | - 49 FPS @ 640x480                                            |
|                    | - 98 FPS @ 640x240                                            |
|                    | - 192 FPS @ 640x120                                           |
|                    | - 86 FPS @ 320x480                                            |
|                    | - 168 FPS @ 320x240                                           |
|                    | - 320 FPS @ 320x120                                           |
| Pixel Size         | 6.0 x 6.0 µm                                                  |
| Shutter Speed      | 0.3 µsec ~ 10 sec                                             |
| Lens Mount         | Standard M8 x P0.5                                            |
| Field of View      | 170° Wide Angle Lens                                          |
|                    | Low Distortion < 3%                                           |
| Focal Length       | 2.0mm - 2.1mm                                                 |
| Filters            | 850-870nm Narrow Band-Pass                                    |
| Illumination       | Fully Programmable LED Array                                  |
|                    | 3 Independently controlled 3.4W 850nm IR LEDs 170° light cone |

| Illumination Control  | Individual brightness sequence programmable in 256 linear steps |
|-----------------------|-----------------------------------------------------------------|
| Motion Sensing        | 100Hz Sampling Rate                                             |
|                       | Six Degree of Freedom (DoF)                                     |
|                       | Accelerometer/Gyroscope IMU/Temperature                         |
| Colour Modes          | Monochrome (S/N Ratio > 54dB Linear)                            |
| Control Functions     | Exposure/Shutter/Brightness                                     |
| Scanning Modes        | Progressive Scan/Global Shutter                                 |
| Power Consumption     | ~2.5 Watt @ +5V DC from USB                                     |
| Interface             | 480 Mbps - USB 2.0 Interface (Micro USB)                        |
| Weight                | 12.5g                                                           |
| Operating Systems     | DUO OS -Custom Linux Kernel, Linux, Mac OS or Windows           |
| Operating Temperature | 0° to 40-50° C (32° to 104-122° F)                              |
| Storage Temperature   | -20° to 45° C (-4° to 113° F)                                   |
| Relative Humidity     | 0% to 90% non-condensing                                        |

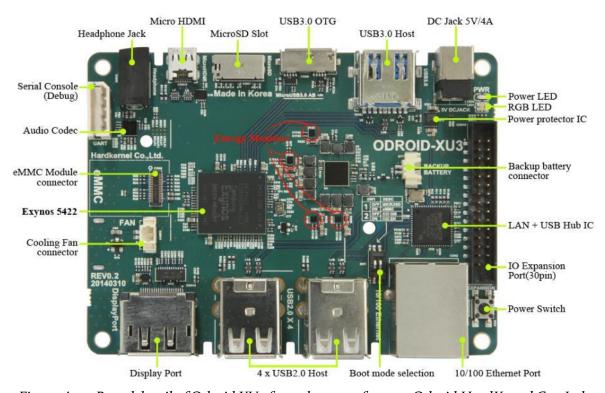



Figure A1.2: Board detail of Odroid XU3 from the manufacture, Odroid HardKernel Co., Ltd.

## Table A1.2: Specifications of Odroid $XU_3$

| CPU             | Samsung Exynos-5422 : Cortex <sup>™</sup> -A15 2GHz and Cortex <sup>™</sup> -A7 |
|-----------------|---------------------------------------------------------------------------------|
|                 | big.LITTLE processor with 2GByte LPDDR3 RAM                                     |
| GPU             | Arm Mali-T628 (MP6)                                                             |
| eMMC 5.0 module | 16GB/32GB : Sandisk iNAND Extreme                                               |
|                 | 64GB: Toshiba eMMC                                                              |
| LAN/USB Hub     | LAN9514 4-port Hi-Speed USB 2.0 hub and 10/100 Ethernet controllers             |
|                 | from SMSC/Microchip                                                             |
| USB Load Switch | NCP380 Protection IC for USB power supply from OnSemi.                          |
| Audio Codec     | MAX98090 is a full-featured and high-performance audio CODEC from               |
|                 | Maxim                                                                           |
| Power protector | NCP372 Over-voltage, Over-current, Reverse-voltage protection IC from           |
|                 | OnSemi.                                                                         |
| LED indicator   | Tri-color RGB LED to display the status of operating system                     |
| HDMI connector  | Standard Micro-HDMI, supports up to 1920 x 1080 resolution                      |
| DisplayPort     | Standard DisplayPort, supports up to 3840 x 2160 resolution                     |
| connector       |                                                                                 |
| IO Ports        | USB 3.0 Host x 1, USB 2.0 Host x 4, USB 3.0 OTG x 1, PWM for Cooler             |
|                 | Ethernet RJ-45, Headphone Jack, 30 Pin : GPIO/IRQ/SPI/ADC                       |
| Storage slot    | Micro-SD slot, eMMC 5.0 module connector                                        |
| DC Input        | 5V / 4A input, plug specification is inner diameter 2.1mm and outer             |
|                 | diameter 5.5mm                                                                  |
| Energy Monitor  | 4 separated current sensors to measure the power consumption of Big             |
|                 | CPU, Little CPU, GPU and DRAM in real time                                      |

## Appendix 2: Design Details of the Data Collection Instrument

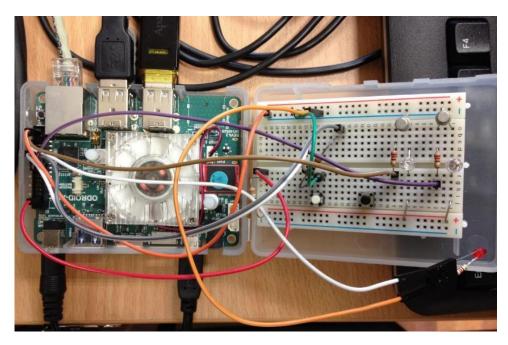



Figure A2.1: ODROID XU3 board (left) and a breadboard (right) during the initial phase of designing the circuitry. The circuit was designed mainly to operate data capturing during this phase.

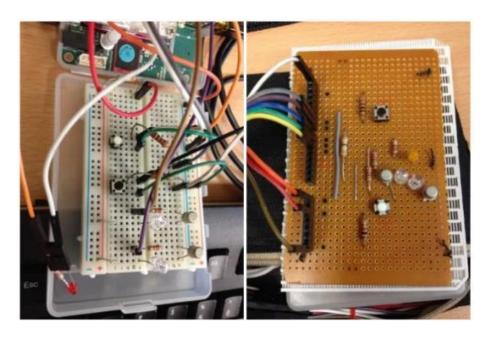



Figure A2.2: Once finalized, the workable circuit on the left photo was moved to a Veroboard as shown on the right photo to make it handy for outdoor usage. 3 LEDs were added as indicators during data collection to indicate: (1) power status, (2) readiness of the system for data capturing, and (3) data storing status.

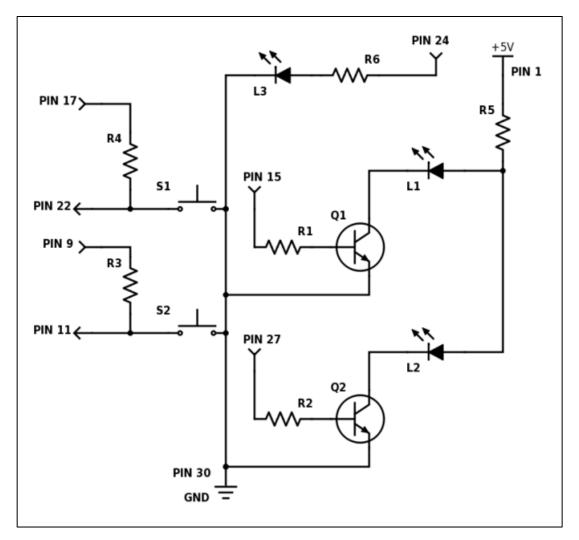



Figure A2.3: The schematic diagram of the circuit to turn the camera program and data storing function ON/OFF by accessing the GPIO on ODROID XU3. LEDs were included as indicator.

More details about the GPIO pins can be found in Appendix 1.

List of electronic components used in the circuit as labelled in Figure A2.3:

- Q1, Q2: two N2222A transistors
- L1, L2: two LEDs (3 5 volts)
- L3: one LED (1.5 volts)
- S1, S2: two button switches (momentary press contact)
- R<sub>1</sub>, R<sub>2</sub>, R<sub>6</sub>: three 220  $\Omega$  resistors
- R<sub>3</sub>, R<sub>4</sub>: two 1 kilo  $\Omega$  resistors
- R5: one 390  $\Omega$  resistor



Figure A2.4: The lithium power source. Since ODROID XU3 is running on 5 volts, a voltage regulator (the green board) is added to convert the 11.1 volts from the lithium battery. Battery specifications: 11.1V, 2300 mAh, 30 C, Li-Polymer battery.

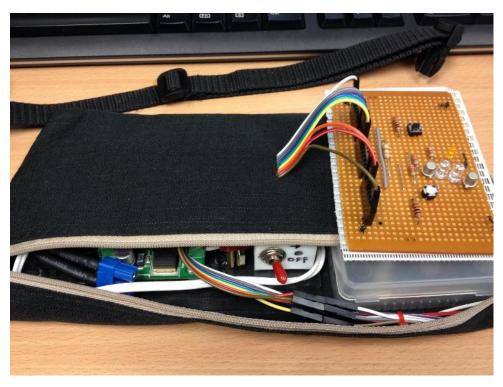



Figure A2.5: All in a waist pouch – putting together the lithium power source, the ODROID board (can be seen hidden in a plastic box inside the pouch) and the circuit board ready for data collection.



Figure A2.6: Wearing the pouch at waist level of a user.