
SurDis: A Surface Discontinuity Dataset for Wearable
Technology to Assist Blind Navigation in Urban

Environments

Kuan Yew Leong
A.I. System Research Co., Ltd.

Kyoto, 606-8302 Japan
kuanyew.leong@gmail.com

Siew Mooi Lim
Tunku Abdul Rahman

University of Management and Technology
siewmooi@tarc.edu.my

Abstract

According to World Health Organization, there is an estimated 2.2 billion people
with a near or distance vision impairment worldwide. Difficulty in self-navigation
is one of the greatest challenges to independence for the blind and low vision (BLV)
people. Through consultations with several BLV service providers, we realized that
negotiating surface discontinuities is one of the very prominent challenges when
navigating an outdoor environment within the urban. Surface discontinuities are
commonly formed by rises and drop-offs along a pathway. They could be a threat
to balancing during a walk and perceiving such a threat is highly challenging to
the BLVs. In this paper, we introduce SurDis, a novel dataset of depth maps and
stereo images that exemplifies the issue of surface discontinuity in the urban areas
of Klang Valley, Malaysia. We seek to address the limitation of existing datasets
of such nature in these areas. Current mobility tools for the BLVs predominantly
focus on furniture, indoor built environments, traffic signs, vehicles, humans and
various types of objects’ detection above the surface of a pathway. We emphasize
a specific purpose for SurDis – to support the development of assistive wearable
technology for the BLVs to negotiate surface discontinuity. We consulted BLV
volunteers on the specifications of surface condition that could become hazardous
for navigation using 3D printed replicas of actual scaled-down scenes, and identified
locations that are frequented by the BLVs as our target data collection fields. With
feedback from these volunteers, we developed a lightweight, small and unobtrusive
prototype equipped with a tiny stereo camera and an embedded system on a
single board computer to capture the samples from 10 different locations. We
describe instrument development, data collection, preprocessing, annotation, and
experiments conducted. The dataset contains: (1) more than 17000 depth maps
generated from 200 sets of stereo image sequences, (2) annotations of surface
discontinuity in the depth maps, and (3) bitmap stereo image pairs corresponding
to the depth maps in (1).

1 Introduction

Safe and efficient navigation has profound importance to the BLVs, as it might be the prerequisite for
getting one to achieve many social functions. Through consultations with several local BLV service
providers in Malaysia, it is realized that there is a diverse range of navigational challenges faced
by the BLVs. To achieve safe and effective navigation, the BLVs need to access global information
relevant to orientation and position on one hand, and deal with local threats along their pathway on
the other. Negotiating surface discontinuities is one of the very prominent challenges when navigating
an outdoor environment within urban areas. Surface discontinuities are various kinds of rises and
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drop-offs along a pathway (Geruschat & Smith, 2010). The rises and drop-offs change the gradient of
the navigational surface. They could be a threat to balancing during a walk, and perceiving such a
threat is a difficult challenge to the BLVs without some proper aids (Kuyk et al., 2004; Goodrich &
Ludt, 2002).

If the presence of universal access facilities such as tactile ground surface indicators, handrails along
staircases, pedestrian ramps, subways, properly covered drainages and et cetera is a sign of equipping
the BLVs with better built environment, it is a little-known reality that even in some modern cities,
most of such facilities are often only available around limited public transportation infrastructures,
certain well-planned urban landscapes and some government or private properties (Hussein & Mohd.
Yaacob, 2013). Additionally, traditional navigation aids such as a guide cane might not always
be helpful when the built environment does not comply with BLV accessibility design standards.
Uneven staircases, steep drop-offs, uncovered drainage, absence of terminal posts between junctions,
stairways without proper handrails and other types of surface discontinuity are common hazards to
the BLVs due to poor enforcement or implementation of regulations for accessible design. This issue
is especially prominent in low to middle income countries, and it is found to be a common scenario
around some busy urban areas in the Klang Valley of Malaysia. Some of these places offer major
private businesses and public services, and hence safe accessibility to them is important to the BLVs.

Surface discontinuities such as staircases, small steps, joints between walkways and curbs are needed
for the continuity of navigation. However, some of them might be hazardous due to unregulated
circumstances. Figure 1 shows an illustration of such surface discontinuities, and some samples
we found at several urban areas in Malaysia. Hazardous conditions are indicated by the red arrows,
on the right image (counterclockwise) we have: partially covered drainage next to some steps that
connect the walkway, uncovered drainage between a steps connecting the road and the aisle, high
altitude drop-off leading to uncovered drainage at the edge of walkway, uncovered drainage between
a ramp and some steps, drop-off along the edge of a walkway without railing, and blended gradients
between a ramp and steps.

Figure 1: Left: An illustration of surface discontinuities faced by the BLVs. Right: Examples of
hazardous surface discontinuity found at several urban areas within Malaysia.

Most of the published works that can be adopted for blind navigation have predominantly focused
on solving the problem of obstacles detection above the surface of a pathway. For examples, they
detect either static objects such as furniture and other indoor objects (Takizawa et al., 2013), stairs
(Vlaminck et al., 2013; Pérez-Yus et al., 2015; Dang et al., 2016; Westfechtel et al., 2018) and
traffic signs (Yuanlong & Mincheol, 2014), or dynamic objects such as bicycles (Young et al., 2016)
and pedestrians (Sun et al., 2018; Jeon et al., 2019 ). However, there is very limited research done
for blind navigation in negotiating surface discontinuity at outdoor urban environments, let alone
publicly available dataset that tailored for such research. Some of these datasets mentioned in their
works might not be suitable for developing wearable assistive tools for the BLVs because the images
were captured very differently from how the BLVs would be positioning themselves on a pathway.
There were some research works conducted to address the global problems of geo-positioning and
wayfinding for the BLVs (Fernandes et al., 2012; Karimi, 2015; Serrão et al., 2015), but in contrary,
little attention was given to the local problem like negotiating surface discontinuity of a pathway.
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Apart from the lack of research works addressing surface discontinuity, datasets that could exemplify
such issue are equally limited. There are several publicly available datasets focusing on the urban
pathway such as the Málaga urban dataset (Blanco et al., 2014), CrowdDriven (Jafarzadeh et al.,
2021), and UrbanNav (Weisong et al., 2020). However, these datasets were mainly captured by
image sensors on vehicles and they are meant for autonomous vehicles on the road. (Wigness et
al., 2019) published Robot Unstructured Ground Driving (RUGD) dataset with video sequences of
unstructured environments. The dataset exemplifies pathways in some natural settings and it was
intended for autonomous vehicles. This dataset can potentially be adopted for blind navigation in
natural environments, but it is not relevant to urban built structures. Cityscapes Dataset (Cordts et al.,
2016) focuses on semantic understanding of urban street scenes of 50 cities with 30 classes of objects
i.e. road, sidewalk, parking, bridge, person and terrain. This is close to the urban scenario for blind
navigation that we are proposing, but apart from the classes "sidewalk, ground, and rail track" there
is no classes that distinguish between surface discontinuity and smooth pathway.

The Project Sidewalk (Eisenberg et al., 2022) is an on-going project started in the US since 2012 to
crowdsource sidewalk images using online map imagery. They have a broader purpose to collect
street-level accessibility data from every street in the world and enable development of location-based
technologies for accessibility. Their method of acquiring samples are based on volunteers to annotate
and label images from online maps. While such dataset might be large and general enough for the
development of various accessibility technologies, there is no guarantee that these images are specific
to the issue of surface discontinuity in blind navigation. Images from Project Sidewalk might not be
in proper perspective from the forward-facing point of an BLV person during navigation.

VIsual Dataset for Visually Impaired Persons (VIDVIP) (Tetsuaki, 2021) offers the most relevant
images for blind navigation in urban environments. It has 538,747 instances for 32,036 images in
39 classes of labels including person, wall, bicycle, door, elevator, signboard, stairs, steps, handrail,
crosswalk, traffic light, safety cone and several others. Again, VIDVIP does not offer any labels of
surface condition. Furthermore, this dataset was meant to support the BLVs in Japan specifically,
thus all samples were collected within Japan only. The pathways for pedestrian in Japan are typically
well-built and adhered to strict regulations hence the issue of hazardous surface condition is rare.
This makes it inappropriate for our local (Malaysia) usages as each country has its unique built
environment and standards.

Taking into account the gaps and aforementioned motivation for assistive tool in negotiating surface
condition for blind navigation, we present SurDis - the Surface Discontinuity Dataset of urban
areas in Malaysia. SurDis has 200 sets of depth map sequences with annotation of various surface
discontinuities from 10 selected locations, captured in video recording mode by a person mimicking
the walking style of a typical BLV individual. Each sequence set contains about 100 to 150 depth
maps, and we generated a total of 17302 such depth maps. We also provide the original stereo image
sequences corresponding to the depth maps. The justification for depth maps (or stereo images) over
single images is that the former can offer better distant estimation of possible surface hazards. This ex-
tra information can become helpful in developing assistive tools for the BLVs. The documentation and
download link of SurDis dataset can be found on this site: https://github.com/kuanyewleong/surdis.

2 Dataset Generation

The local BLV service providers were consulted at the early phases to identify the problem, understand
more about the limitation of a guide cane in addressing surface discontinuity, and communicate the
specifications of surface condition related to blind navigation. It is through these consultations that
the following insights were gained and benefited our data generation.

2.1 Getting Specifications of Surface Discontinuity through 3D Printing

One of the most important items before data collection was to understand more precisely the types
of surface discontinuity that is deemed hazardous by the BLVs during their outdoor navigation. It
was impossible to visually show the BLVs some pictures or videos of surface discontinuity sampled
from the field. Thus, an alternative approach was to let them touch and interpret some 3D printed
replicas of the surface discontinuities, where they could form some mental pictures of the samples.
During this pre-data collection stage, such communication helped the research to identify the right
targets to be sampled from the field. Figure 2 shows an example of a potential sample, with its
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image taken from the field, 3D model and the 3D printed replica. All the 3D replicas used in the
survey were proportionately scaled down from the actual measurements taken from the field. We
observed about 9 distinct types of pathway’s surface around the targeted urban areas, which could be
differentiated by a sighted person based on their physical attributes. These 9 types of surface were
smooth walkway, down-steps, up-steps, drop-off, rise, down-ramp, up-ramp, drainage along pathway,
and mixed-gradient (this is usually the meet-up point of several different terrains). We constructed 3
replicas each for these 9 types of surface, and thus we had a total of 27 replicas for the survey.

During the consultation, these 3D printed replicas were presented to a group of BLV volunteers and
they interpreted the details they could touch and sense with their fingers. Based on the feedback, it
was found that most of the surface discontinuities that could potentially be hazardous to the BLVs,
and difficult to tackle by a guide cane are uncovered drainage along a pathway, sharp drop-off without
safety handrail, unevenly built up- and down-steps (they had no issues with steps that were properly
built), and mixed-gradient.

Figure 2: From left to right: Three different angles for a sample snapped from the field, its 3D model
and printed replica. The 3D replica is proportionately scaled down from the ground truth.

2.2 Instrument Development and Setting

We developed a lightweight, small and unobtrusive wearable prototype as the data collection in-
strument with consultation from BLV volunteers. The BLVs would not abandon their guide canes
while adopting some new technologies. The stereo camera must be set at a position that experiences
the least effect from user’s body movement. Based on Rodriguez et al. (2012) and Pérez-Yus et
al. (2015) as well as feedback form our volunteers, the chest area of a person could be a strategic
location for camera sensor. This area is less affected by the body movement when one is walking
in a linear direction. To operate the sensor and other processing tasks in the form of a wearable
prototype, a small computer platform was required. Our sensor is a factory calibrated stereo camera
known as DUO MLX R2 developed by Code Laboratories. It has industrial grade monochrome global
shutter sensors, and fully programmable active LED array. Other specifications of DUO MLX R2
can be found here: https://duo3d.com/docs/articles/duo-mlx. We used Odroid-XU3 (a single board
computer developed by Hardkernel) for the processor. Specifications of Odroid-XU3 can be found
here: https://www.hardkernel.com/shop/odroid-xu3/.

The camera was tuned to point at approximately 35 degrees facing downward from the horizon. At
this angle, the camera could record proximal drop-offs without much issues. With 170 degrees of
field of view from the camera, it can capture both proximal and distant scenes. We are most interested
in the proximal scene as this is the common region we might capture the surface of a pathway. Under
this setting, the user is approximately 80 centimeters away from the region of interest. Figure 3 shows
the actual setup of the instrument. The camera was set to capture the highest allowable resolution of
images at 752 x 480 pixels, and the raw images were uncompressed in bitmap format. An algorithm
was implemented to take care of the auto-exposure of the camera as the data collection would be
done at outdoor environment, where the amount of sunlight could be varied from time and places.
Table 1 summaries our camera configurations for image sequence recording.

2.3 Data Sampling

Using the developed instrument, we collected over 200 sets of stereo image sequences from 10
different locations. The sampling method employed was judgmental sampling, which is a non-

4



Figure 3: Left: The data collection instrument: the processor (B) was embedded into a waistpouch
together with a lithium battery as the power source, while the camera (A) was set at chest level. Right:
camera setting and region of interest

Table 1: Stereo camera configurations during data capturing.

Specification Value
Image file format Bitmap (BMP)
Colour mode Monochrome
Resolution 752 x 480 pixels
Frame rate 30 fps
Pixel format 8-bit integer (0 – 255)

probability method based on justification that certain areas could have more samples as compared to
others. This is true in most cases because certain urban areas were newly developed and thus new set
of building regulations were strictly followed, while certain areas with older buildings or walkways
might not have followed proper regulations at the time when they were built. We also factored in the
clues given by our BLV volunteers. Eventually, we collected samples from the following locations
where high frequency of targeted surface discontinuity were found. These locations are Damansara
Perdana, Kota Damansara, Bandar Utama, Up-Town, Damansara Jaya, Bandar Sunway – PJS 7,
Bandar Sunway – PJS 9, Bandar Sunway – PJS 10, Brickfields and Pudu.

2.4 The Dataset

An orientation and mobility (O&M) specialist from Vision Australia (Dandenong) had demonstrated
the formal usage of different types of guide cane for blind navigation to us during a consultation
session. The O&M specialist had also personally conducted a short training for us on the guide cane
usage in some urban outdoor environments. With this knowledge, we armed with a guide cane and
walked in the style of a BLV person during capturing of the image sequences. The guide cane is
mostly not present in the images as it is proximal to the body and out of the field of view of the
camera. The image sequences were captured in short linear navigation by a sighted person along the
walkways. Each sample is a pair of left and right images (hence stereo vision) sequence of a walkway
connected to an incoming surface discontinuity. A sample could contain approximately 50 to 150
image pairs based on the duration of the recording at the field. They were collected during sunny
days under direct sunlight or indirect sunlight depending on the locations. The recording tasks were
performed under natural (uncontrolled) environment hence some samples might contain pedestrians
or vehicles (which were anonymized). We used only one single person to put on the wearable sensor
for all samples collection to ensure the consistency of SurDis.

2.4.1 Pre-processing and Anonymizing

To achieve quality dataset, we conducted cleaning and whitening on the collected image samples.
Sorting out noise was the major cleaning task. With careful inspection of the raw data, it was found
that the digital noise in the images was very little, except some fix-pattern noise. The occurrence
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of this noise was random, and it typically had a bended grey and white banding covering some
large areas of the images. The images with noise was removed upon manual inspection. Apart
from digital noise, there were also large amounts of irrelevant instances within some images. These
instances were image sequences captured at the beginning and/or ending of the recording. They
were captured because at the beginning of recording, sometimes the camera was not pointing to the
intended direction. This happened at the end of some recording too, we often turned to some random
directions before the device halt its operation, thus captured some irrelevant scenes by accident. These
irrelevant images were all removed. We then checked for pedestrians, vehicles and property names,
and proceed to anonymize them using the blur tool in GIMP (GNU Image Manipulation Program).

Next, we conducted Principal Component Analysis (PCA) whitening to the images as a mean to
normalize them. Firstly, this was needed because the images were captured under natural lighting
and they vary a lot due to different sunlight amount on different days. Secondly, the auto-exposure of
the camera wasn’t always optimized causing some variation even within the same image sequence.
A whitening process (or transformation) is a linear transformation that converts the feature vectors
based on a covariance matrix into a new set of vectors whose are uncorrelated and have a variance of
value 1 for each of them. As such, it is generally a beneficial practice to pre-process the data with
whitening, since it de-correlates the data and makes them easier to model. However, we remained
cautious that this point is arguable as Koivunen and Kostinski (1999) pointed out that its benefit is
dependent on the data and its subsequent processes.

In the first step of PCA whitening, Singular Value Decomposition (SVD) was applied to compute the
eigenvector decomposition from the zero-centred data. SVD uses a matrix analysis that decomposes a
high dimensional matrix to a low dimensional representation. This makes it easy to eliminate the less
important components of that representation and produce any desired number of dimensions from the
elimination. The image resolution is 752 x 480 pixels, and this would eventually produce a dimension
of 360960 in a single channel. It is crucial to preserve as much information as possible from the
singular values. A calculation on total energy from the singular values was performed to retain the
components that contribute to 90% of the information. We performed several trials and observed
that 292380 out of the 360960 components preserve about 90% of the information. Based on the
select 292380 singular values, the other low singular values were zeroed out. Now with the remaining
eigenvectors, the rotated version of the data was computed by the product of inversed eigenvectors to
the original pixel matrix. Finally, the PCA whitened data, was computed using Equation (1),

whitenedX = diag(1/
√

(diag(singularvalues) + ϵ)) ∗ xRotate (1)

in which epsilon is a small constant to prevent division by zero. Figure 4 shows three patches of
image before the whitening (top), and the result (bottom) after their whitening process.

Figure 4: Three sample images before PCA whitening (top), and the three similar sample images
after PCA whitening (bottom).

2.4.2 Generating the Depth Maps

The stereo camera used in the prototype has a baseline (distance between two camera lenses), B of
30.02 mm. Disparity (denoted as x-x’) is expressed in Equation (2), where x and x’ are the distances
between points in an image plane corresponding to the point on actual scene and their camera centres.
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f is the focal length of the camera, which is 2.0 to 2.1 mm. In other words, Equation (2) suggests that
the depth of a point in a scene is inversely proportional to the displacement of corresponding image
points and their camera centres. Since values of B and f are known as shown in Figure 5, the depth of
all pixels in the image can be derived.

disparity = x− x, = Bf/z (2)

Figure 5: The equivalent triangles
(top), and the dimensions of the stereo
camera (bottom) used in the instru-
ment.

During data collection, lens undistortion and epipolar rectifi-
cation of the images had been processed on real-time before
saving them to the storage. Therefore, to compute the depth
map, a two-step block matching technique (Table 2) can
be used without concerning the lens distortion or epipolar
rectification. Within these two steps, we paid attention to
the regions of uniform intensity, smoothness of edges, and
amount of noise on the depth maps by varying the edge de-
tection filter, window size and disparity range. We observed
the quality of the computed depth by visualizing them in
coloured maps, before setting the best parameters to mass-
produce all depth maps from the stereo image sequences.

Regions of Uniform Intensity. One of the biggest issues
in most of the mapping outcomes is the occurrence of noise
on large regions with very similar intensity. It appeared that
when a large region has neighbouring pixels with uniform
intensity, the mapping ended up with dusts of noise. This
issue can be seen in the Figure 6. It is suspected that the
intensity-based error minimization technique used in the
process could have picked up very small differences and as-
signed some arbitrary disparity to that region. Since this is an
issue relevant to intensity, it was left for error minimization
mechanisms in machine learning to overcome it.

Table 2: A 2-step disparity mapping technique and its best settings used in this work.

Step Parameter
1. Compute contrast based on edge detection. Edge detection filter: Sobel
2. Compute disparity with sum of absolute best window size: 9
differences (SAD). best disparity ranges: (4, 20)

Figure 6: An issue of region with uniform intensity, in which the floor on the walkway (left) can be
seen dusted with black dots or noise in the depth map (right).

Windowing. Window size has some significant effect on the disparity mapping. An optimal window
size would make the map clean and clear. In several observations, when the window size was gradually
increased, it helped to overcome noise better. However, when the window size was increased beyond
an optimal value, it would produce some foggy and less accurate depth maps. It was found that a
window size of 9 units could be optimal for most of the collected samples, although there were some
exceptions, they were suspected to be just some small amount of outliers.
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Disparity Range. Disparity range is the distance between the two cameras, and the distance between
the cameras and the point of the actual scene. It was observed that this range must be optimized or
else the mapping algorithm would get confused at the region where there is not too much of intensity
variation. It was found that a range of (4, 20) is mostly acceptable for the samples. Using this range
and the window size of 9, all 200 sets of depth maps were generated from the stereo image sequences.

2.4.3 Taxonomy of Surface Discontinuity and Data Annotation

The purpose of this work is to generate a dataset that can help develop assistive tool in negotiating
surface discontinuity for the BLVs, and for that, the surface of a pathway must be distinguished
between a “continuity” (indicating a smooth surface) and “discontinuity” (i.e. indicating a drop-
off). Before annotating the data, a taxonomy of surface discontinuity was first developed. This
taxonomy became an important guideline for the labelling task. We built the taxonomy based
on the physical attributes of the collected data. It appeared to have 5 distinct classes of surface
discontinuity namely (1) down-steps, (2) up-steps, (3) uncovered drainage, (4) drop-off without
handrail, and (5) mixed gradient. We plotted the relative class frequency of the dataset in Figure 7.
The classes are not quite balanced as both up- and down-steps have slightly higher frequency than
the rest, which is a typical scenario in most of the urban areas we sampled the image sequences.

Figure 7: Relative frequency of the classes.

In addition to the physical attributes, the Uni-
form Building By-Laws Malaysia (1984) was
also referred to guide the taxonomy develop-
ment. For instance, in the case of steps (or stair-
cases), the by-law 168 stated that: "the rise of
any staircase shall be not more than 180 mil-
limetres and the tread shall be not less than 255
millimetres and the dimensions of the rise and
tread of the staircase so chosen shall be uniform
and consistent throughout". Again for steps or
staircases, the by-law 107 stated that: "Stair-
cases exceeding 2225 millimetres in width shall
be provided with intermediate handrail for each
2225 millimetres of required width spaced ap-

proximately equally". Our data contains some images of steps that violated these by-laws, and we
classified and labelled them into up/down steps accordingly. We did the same for the other classes of
data using this taxonomy.

Figure 8: Examples of bounding box annotation on the anaglyph of two different samples - down-
steps (left) and uncovered drainage (right).

During data annotation, we first mapped the image pairs into some red-cyan composite views
(anaglyph), because it was challenging to visualize and make annotation on the depth maps directly.
Then we annotated the bounding boxes of surface discontinuities using LabelImg. We generated
the annotation in two file formats - PASCAL VOC XML file format, and COCO JSON file format.
We originally collected 245 stereo image sequences, but by the end of all the pre-processing and
annotation, we selected only 200 sequences of the best quality into the repository for publication. We
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split the dataset into train/test sets by hand-picking 20 sets of very different image sequences as the
test set (this contributed about 10%). Figure 8 shows examples of the bounding box annotation on the
anaglyph of two different samples.

2.5 Potential Usages of the Dataset

With SurDis dataset that could exemplify the issue of surface discontinuity in urban outdoor environ-
ments, we propose the following usages:

• developing of wearable assistive tool that detects surface discontinuity in near real-time
• including of SurDis into other datasets that have various urban objects to train a more diverse

object detection model targeting urban navigation
• utilizing of the depth map to extract distance information that can be supplied via the

feedback mechanism of an assistive tool for blind navigation
• designing of evaluation system that rates the level of hazard for each class or each instance

of surface discontinuity, this can become a hazard alert mechanism for an assistive tool in
blind navigation

3 Experiments and Benchmark Models

We trained several benchmark models to provide baseline performance on this dataset. These
models were trained on an NVIDIA GeForce GTX 1080 GPU with 16 GiB of RAM. We
shared the code used for training the models at the same landing page for the dataset:
https://github.com/kuanyewleong/surdis. We evaluated a few different model architectures ranging
from an adapted Resnet-18 (Kaiming et al., 2016), Single Shot MultiBox Object Detector (SSD)
(Liu et al., 2016), faster-RCNN (Shaoqing et al., 2015), to YOLOv4 (Alexey et al., 2020). We
implemented the above models in the Torchvision framework, and leaving out any optimization or
fine-tuning. Due to some minor class imbalance of the dataset, prior to model training we applied a
random under-sampling technique by removing some samples of the majority class (mainly from
down-steps and up-steps classes). We trained the models up to 200 epochs each. More details of the
models used are described in Table 3, together with their corresponding evaluation results.

Table 3: Benchmark results for different models trained.

Model Backbone used mAP
Resnet Resnet-18 0.156
SSD VGG-16 0.241
Faster-RCNN VGG-16 0.396
YOLOv4 Darknet-53 0.427

We evaluated all models by measuring their Mean Average Precision (mAP) on the test set. IOU
threshold of 0.5 was applied in all of the mAP evaluation. Other parameters used in the training
were documented on the given GitHub page. These preliminary experiments and results offer some
idea of the quality of the dataset. We expect further development on the benchmark models with
optimization on the hyper-parameters, augmentation, or some algorithmic improvement.

4 Limitations

There is still much to be done to expand this dataset to represent more diverse regions outside of
the sampling locations as mentioned in Section 2.3. This dataset is limited to the Malaysian urban
environments, and it might not have the rich diversity of surface condition of other nations.

The resulting depth map accuracy or the sensor depends on several factors i.e. (1) the algorithm used
for extraction, (2) the frame rate and resolution, (3) illumination, (4) distance from sensor, and (5)
camera calibration quality. We had applied the optimum configurations for item (2) to (5) for the
sensor to work best during data collection, but we can’t say the same for item (1). There are numerous
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algorithms available for extracting depth map, and our choice of algorithm might not guarantee the
most accuracy depth map. This is also the reason we included the bitmap stereo image pairs in SurDis
for users to have some flexibility to re-generate the depth map using their choice of algorithms.

Another limitation is that since the data collection was performed based on a wearable setting, the
height of the person conducting data collection might have some constraint on the samples.

5 Conclusion

We reviewed the existing research and datasets for blind navigation and realized some gaps in the
works on surface discontinuity. With consultation from the BLV volunteers, we generated a localized
SurDis dataset targeting the Malaysian urbans. This work offers a free and open dataset with the
purpose of promoting the development of wearable assistive tool for blind navigation, especially in
the low- and middle-income regions. We will maintain this work on the mentioned Github site that
has a link to SurDis dataset on Zenodo. The use of Zenodo to host the dataset allows for versioning
to ensure a consistent dataset usage. With the instrument and methodology used for the generation of
SurDis documented, we invite contribution from researchers of similar interest to help expand this
dataset. Researchers could also include this dataset by taking surface discontinuity as a new class
label into currently available dataset to enrich the current models for blind navigation.

Broader Impacts

Since the dataset could indirectly reflect the social and geo-political situation of the country in which
basic infrastructures i.e. the walkways are potentially hazardous for the BLVs in some urban areas, it
could potentially be utilized by certain parties to act upon the situation. The consequence might be
positive if the involved stake holders are taking it constructively to improve the conditions of such
infrastructures for the benefit of the BLVs. We do not foresee negative ethical consequences because
of this work. This dataset would encourage more research and development of assistive tools for
the benefit of the local BLV community, as well as the neighbouring regions who share similar built
environments and conditions.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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