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Abstract

Besides per-pixel accuracy, topological correctness is also crucial for the segmen-
tation of images with fine-scale structures, e.g., satellite images and biomedical
images. In this paper, by leveraging the theory of digital topology, we identify
pixels in an image that are critical for topology. By focusing on these critical pix-
els, we propose a new homotopy warping loss to train deep image segmentation
networks for better topological accuracy. To efficiently identify these topologically
critical pixels, we propose a new algorithm exploiting the distance transform. The
proposed algorithm, as well as the loss function, naturally generalize to different
topological structures in both 2D and 3D settings. The proposed loss function
helps deep nets achieve better performance in terms of topology-aware metrics,
outperforming state-of-the-art structure/topology-aware segmentation methods.

1 Introduction

Image segmentation with topological correctness is a challenging problem, especially for images
with fine-scale structures, e.g., satellite images, neuron images and vessel images. Deep learning
methods have delivered strong performance in image segmentation task [33, 22, 7, 8, 9]. However,
even with satisfying per-pixel accuracy, most existing methods are still prone to topological errors,
i.e., broken connections, holes in 2D membranes, missing connected components, etc. These
errors may significantly impact downstream tasks. For example, the reconstructed road maps from
satellite images can be used for navigation [3, 5]. A small amount of pixel errors will result in
broken connections, causing incorrect navigation route. See Fig. 1 for an illustration. In neuron
reconstruction [18, 27, 49, 54, 53], incorrect topology of the neuron membrane will result in erroneous
merge or split of neurons, and thus errors in morphology and connectivity analysis of neuronal circuits.

Topological errors usually happen at challenging locations, e.g., weak connections or blurred locations.
But not all challenging locations are topologically relevant; for example, pixels at the boundary of
the object of interest can generally be challenging, but not relevant to topology. To truly suppress
topological errors, we need to focus on topologically critical pixels, i.e., challenging locations that
are topologically relevant. Without identifying and targeting these locations, neural networks that are
optimized for standard pixel-wise losses (e.g., cross-entropy loss or mean-square-error loss) cannot
avoid topological errors, even if we increase the training set size.

Existing works have targeted these topologically critical pixels. The closest method to our work
is TopoNet [24], which is based on persistent homology [15, 14]. The main idea is to identify
topologically critical pixels corresponding to critical points of the likelihood map predicted by the
neural network. The selected critical points are reweighed in the training loss to force the neural
network to focus on them, and thus to avoid topological errors. But there are two main issues with
this approach: 1) the method is based on the likelihood map, which can be noisy with a large amount
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of irrelevant critical points. This leads to inefficient optimization during training. 2) The computation
for persistent homology is cubic to the image size. It is too expensive to recompute at every iteration.

(a) Image
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(b) GT mask
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B

(c) UNet pred.

Figure 1: An illustration for the importance of topological
correctness. If one wants to go to point B from A, the
shortest path in the GT is illustrated in (b) (the green path).
However, in the result predicted by UNet, though only a few
pixels are misclassified, the shortest path from A to B is
totally different, which is illustrated by the green path in (c).
Zoom-in for better viewing.

In this paper, we propose a novel ap-
proach to identify topologically criti-
cal pixels in a more efficient and ac-
curate manner. These locations are
penalized in the proposed homotopy
warping loss to achieve better topolog-
ical accuracy. Our method is partially
inspired by the warping error previ-
ously proposed to evaluate the topo-
logical accuracy [26]. Given a binary
predicted mask fB and a ground truth
mask g, we “warp” one towards an-
other without changing its topology.
From the view of topology, to warp
mask fB towards g, we find a mask
f∗
B that is homotopy equivalent to fB

and is as close to g as possible [21].
The difference between the warped
mask f∗

B and g constitutes the topo-
logically critical pixels. We can also warp g towards fB and find another set of topologically critical
pixels. See Fig. 4 and Fig. 5 for illustrations. These locations directly correspond to topological
difference between the prediction and the ground truth, tolerating geometric deformations. Our
homotopy warping loss targets them to fix topological errors of the model.

The warping of a mask is achieved by iteratively flipping labels at pixels without changing the
topology of the mask. These flippable pixels are called simple points/pixels in the classic theory of
digital topology [30]. Note that in this paper, we focus on the topology of binary masks, simple
points and simple pixels can be used interchangeably. To find the optimal warping of a mask towards
another mask is challenging due to the huge search space. To this end, we propose a new heuristic
method that is computationally efficient. We filter the image domain with the distance transform
and flip simple pixels based on their distance from the mask. This algorithm is proven efficient and
delivers high quality locally optimal warping results.

Overall, our contributions can be summarized as follows:

• We propose a novel homotopy warping loss, which penalizes errors on topologically crit-
ical pixels. These locations are defined by homotopic warping of predicted and ground
truth masks. The loss can be incorporated into the training of topology-preserving deep
segmentation networks.

• By exploiting distance transforms of binary masks, we propose a novel homotopic warping
algorithm to identify topologically critical pixels in an efficient manner. This is essential in
incorporating the homotopy warping loss into the training of deep nets.

Our loss is a plug-and-play loss function. It can be used to train any segmentation network to achieve
better performance in terms of topology. We conduct experiments on both 2D and 3D benchmarks
to demonstrate the efficacy of the proposed method. Our method performs strongly in multiple
topology-relevant metrics (e.g., ARI, Warping Error and Betti Error). We also conduct several
ablation studies to further demonstrate the efficiency and effectiveness of the technical contributions.

2 Related Works

Deep Image Segmentation. Deep learning methods (CNNs) have achieved satisfying performances
for image segmentation [33, 7, 8, 9, 36, 39]. By replacing fully connected layer with fully con-
volutional layers, FCN [33] transforms a classification CNNs (e.g., AlexNet [31], VGG [43], or
ResNet [23]) to fully-convolutional neural networks. In this way, FCN successfully transfers the
success of image classification [31, 43, 47] to dense prediction/image segmentation. Instead of using
Conditional Random Field (CRF) as post-processing, Deeplab (v1-v2) [7, 8] methods add another
fully connected CRF after the last CNN layer to make use of global information. Moreover, Deeplab
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v3 [9] introduces dilated/atrous convolution to increase the receptive field and make better use of
context information to achieve better performance.

Besides the methods mentioned above, UNet [39] has also been one of the most popular methods
for image segmentation, especially for images with fine structures. UNet architecture is based on
FCN with two major modifications: 1) Similar to encoder-decoder, UNet is symmetric. The output is
with the same size as input images, thus suitable for dense prediction/image segmentation, and 2)
Skip connections between downsampling and upsampling paths. The skip connections of UNet are
able to combine low level/local information with high level/global information, resulting in better
segmentation performance.

Though obtaining satisfying pixel performances, these methods are still prone to structural/topological
errors, as they are usually optimized via pixel-wise loss functions, such as mean-square-error loss
(MSE) and cross-entropy loss. As illustrated in Fig.1, a small amount of pixel errors will affect or
even damage the downstream tasks.

Topology-Aware Segmentation. Topology-aware segmentation methods have been proposed to
segment with correct structure/topology. By identifying critical points of the predicted likelihood
maps, persistent-homology-based losses [24, 11] penalize topologically critical pixels. However,
the identified critical points can be very noisy and often are not relevant to the topological errors.
Illustrations are included in Sec. A.1. Moreover, the computation of persistent homology is expensive,
making it difficult to evaluate the loss and gradient at every training iteration.

Other methods indirectly preserve topology by enhancing the curvilinear structures. VGG-UNet [35]
uses the response of pretrained filters to enhance structures locally. But it does not truly preserve the
topology, and cannot generalize to higher dimensional topological structures, such as voids. Several
methods extract skeletons of the masks and penalize heavily on pixels of the skeletons. This ensures
the prediction to be correct along the skeletons, and thus are likely correct in topology. clDice [42]
extracts the skeleton through min/max-pooling operations over the likelihood map. DMT Loss [25]
uses the Morse complex of the likelihood map as the skeleton. However, these skeletons are not
necessarily topologically critical. The penalization on them may not be relevant to topology.

We also note that many deep learning techniques have been proposed to ensure the segmentation
output preserves details, and thus preserves topology implicitly [39, 33, 2, 13, 29, 28]. One may
also use topological constraints as postprocessing steps once we have the predicted likelihood
maps [20, 32, 46, 41, 51, 19, 50, 37, 55, 6, 1, 45, 38, 16]. Compared to end-to-end methods,
postprocessing methods usually contain self-defined parameters or hand-crafted features, making it
difficult to generalize to different situations.

Instead of relying on the noisy likelihood maps [24, 11, 42, 25], we propose to use the warping of
binary masks to identify the topologically critical pixels. The identified locations are more likely to
be relevant to topological errors. Penalizing on these locations ensures the training efficiency and
segmentation quality of our method. Another difference from previous methods is that our method
rely on purely local topological computation (i.e., checking whether a pixel is simple within a local
patch), whereas previous methods are mostly relying on global topological computation.

3 Method

By warping the binary predicted mask to the ground truth or conversely, we can accurately and
efficiently identify the critical pixels. And then we propose a novel homotopy warping loss which
targets them to fix topological errors of the model. The overall framework is illustrated in Fig. 2.

This section is organized as follows. We will start with necessary definitions and notations. In
Sec. 3.1, we give a concise description of digital topology and simple points. Next, we analyze
different types of warping errors in Sec. 3.2. The proposed warping loss is introduced in Sec. 3.3.
And finally, we explain the proposed new warping algorithm in Sec. 3.4.

3.1 Digital Topology and Simple Points

In this section, we briefly introduce simple point definition from the classic digital topology [30].
We focus on the 2D setting, whereas all definitions generalize to 3D. Details on 3D images will be
provided in the Sec. A.2.
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Connectivities of pixels. To discuss the topology of a 2D binary image, we first define the connectivity
between pixels. See Fig. 3 for an illustration. A pixel p has 8 pixels surrounding it. We can either
consider the 4 pixels that share an edge with p as p’s neighbors (called 4-adjacency), or consider all 8
pixels as p’s neighbors (called 8-adjacency). To ensure the Jordan closed curve theorem to hold, one
has to use one adjacency for foreground (FG) pixels, and the other adjacency for the background (BG)
pixels. In this paper, we use 4-adjacency for FG and 8-adjacency for BG. For 3D binary images, we
use 6-adjacency for FG and 26-adjacency for BG. Denote by N4(p) the set of 4-adjacency neighbors
of p, and N8(p) the set of 8-adjacency neighbors of p.

Input Image
U-Net

Predicted Mask

GT Mask

Homotopy
Warping

Topological
Critical Mask M

𝐿"#$% = 𝐿%'()* 𝑓, 𝑔 ⨀𝑀

Figure 2: The illustration of the proposed homotopy
warping loss Lwarp. The homotopy warping algo-
rithm tries to identify the topological critical pixels
via the binary mask instead of noisy likelihood maps.
These identified topological critical pixels/mask are
used to define a new loss which is complementary
to standard pixel-wise loss functions. The details of
Homotopy Warping and Topological Critical Mask M
can be found in Sec. 3.2 and Sec. 3.3, respectively.

Simple points. For a binary image (2D/3D),
a pixel/voxel is called a simple point if it
could be flipped from foreground (FG) to
background (BG), or from BG to FG, without
changing the topology of the image [30]. The
following definition can be used to determine
whether a point is simple:

Definition 1 (Simple Point Condition [30])
Let p be a point in a 2D binary image. De-
note by F the set of FG pixels. Assume 4-
adjacency for FG and 8-adjacent for BG. p
is a simple point if and only if both of the fol-
lowing conditions hold: 1) p is 4-adjacent to
just one FG connected component in N8(p);
and 2) p is 8-adjacent to just one BG con-
nected component in N8(p).

See Fig. 3 for an illustration of simple and
non-simple points in 2D case. It is easy to
check if a pixel p is simple or not by inspect-
ing its 3× 3 neighboring patch. The Defini-
tion 1 can also generalize to 3D setting with 6- and 26-adjacencies for FG and BG, respectively.

3.2 Homotopic Warping Error

(a) 4-adjacent (b) 8-adjacent

𝑝

(c) Simple Point

𝑝

(d) Non-simple

Figure 3: Illustration for 4, 8-adjacency, simple and non-
simple points. (a): 4-adjacency. (b): 8-adjacency. (c):
a simple point p. White and grey pixels are FG and BG,
respectively. Flipping the label of p will not change the
topology. (d): a non-simple point p. Flipping p will change
the topology.

In this section, we introduce the ho-
motopic warping of one mask towards
another. We warp a mask through a
sequence of flipping of simple points.
Since we only flip simple points, by
definition the warped mask will have
the same topology.1 The operation is
called a homotopic warping. It has been
proven that two binary images with the
same topology can always be warped
into each other by flipping a sequence
of simple points [40].

Consider two input masks, the predic-
tion mask and the ground truth mask.
We can warp one of them (source mask)
into another (target mask) in the best way possible, i.e., the warped mask has the minimal number
of difference with the target mask (formally, the minimal Hamming distance). Once the warping is
finished, the pixels at which the warped mask is different from the target mask, called critical pixels,
are a sparse set of pixels indicative of the topological errors of the prediction mask.

We will warp in both directions: from the prediction mask to the ground truth mask, and the opposite.
They identify different sets of critical pixels for a same topological error. In Fig. 4, we show a

1Note that it is essential to flip these simple points sequentially. The simple/non-simple status of a pixel
may change if other adjacent pixels are flipped. Therefore, flipping a set of simple points simultaneously is not
necessarily topology-preserving.
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(a) (b) (c) (d) (e) (f)

Figure 4: Illustration of homotopic warping between two masks, red and white. If red is the FG of the
prediction, this is a false negative topological error; if red is the FG of the ground truth, this is a false
positive error. (a-c): warping the red mask towards the white. (a): arrows show the warping direction.
(b): the final mask after warping. Only a single-pixel wide gap remains in the middle of the warped
red mask. The non-simple/critical pixels are highlighted with red crosses. They correspond to the
topological error and will be penalized in the loss. (c): at the beginning of the warping, we highlight
(with green crosses) simple points that can be flipped according to our algorithm. (d-f): warping the
white mask towards the red mask. Only a single-pixel wide connection remains to ensure the warped
white mask is connected. The non-simple/critical pixels are highlighted with the red crosses.

(a) GT (b) Pred. (c) Warp GT (d) Zoom-in (e) Zoom-in

Figure 5: Illustration of warping in a real world example (satellite image). (a) GT mask. (b) The
prediction mask. The red box highlights a false negative connection, and the green box highlights
a false positive connection. (c) Warped GT mask (using the prediction mask as the target). (d)
Zoomed-in view of the red box in (c). (e) Zoomed-in view of the green box in (c).

synthetic example with red and white masks, as well warping in both directions. Warping the red
mask towards the white mask ((a) and (b)) results in a single-pixel wide gap. The pixels in the gap
(highlighted with red crosses) are critical pixels; flipping any of them will change the topology of the
warped red mask. Warping the white mask towards the red mask ((d) and (e)) results in a single pixel
wide link connecting the warped white mask. All pixels along the link (highlighted with red crosses)
are critical; flipping any of them will change the topology of the warped white mask.

Here if the red mask is the prediction mask, then this corresponds to a false negative connection, i.e.,
a connection that is missed by the prediction. If the red mask is the ground truth mask, then this
corresponds to a false positive connection. Note the warping ensures that only topological errors
are represented by the critical pixels. In the synthetic example (Fig. 4), the large area of error in the
bottom left corner of the image is completely ignored as it is not topologically relevant.

In Fig. 5, we show a real example from the satellite image dataset, focusing on the errors related to
1D topological structures (connection). In the figure we illustrate both a false negative connection
error (highlighted with a red box) and false positive connection error (highlighted with a green box).
If we warp the ground truth mask towards the prediction mask (c), we observe critical pixels forming
a link for the false negative connection (d), and a gap for the false positive connection (e). Similarly,
we can warp the prediction mask towards the ground truth, and get different sets of critical pixels for
the same topological errors (illustrations will be provided in Sec. A.3).

Note that for 2D images with fine structures, errors regarding 1D topological structures are the most
crucial. They affect the connectivity of the prediction results. For 3D images, errors on 1D or 2D
topological structures are both important, corresponding to broken connections for tubular structures
and holes in membranes. We will provide more comprehensive characterization of different types of
topological structures and errors in Sec. A.4.

3.3 Homotopy Warping Loss

Next, we formalize the proposed homotopy warping loss, which is evaluated on the critical pixels due
to homotopic warping. As illustrated in the previous section, the warping can be in both directions,
from the prediction mask to the ground truth mask, and the opposite.
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Formally, we denote by f the predicted likelihood map of a segmentation network, and fB the
corresponding binarized prediction mask (i.e., f thresholded at 0.5). We denote by g the ground truth
mask. First, we warp g towards fB , so that the warped mask, g∗ has the minimal Hamming distance
from the target fB .

g∗ = argmingw◁g ||fB − gw||H (1)
where ◁ is the homotopic warping operation. The pixels at which g∗ and fB disagree are the critical
pixels and will be penalized in the loss. We record these critical pixels due to the warping of g with a
mask Mg , Mg = fB ⊕ g∗, in which ⊕ is the Exclusive Or operation.

We also warp the prediction mask fB towards g.

f∗
B = argminfw

B◁fB ||fw
B − g||H (2)

We use the mask Mf to record the remaining critical pixels after warping fB , Mf = g ⊕ f∗
B .

The union of the two critical pixel masks is the complete set of critical pixels corresponding to topo-
logical errors, M = Mg ∪Mf . M contains all the locations directly related to topological structures.
Note this is different from persistent-homology-based method [24], DMT based method [25] or skele-
ton based method [42], which extract topological locations/structures on the predicted continuous
likelihood maps. Our warping loss directly locates the topological critical pixels/structures/locations
based on the binary mask. The detected critical pixel set is sparse and less noisy.

Lpixel denotes the pixel-wise loss function (e.g., cross-entropy), then Lwarp can be defined as:

Lwarp = Lpixel(f, g)⊙M (3)

where ⊙ denotes Hadamard product. Lwarp penalizes the topological critical pixels, forcing the
neural network to predict better at these locations, and thus are less prone to topological errors.

The final loss of our method, Ltotal, is given by:

Ltotal = Ldice + λwarpLwarp (4)

where Ldice denotes the dice loss. And the loss weight λwarp is used to balance the two loss terms.

3.4 Distance-Ordered Homotopy Warping

Even though checking whether a pixel is simple or not is easy, finding the optimal warping as in
Eq. (1) and (2) is challenging. The reason is that there are too many degrees of freedom. At each
iteration during the warping, we have to choose a simple point to flip. It is not obvious which simple
point will finally lead to a global optimum.

In this section, we provide an efficient heuristic algorithm to find a warping local optimum. We
explain the algorithm for warping g towards fB . The algorithm generalizes to the opposite warping
direction naturally. Recall the warping algorithm iteratively flips simple points. But there are too
many choices at each iteration. It is hard to know which flipping choice will lead to the optimal
solution. We need good heuristics for choosing a flippable pixel. Below we explain our main
intuitions for designing our algorithm.

First, we restrict the warping so it only sweeps through the area where the two masks disagree. In
other words, at each iteration, we restrict the candidate pixels for flipping to not only simple, but also
pixels on which g and fB disagree. In Fig. 4 (c) and (f), we highlight the candidate pixels for flipping
at the beginning. Notice that not all simple points are selected as candidates. We only choose simple
points within the difference set Diff(fB , g) = fB ⊕ g.

Second, since we want to minimize the difference of the warped and target masks, we propose to flip
pixels within the difference region Diff(fB , g). To implement this strategy efficiently, we order all
pixel within Diff(fB , g) according to their distance from the FG/BG, and flip them according to this
order. A pixel is skipped if it is not simple.

Our algorithm is based on the intuition that a far-away pixel will not become simple until nearby
pixels are flipped first. To see this, we first formalize the definition of distance transform from the
masks, fB and g, denoted by DfB and Dg. For a BG pixel of g, p, its distance value Dg(p) is the
shortest distance from p to any FG pixel of g, Dg(p) = mins∈FGg

dist(p, s). Similarly, for a FG
pixel of g, q, Dg(q) = mins∈BGg

dist(q, s). The definition generalizes to DfB .
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We observe that a pixel cannot be simple unless it has distance 1 from the FG/BG of a warping mask.
The proof is straightforward. Formally,
Lemma 1. Given a 2D binary mask m, a pixel p cannot be simple for m if its distance function
Dm(p) > 1.

Proof. Assume the foreground has a pixel value of 1 and p is a background pixel with a index of (i, j).
Consider the m-adjacent (m=4) for p. Since Dm(p) > 1, then we have m(i− 1, j) = m(i+ 1, j) =
m(i, j − 1) = m(i, j + 1) = 0. In this case, p is not 4-adjacent to any FG connected component,
violating the 1) of Definition 1. Consequently, pixel (i, j) is not a simple point. This also holds for
foreground pixels. This lemma naturally generalizes to 3D case.

Lemma 1 implies that only after flipping pixels with distance 1, the other misclassified locations
should be considered. This observation gives us the intuition of our algorithm. To warp g towards
fB , our algorithm is as follows: (1) compute the difference set Diff(fB , g) as the candidate set of
pixels; (2) sort candidate pixels in a non-decreasing order of the distance transform Dg; (3) enumerate
through all candidate pixels according to the order. For each iteration, check if it is simple. If yes, flip
the pixel’s label. It is possible that this algorithm can miss some pixels. They are not simple when the
algorithm checks, but they might become simple as the algorithm continues (since their neighboring
pixels get flipped in previous iterations).

One remedy is to recalculate the distance transform after one round of warping, and go through
remaining pixels once more. But in practice we found this is not necessary as this scenario is very
rare. The effectiveness of the proposed warping strategy is illustrated in Sec. A.5.

4 Experiments

(a) Original (b) GT (c) UNet (d) Ours

Figure 6: Qualitative results compared with the standard
UNet. The proposed warping loss can help to correct
the topological errors (highlighted by red circles). The
sampled patches are from four different datasets.

We conduct extensive experiments to
demonstrate the effectiveness of the pro-
posed method. Sec. A.6 introduces the
datasets used in this paper, including both
2D and 3D datasets. The benchmark
methods are described in Sec. A.7. We
mainly focus on topology-aware segmenta-
tion methods. Sec. A.8 describes the eval-
uation metrics used to assess the quality of
the segmentation. To demonstrate the abil-
ity to achieve better structural/topological
performances, besides standard segmenta-
tion metric, such as DICE score, we also
use several topology-aware metrics to eval-
uate all the methods. Several ablation stud-
ies are then conducted to further demon-
strate the efficiency and effectiveness of
the technical contributions (Sec. 4.1).

Datasets. We conduct extensive ex-
periments to validate the efficacy of
our method. Specifically, we use four
natural and biomedical 2D datasets
(RoadTracer [4], DeepGlobe [12],
Mass. [34], DRIVE [44]) and one more
3D biomedical dataset (CREMI 2) to
validate the efficacy of the propose method. More details about the datasets and the split of the
training and validation subsets are included in Sec. A.6.

Baselines. We compare the results of our method with several state-of-the-art methods. The
standard/simple UNet (2D/3D) UNet [39, 10] is used as a strong baseline and the backbone for other
methods. The other baselines used in this paper include RoadTracer [4], VecRoad [48], iCurb [52],

2https://cremi.org/
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DIVE [17], VGG-UNet [35], TopoLoss [24], clDice [42] and DMT [25]. More descriptions and
implementation details of these baselines are included in Sec. A.7.

Evaluation Metrics. We use both pixel-wise (DICE) and topology-aware metrics (ARI, Warping
Error and Betti number error) to evaluate the performance of the proposed method. More details
about the evaluation metrics are provided in Sec. A.8.

Table 1: Quantitative results of different methods.

Method DICE↑ ARI↑ Warping↓ Betti↓
RoadTracer

UNet [39] 0.587 0.544 10.412 ×10−3 1.591
RoadTracer [4] 0.547 0.521 13.224×10−3 2.218
VecRoad [48] 0.552 0.533 12.819×10−3 2.095

iCurb [52] 0.571 0.535 11.683×10−3 1.873
VGG-UNet [35] 0.576 0.536 11.231 ×10−3 1.607

TopoNet [24] 0.584 0.556 10.008 ×10−3 1.378
clDice [42] 0.591 0.550 9.192 ×10−3 1.309
DMT [25] 0.593 0.561 9.452 ×10−3 1.419
Warping 0.603 0.572 8.853 ×10−3 1.251

DeepGlobe
UNet [39] 0.764 0.758 3.212 ×10−3 0.827

VGG-UNet [35] 0.742 0.748 3.371 ×10−3 0.867
TopoNet [24] 0.765 0.763 2.908 ×10−3 0.695
clDice [42] 0.771 0.767 2.874 ×10−3 0.711
DMT [25] 0.769 0.772 2.751 ×10−3 0.609
Warping 0.780 0.784 2.683×10−3 0.569

Mass.
UNet [39] 0.661 0.819 3.093×10−3 3.439

VGG-UNet [35] 0.667 0.846 3.185×10−3 2.781
TopoNet [24] 0.690 0.867 2.871×10−3 1.275
clDice [42] 0.682 0.862 2.552×10−3 1.431
DMT [25] 0.706 0.881 2.631 ×10−3 0.995
Warping 0.715 0.864 2.440×10−3 0.974

DRIVE
UNet [39] 0.749 0.834 4.781×10−3 3.643
DIVE [17] 0.754 0.841 4.913×10−3 3.276

VGG-UNet [35] 0.721 0.887 4.362×10−3 2.784
TopoNet [24] 0.761 0.902 3.895×10−3 1.076
clDice [42] 0.753 0.896 4.012 ×10−3 1.218
DMT [25] 0.773 0.908 3.561 ×10−3 0.873
Warping 0.781 0.911 3.419×10−3 0.812

CREMI
3D UNet [10] 0.961 0.832 11.173 ×10−3 2.313

DIVE [17] 0.964 0.851 11.219 ×10−3 2.674
TopoNet [24] 0.967 0.872 10.454 ×10−3 1.076
clDice [42] 0.965 0.845 10.576 ×10−3 0.756
DMT [25] 0.973 0.901 10.318 ×10−3 0.726
Warping 0.967 0.907 9.854 ×10−3 0.711

Implementation Details. For 2D images, we
use (m,n) = (4, 8) to check if a pixel is simple
or not; while (m,n) = (8, 26) for 3D images. We
choose cross-entropy loss as Lwarp/Lpixel for
all the experiments, except the ablation studies
in Tab. 3.

For 2D datasets, the batch size is set as 16, and
the initial learning rate is 0.01. We randomly
crop patches with the size of 512×512 and then
feed them into the 2D UNet. For 3D case, the
batch size is also 16, while the input size is 128×
128×16. We perform the data normalization for
the single patch based on its mean and standard
deviation.

We use PyTorch framework (Version: 1.7.1)
to implement the proposed method. A sim-
ple/standard UNet (2D or 3D) is a used as base-
line and the backbone. For the proposed method,
as well as the other loss function based base-
lines, to make a fair comparison, we use the
same UNet as backbone. And the training strat-
egy is to train the UNet with dice loss first until
converge, and then add the proposed losses to
fine-tune the models obtained from the initial
step.

All the experiments are performed on a Tesla
V100-SXM2 GPU (32G Memory), and an In-
tel(R) Xeon(R) Gold 6140 CPU@2.30 GHz.

Qualitative and Quantitative Results. In
Fig. 6, we show qualitative results from differ-
ent datasets. Compared with baseline UNet, our
method recovers better structures, such as con-
nections, which are highlighted by red circles.
Our final loss is a weighted combination of the
dice loss and warping-loss term Lwarp. When
λwarp = 0, the proposed method degrades to
a standard UNet. The recovered better struc-
tures (UNet and Warping columns in Fig. 6)
demonstrates that our warping-loss helps the
deep neural networks to achieve better topolog-
ical segmentations. More qualitative results are
provided in Sec. A.9.

Tab. 1 shows quantitative results for three 2D image datasets, RoadTracer, DeepGlobe and The
Massachusetts dataset and one 3D image dataset, CREMI. The best performances are highlighted
with bold. The proposed warping-loss usually achieves the best performances in both DICE score and
topological accuracy (ARI, Warping Error and Betti Error) over other topology-aware segmentation
baselines. Note that we only report the mean performances here for space limitation. We also include
standard deviations and use t-test to determine the statistical significance in Sec. A.10.
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4.1 Ablation studies

To further explore the technical contributions of the proposed method and provide a rough guideline
of how to choose the hyperparameters, we conduct several ablation studies. Note that all the ablation
studies are conducted on the RoadTracer dataset.

Table 2: Ablation study for loss weight λwarp.

λwarp DICE↑ ARI↑ Warping↓ Betti↓
0 0.587 0.544 10.412 ×10−3 1.591

2× 10−5 0.603 0.561 9.012 ×10−3 1.307
5× 10−5 0.601 0.548 9.356 ×10−3 1.412
1× 10−4 0.603 0.572 8.853 ×10−3 1.251
2× 10−4 0.602 0.565 9.131 ×10−3 1.354

The impact of the loss weights. As seen in Eq. 4,
our final loss function is a combination of dice
loss and the proposed warping loss Lwarp. The
balanced term λwarp controls the influence of the
warping loss term, and it’s a dataset dependent
hyper-parameter. The quantitative results for dif-
ferent choices of λwarp are illustrated in Tab. 2.
For the RoadTracer dataset, the optimal value is
1× 10−4. From Tab. 2, we can find that different
choices of λwarp do affect the performances. The
reason is that, if λwarp is too small, the effect of the warping loss term is negligible. However, if
λwarp is too large, the warping loss term will compete with the Ldice and decrease the performance
of the other easy-classified pixels. Note that within a reasonable range of λwarp, all the choices
contribute to better performances compared to baseline (row ‘0’, standard UNet), demonstrating
the effectiveness of the proposed loss term. The best choices of λwarp for each specific dataset are
included in Sec. A.11.

Table 3: Ablation study for the choices of loss.

Lpixel DICE↑ ARI↑ Warping↓ Betti↓
w/o 0.587 0.554 10.412 ×10−3 1.591

MSE 0.598 0.556 9.853 ×10−3 1.429
Dice loss 0.606 0.563 9.471 ×10−3 1.368

CE 0.603 0.572 8.853 ×10−3 1.251

The choice of loss functions. The proposed warp-
ing loss is defined on the identified topological
critical pixels. Consequently, any pixel-wise loss
functions can be used to define the warping loss
Lwarp/Lpixel. In this section, we investigate how
the choices of loss functions affect the perfor-
mances. The quantitative results are show in Tab. 3.
Compared with mean-square-error loss (MSE) or
Dice loss, the cross-entropy loss (CE) achieves best
performances in terms of topological metrics. On the other hand, all these three choices perform
better than baseline method (row ‘w/o’, standard UNet), which further demonstrates the contribution
of the proposed loss term.

Table 4: Comparison of different critical pixel selection
strategies.

Kernel Size DICE↑ ARI↑ Warping ↓ Betti↓
U-Net 0.587 0.544 10.412 ×10−3 1.591

w/o DT 0.586 0.547 10.256×10−3 1.473
Warping (GT → Pred) 0.594 0.567 9.171×10−3 1.290
Warping (Pred → GT) 0.598 0.562 9.124 ×10−3 1.315

Warping 0.603 0.572 8.853×10−3 1.251

Comparison of different critical
pixel selection strategies. We also
conduct additional experiments to
demonstrate the effectiveness of the
proposed critical pixel selection strat-
egy. The first variation is flipping
the simple pixels but removing the
heuristic that uses the distance trans-
form, and then use the remaining non-
simple pixels as our critical pixel set,
which is denoted as ‘w/o’ in Tab. 4.
The other two variations (warping only in one direction: ground truth to prediction or prediction to
ground truth) achieve reasonably better while still slightly inferior results to the proposed version.
The reason might be that the proposed critical point selection strategy contains more complete
topologically challenging pixels. Both ablation studies demonstrate the effectiveness of the proposed
critical point selection strategy.

Comparison with morphology post-processing. To verify the necessity of the proposed method,
we also compare the proposed method with traditional morphology post-processing, i.e., dilation,
erosion. Dilation and erosion are global operations. Though closing operation (dilates image and then
erodes dilated image) could bridge some specific gaps/broken connections, it will damage the global
structures. In practice, the gaps/broken will usually be more than a few pixels. If the kernel size is
too small, the closing operation (dilate then erode) will hardly affect the final performance; while too
big kernel sizes will join the separated regions. Tab. 5 lists post-processing results on baseline U-Net.
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Table 5: Comparison against post-processing.

Kernel Size DICE↑ ARI↑ Warping ↓ Betti↓
U-Net 0.587 0.544 10.412 ×10−3 1.591

Closing (5) 0.588 0.542 10.414×10−3 1.590
Closing (10) 0.587 0.546 10.399×10−3 1.583
Closing (15) 0.586 0.541 10.428 ×10−3 1.598

Warping 0.603 0.572 8.853×10−3 1.251

The efficiency of the proposed loss. In this
section, we’d like to investigate the efficiency of
the proposed method. Our warping algorithm
contains two parts, the distance transform and
the sorting of distance matrix. The complexity
for distance transform is O(n) for a 2D image
where n is the size of the 2D image, and n =
H ×W . H,W are the height and width of the
2D image, respectively. And the complexity for
sorting is mlog(m), where m is the number of
misclassified pixels. Usually m ≪ n, so the overall complexity for the warping algorithm is
O(n). As a comparison, [24] needs O(n3) complexity to compute the persistence diagram. And the
computational complexity for [25], [42] are O(nlog(n)) and O(n), respectively.

Table 6: Comparison of efficiency.

Method Complexity Training time
TopoNet [24] O(n3) ≈ 12h
clDice [42] O(n) ≈ 3h
DMT [25] O(nlogn) ≈ 7h
Warping O(n) ≈ 4h

The comparison in terms of complexity and training
time are illustrated in Tab. 6. Note that for the pro-
posed method and all the other baselines, we first train a
simple/standard UNet, and then add the additional loss
terms to fine-tune the models obtained from the initial
step. Here, the training time is only for the fine-tune step.
The proposed method takes slightly longer training time
than clDice, while achieves the best performance over
the others. As all these methods use the same backbone,
the inference times are the same.

5 Conclusion

In this paper, we propose a novel homotopy warping loss to learn to segment with better struc-
tural/topological accuracy. Under the homotopy warping strategy, we can identify the topological
critical pixels/locations, and the new loss is defined on these identified pixels/locations. Furthermore,
we propose a novel strategy called Distance-Ordered Homotopy Warping to efficiently identify the
topological error locations based on distance transform. Extensive experiments on multiple datasets
and ablation studies have been conducted to demonstrate the efficacy of the proposed method.

Limitations. We mainly focus on the binary segmentation of curvilinear structures in this work. In
terms of multiclass curvilinear structure segmentation, we note that it’s always doable to convert the
multiclass segmentation task to a number of binary class segmentation tasks, which will be left for
future work.

Acknowledgement. The research of Xiaoling Hu is partially supported by NSF IIS-1909038, and we
would like to thank the anonymous reviews for constructive comments.
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