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A Appendix

Appendix A.1 shows the comparison of critical points identified by TopoNet [7] and the proposed
homotopy warping.

Appendix A.2 illustrates the simple points in 3D case.

Appendix A.3 shows the results of warping the prediction binary mask towards GT mask.

Appendix A.4 illustrates the topological errors in 3D case.

Appendix A.5 illustrates the effectiveness of the proposed warping strategy.

Appendix A.6 provides the details of the datasets used in this paper.

Appendix A.7 describes the details of the baselines used in this paper.

Appendix A.8 illustrates the details of the metrics used in this paper.

Appendix A.9 shows more qualitative results from different datasets.

Appendix A.10 provides stddev besides mean, and we use t-test to determine the statistical signifi-
cance.

Appendix A.11 illustrates the loss weight (Cross-Entropy loss) for each dataset.

Appendix A.12 shows a few failure cases.

A.1 Comparison of critical points between TopoNet [7] and Homotopy Warping

Compared to the proposed method (Fig. 7(f)), the critical points identified from [7] are very noisy
and often are not relevant to the topological errors.

A.2 Simple points in 3D

For a 3D binary image, a voxel is called a simple point if it could be flipped from foreground (FG) to
background (BG), or from BG to FG, without changing the topology of the image [10]. The following
definition is a natural extension of the Definition 1 in the main paper. It can be used to determine
whether a voxel is simple:

Definition 2 (Simple Point Condition [10]) Let p be a point in a 3D binary image. Denote by F the
set of FG pixels. Assume 6-adjacency for FG and 26-adjacent for BG.

• p is 6-adjacent to just one FG connected component in N26(p); and
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(a) Original image (b) GT mask (c) Likelihood map

(d) Thresholded mask (e) TopoNet (f) Warping

Figure 7: Illustration of the critical points identified by different methods. (a): Original image. (b):
GT mask. (c): Predicted likelihood map. (d): Segmentation (Thresholded mask from likelihood map).
(e): Critical points identified by [7]. (f): Critical points identified by our homotopy warping. Please
zoom-in for better viewing.

• p is 26-adjacent to just one BG connected component in N26(p).

A.3 Illustration of warping prediction mask to GT

In Fig. 5 of the main paper, we provide the illustration of warping the GT mask towards prediction
mask. Similarly, we can warp the prediction mask towards the GT mask, and get different sets of
critical pixels for the same topological errors, which are shown in Fig. 9.

A.4 Topological errors in 3D

In the main text, we provide the analysis of 1D topological structures (connections). Here we provide
the illustration of 2D topological structures (holes/voids) for 3D case, which is illustrated in Fig. 10.

Note that for 3D vessel data, it’s also the 1D topological structures (connections) that matter. The
process of identifying the topological critical pixels is the same as Fig. 4 and Fig. 5 in the main text.
And the only difference is to use 6-adjacency for FG and 26-adjacency for BG.

A.5 Effectiveness of the proposed warping strategy

By using Distance-Ordered Homotopy Warping, we are able to only consider all the inconsistent
pixels once and flip them if they are simple. Otherwise, we need to iteratively warp all the inconsistent
pixels (one non-simple pixel might become simple if its neighbors are flipped in the previous iteration).
It takes 1.452s to warp a 512×512 image without the warping strategy, while only 0.317s with the
strategy thereby allowing the network to converge much faster.

2



Z

Figure 8: Illustration of simple points in 3D case. This figure is a 3D grid binary mask. Image credit
to [4]. In this case, voxels X and Y are non-simple points/voxels, while Z is a simple point/voxel.

A.6 Datasets

The details of the datasets used in the paper are listed as follows:

1. RoadTracer: Roadtracer contains 300 high resolution satellite images, covering urban areas
of forty cities from six different countries [1]. Similar to setting in [1], twenty five cities
(180 images) are used as training set and the rest fifteen cities (120 images) are used as the
validation set.

2. DeepGlobe: DeepGlobe contains aerial images of rural areas in Thailand, Indonesia and
India [5]. Similar to setting in [2], we use 4696 images as training set and the rest 1530
images as validation set.

3. Massachusetts: The Massachusetts dataset [11] contains images from both urban and rural
areas. Similar to the setting in [7], we conduct a three cross validation.

4. DRIVE: DRIVE [16] is a retinal vessel segmentation dataset with 20 images (resolution
584x565).

5. CREMI: The CREMI dataset is a 3D neuron dataset 1, whose resolution of 4× 4× 40 nm.
We also conduct a three cross validation.

A.7 Baselines

The baseline methods used in this paper are listed as follows:

1. RoadTracer [1]: RoadTracer is an iterative graph construction based method where node
locations are selected by a CNN.

2. VecRoad [17]: VecRoad is a point-based iterative graph exploration scheme with
segmentation-cues guidance and flexible steps.

3. iCurb [18]: iCurb is an imitation learning-based solution for off-line road-curb detection
method.

1https://cremi.org/
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(a) GT (b) Prediction (c) Warped pred. f∗
B

(d) Zoom-in (e) Zoom-in

Figure 9: Illustration of warping in a real world example (satellite image). (a) GT mask. (b) The
prediction mask. The red box highlights a false negative connection, and the green box highlights
a false positive connection. (c) Warped prediction mask (using the GT mask as the target). (d)
Zoomed-in view of the red box in (c). (e) Zoomed-in view of the green box in (c).

(a) GT boundary (b) Prediction binary boundary (c) Warped GT boundary

Figure 10: Illustration of 2D topological structures (holes/voids) for 3D case. (a): GT boundary.
(b): Prediction binary boundary. (c): Warped GT boundary. If we warp the GT boundary (Fig.(a))
towards prediction binary boundary (Fig.(b)), there will be a plane with a thickness of 1 in the middle
of the hole/void to keep the original structure, which is illustrated in Fig. (c).

4. UNet [14, 3]: The standard UNet trained with dice loss. Though lots of other segmentation
methods/backbones have been proposed for image segmentation, UNet is still one of the
most powerful methods for image segmentation with fine-structures.

5. DIVE [6]: DIVE is a popular EM neuron segmentation method.

6. VGG-UNet [12]: VGG-UNet uses the response of selected filters from a pretrained CNN to
construct a new loss function. This is one of the earliest works trying to deal with correct
delineation.

7. TopoNet [7]: TopoNet is a recent work which tries to learn to segment with correct topology
based on a novel persistent homology based loss function.

8. clDice [15]: Another topology aware method for tubular structure segmentation. The basic
idea is to use thinning techniques to extract the skeletons (centerlines) of the likelihood
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maps and ground truth mask. A new cldice loss is proposed based on the extracted skeletons
besides traditional pixel-wise loss.

9. DMT [8]: DMT is a topology-aware deep image segmentation method via discrete morse
theory. Instead of identifying topological critical pixels/locations, the DMT loss tries to
identify the whole morse structures, and the new loss is defined on the identified morse
structures.

Note that RoadTracer, VecRoad and iCurb are graph-based methods for road tracing. Graph-based
approaches learn to explicitly detect keypoints and connect them. Since the graph is built iteratively,
some detection errors in the early stage can propagate and lead to even more errors. Segmentation-
based methods avoid this issue as they make predictions in a global manner. The challenge with
segmentation methods in road network reconstruction is they may fail in thin structures especially
when the signal is weak. This is exactly what we are addressing in this paper – using critical pixels to
improve segmentation-based methods.

VGG-UNet, TopoNet, clDice and DMT are topology-aware segmentation methods.

A.8 Evaluation metrics

The details of the metrics used in this paper are listed as follows:

1. DICE: DICE score (also known as DICE coefficient, DICE similarity index) is one of the
most popular evaluation metrics for image segmentation, which measures the overlapping
between the predicted and ground truth masks.

2. Adapted Rand Index (ARI): ARI is the maximal F-score of the foreground-restricted Rand
index [13], a measure of similarity between two clusters. The intuition is that the boundaries
partition the whole binary mask into several separate regions, and the predicted and ground
truth binary masks can be regarded as two different partitions. ARI is used to measure the
similarity between these two different partitions.

3. Warping Error [9]: Warping Error is metric that measures topological disagreements instead
of simple pixel disagreements. After warping all the simple points of ground truth to the
predicted mask, the disagreements left are topological errors. The warping error is defined
as the percentage of these topological errors over the image size.

4. Betti Error: Betti Error directly calculates the topology difference between the predicted
segmentation and the ground truth. We randomly sample patches over the predicted seg-
mentation and compute the average absolute error between their Betti numbers and the
corresponding ground truth patches.

A.9 More qualitative results

We provide more qualitative results in Fig. 11. Compared with baseline UNet, our method recovers
better structures, such as connections, which are highlighted by red circles. The recovered better
structures (UNet and Warping columns in Fig. 11) demonstrates that our warping-loss helps the deep
neural networks to achieve better topological segmentations.

A.10 More quantitative results

We provide stddev besides mean, and use t-test (95% confidence interval) to determine the statistical
significance (highlighted with bold in Tab. 7) for RoadTracer dataset. The quantitative results show
that the proposed method performs significantly better than baselines.

A.11 Loss weight parameter for each dataset

As illustrated in Sec. 4.1, we finally choose cross-entropy loss (CE) as Lpixel/Lwarp for all the
datasets. In Tab. 8, we list the weights achieving the best performances on each dataset.
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(a) Original (b) GT (c) UNet (d) Ours

Figure 11: More qualitative results compared with the standard UNet. The proposed warping loss
can help to correct the topological errors (highlighted by red circles).

Table 7: Mean and stddev for different methods on RoadTracer.

Method DICE↑ ARI↑ Warping (×10−3) ↓ Betti↓
UNet [14] 0.587 ± 0.011 0.544 ± 0.006 10.412 ± 0.212 1.591 ± 0.098

RoadTracer 0.547 ± 0.012 0.521 ± 0.007 13.224 ± 0.429 2.218 ± 0.217
VecRoad 0.552 ± 0.009 0.533 ± 0.002 12.819 ± 0.173 2.095 ± 0.191

iCurb 0.571 ± 0.010 0.535 ± 0.008 11.683 ± 0.355 1.873 ± 0.104
VGG-UNet [12] 0.576 ± 0.004 0.536 ± 0.013 11.231 ± 0.183 1.607 ± 0.176

TopoNet [7] 0.584 ± 0.008 0.556 ± 0.010 10.008 ± 0.324 1.378 ± 0.075
clDice [15] 0.591 ± 0.005 0.550 ± 0.007 9.192 ± 0.209 1.309 ± 0.103
DMT [8] 0.593 ± 0.004 0.561 ± 0.002 9.452 ± 0.301 1.419 ± 0.092
Warping 0.603 ± 0.003 0.572 ± 0.007 8.853 ± 0.267 1.251 ± 0.062

A.12 Failure cases

In this section, we add a few failure cases from different datasets. Note that inferring topology given
an image is a very difficult task, especially near challenging spots, e.g., blurred membrane locations
or weak vessel connections. Current methods can help to improve the topology-wise accuracy, while
they are far from perfect.
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Table 8: Choice of loss weights.

Dataset RoadTracer DeepGlobe Mass DRIVE CREMI
λwarp 1× 10−4 1× 10−4 1× 10−4 1× 10−4 2× 10−5

(a) Original (b) GT (c) Ours

Figure 12: A few failure cases of the proposed method. From top to bottom, the sampled patches are
from RoadTracer, DeepGlobe, Mass, DRIVE and CREMI datasets respectively.

7



References
[1] Favyen Bastani, Songtao He, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan, Sanjay

Chawla, Sam Madden, and David DeWitt. Roadtracer: Automatic extraction of road networks
from aerial images. In CVPR, 2018.

[2] Anil Batra, Suriya Singh, Guan Pang, Saikat Basu, CV Jawahar, and Manohar Paluri. Improved
road connectivity by joint learning of orientation and segmentation. In CVPR, 2019.

[3] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.
3d u-net: learning dense volumetric segmentation from sparse annotation. In MICCAI, 2016.

[4] Michel Couprie and Gilles Bertrand. New characterizations of simple points in 2d, 3d, and 4d
discrete spaces. TPAMI, 2008.

[5] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan Pang, Jing Huang, Saikat Basu,
Forest Hughes, Devis Tuia, and Ramesh Raskar. Deepglobe 2018: A challenge to parse the
earth through satellite images. In CVPR Workshops, 2018.

[6] Ahmed Fakhry, Hanchuan Peng, and Shuiwang Ji. Deep models for brain em image segmenta-
tion: novel insights and improved performance. Bioinformatics, 2016.

[7] Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen. Topology-preserving deep image
segmentation. In NeurIPS, 2019.

[8] Xiaoling Hu, Yusu Wang, Li Fuxin, Dimitris Samaras, and Chao Chen. Topology-aware
segmentation using discrete morse theory. In ICLR, 2021.

[9] Viren Jain, Benjamin Bollmann, Mark Richardson, Daniel R Berger, Moritz N Helmstaedter,
Kevin L Briggman, Winfried Denk, Jared B Bowden, John M Mendenhall, Wickliffe C Abraham,
et al. Boundary learning by optimization with topological constraints. In CVPR, 2010.

[10] T Yung Kong and Azriel Rosenfeld. Digital topology: Introduction and survey. Computer
Vision, Graphics, and Image Processing, 1989.

[11] Volodymyr Mnih. Machine learning for aerial image labeling. University of Toronto (Canada),
2013.

[12] Agata Mosinska, Pablo Marquez-Neila, Mateusz Koziński, and Pascal Fua. Beyond the pixel-
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