
Supplementary Material

A Omitted Technical Preliminaries

Here we record definitions and facts that will be used in our proofs.
Definition A.1 (Pairwise Correlation). The pairwise correlation of two distributions with proba-
bility mass functions (pmfs) D1, D2 : {0, 1}M → R+ with respect to a distribution with pmf
D : {0, 1}M → R+, where the support of D contains the supports of D1 and D2, is de-
fined as χD(D1, D2) + 1

def
=
∑
x∈{0,1}M D1(x)D2(x)/D(x). We say that a collection of s dis-

tributions D = {D1, . . . , Ds} over {0, 1}M is (γ, β)-correlated relative to a distribution D if
|χD(Di, Dj)| ≤ γ for all i 6= j, and |χD(Di, Dj)| ≤ β for i = j.

The following notion of dimension effectively characterizes the difficulty of the decision problem.
Definition A.2 (SQ Dimension). For γ, β > 0, a decision problem B(D, D), where D is fixed and
D is a family of distributions over {0, 1}M , let s be the maximum integer such that there exists
DD ⊆ D such that DD is (γ, β)-correlated relative to D and |DD| ≥ s. We define the Statistical
Query dimension with pairwise correlations (γ, β) of B to be s and denote it by SD(B, γ, β).

The connection between SQ dimension and lower bounds is captured by the following lemma.
Lemma A.3 ([FGR+17]). Let B(D, D) be a decision problem, where D is the reference distribution
and D is a class of distributions over {0, 1}M . For γ, β > 0, let s = SD(B, γ, β). Any SQ algorithm
that solves B with probability at least 2/3 requires at least s ·γ/β queries to the STAT(

√
2γ) oracles.

We have the following fact about the chi-squared inner product in the discrete setting.
Fact A.4. For distributions P,Q over {0, 1}M , we have that 1 + χUM (P,Q) =∑
T⊆[M ] P̂(T )Q̂(T ).

We will also use the following standard fact:
Fact A.5. Let m,M ∈ Z+ with m < M . For any constant 0 < c < 1 and M > 2m/c, there
exists a collection C of 2Ωc(m) subsets S ⊆ [M ] such that any pair S, S′ ∈ C, with S 6= S′, satisfies
|S ∩ S′| < cm.

In fact, an appropriate size set of random subsets satisfies the above statement with high proba-
bility.

The following correlation lemma states that the distributions PAS are nearly orthogonal as long
as A satisfies the nearly moment-matching condition.
Lemma A.6 (Correlation Lemma [DKS22]). Let k,m,M ∈ Z+ with k ≤ m ≤M . If the distribu-
tion A on [m] ∪ {0} satisfies Condition 3.3, then for all S, S′ ⊆ [M ] with |S| = |S′| = m, we have
that

|χUM (PAS ,P
A
S′)| ≤ (|S ∩ S′|/m)k+1χ2(A,Bin(m, 1/2)) + kν2 . (1)

B Omitted Proofs from Section 3

B.1 Proof of Proposition 3.5

Let C be a collection of s = 2Ω(m) subsets S ⊆ [M ] with |S| = m whose pairwise intersections
are all less than m/2. By Fact A.5 (taking the local parameter c = 1/2), such a set is guaranteed to
exist. We then need to show that for S, S′ ∈ C, we have that |χUpM (PA,B,pS,a,b ,P

A,B,p
S′,a,b)| is small. Since

UpM ,P
A,B,p
S,a,b , and PA,B,pS′,a,b all assign y = 1 with probability p, it is not hard to see that

χUpM (PA,B,pS,a,b ,P
A,B,p
S′,a,b) = p χUpM |y=1

(
(PA,B,pS,a,b | y = 1), (PA,B,pS′,a,b | y = 1)

)
+

(1− p) χUpM |y=−1

(
(PA,B,pS,a,b | y = −1), (PA,B,pS′,a,b | y = −1)

)
= p χUM (PAS ,P

A
S′) + (1− p) χUM (PBS ,P

B
S′).
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By Lemma A.6, for S, S′ ∈ C with S 6= S′, it holds that

χUpM (PA,B,pS,a,b ,P
A,B,p
S′,a,b) ≤ kν

2 + 2−k(χ2(A,Bin(m, 1/2)) + χ2(B,Bin(m, 1/2))) ≤ τ .

If S = S′, a similar computation shows that

χUpM (PA,B,pS,a,b ,P
A,B,p
S,a,b ) = χ2(PA,B,pS,a,b , U

p
M ) ≤ χ2(A,Bin(m, 1/2)) + χ2(B,Bin(m, 1/2)) .

Let γ = τ and β = χ2(A,Bin(m, 1/2)) + χ2(B,Bin(m, 1/2)). We have that the Statistical Query
dimension of this testing problem with correlations (γ, β) is at least s. Then applying Lemma A.3
with (γ, β) completes the proof.

B.2 Proof of Lemma 3.8

The conditions on µ define a linear program (LP). We will show that this LP is feasible by showing
that the dual LP is infeasible. The dual LP asks for a degree at most k real polynomial q(x) such that

|q(0)| ≥ (1/11)

s−1∑
i=1−s

|q(i)| .

Consider the parameterization p(θ) = q(s sin(θ)). We will leverage the fact that p(θ) is a degree-k
polynomial in eiθ and e−iθ. In particular, p(θ) can be written as

p(θ) =

k∑
j=−k

aje
ijθ ,

for some complex coefficients aj ∈ C. By normalizing, we can assume that
∑k
j=−k |aj |2 = 1. Then,

for any θ, we have that

|p(θ)| ≤
k∑

j=−k

|aj | = O(
√
k) ,

where the final inequality follows from the Cauchy-Schwarz. In particular, |q(0)| = |p(0)| = O(
√
k).

In addition, for any θ, by Cauchy-Schwarz, we have that

|p′(θ)| =

∣∣∣∣∣∣
k∑

j=−k

jaje
ijθ

∣∣∣∣∣∣ ≤
k∑

j=−k

|j||aj | ≤

√√√√ k∑
j=−k

j2 = O(k3/2) .

Finally, we note that

1

2π

∫ 2π

0

|p(θ)|2dθ =

k∑
j=−k

|aj |2 = 1 .

Combining the latter with the fact that |p(θ)| = O(
√
k), we obtain that∫ 2π

0

|p(θ)|dθ = Ω(k−1/2) .

For any θ ∈ [0, 2π], let n(θ) be the closest φ ∈ [0, 2π] such that s sin(φ) is an integer in {1− s, 2−
s, . . . , s− 1}. It is not hard to see that |n(θ)− θ| = O(s−1/2) for all such θ. Furthermore, we have
that

|p(n(θ))− p(θ)| ≤ |n(θ)− θ| sup
θ′∈[0,2π]

|p′(θ′)| ≤ O(k3/2s−1/2) .

We can thus write

Ω(k−1/2) =

∫ 2π

0

|p(θ)|dθ ≤
∫ 2π

0

|p(n(θ))|dθ +O(k3/2s−1/2) .
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Therefore, ∫ 2π

0

|p(n(θ))|dθ ≥ Ω(k−1/2) .

On the other hand, each value of p(n(θ)) is equal to the value of q evaluated at some integer between
1− s and s− 1. Furthermore, it is not hard to see that each such integer occurs for at most a total of
O(s−1/2) range of θ’s. Therefore, we get that

O(s−1/2)

s−1∑
i=1−s

|q(i)| ≥ Ω(k−1/2) .

Combining with the fact that |q(0)| = O(k1/2), this shows that it is impossible that

|q(0)| ≥ 1/4

s−1∑
i=1−s

|q(i)| .

This completes our proof.

C Omitted Proofs from Section 4

C.1 Proof of Claim 4.2

For a vS the vector whose ith coordinate is 1 if i ∈ S and 0 otherwise, let g : {0, 1}m′ → {±1} be
defined as g(x) = −1 if and only if vTSx ∈ J . In this way, we are able to write g as a degree-2d
PTF, i.e., g(x) = sign(

∏
z∈J(vTSx− z)2). Therefore, there exists some LTF L : RM → {±1} such

that g(x) = L(x′) = L(V2d(x)) for all x. We now bound the error for LTF L under the distribution
(X′, Y ′). By the law of total probability, we have that

Pr(X′,Y ′) [Y ′ 6= L(X′)] = Pr(X,Y ) [Y 6= g(X)]

≤ Pr(X,Y )[Y 6= g(X) | Y = 1] + Pr(X,Y )[Y 6= g(X) | Y = −1] .

We note that our hard distribution returns (x′, y′) with y′ = L(x′), unless it picked a sample
corresponding to a sample of D− coming from J , therefore,

Pr(X′,Y ′) [Y ′ 6= L(X′)] ≤ Pr(X,Y )[Y 6= g(X) | Y = −1] ≤ ζ ,

which implies that OPTMass ≤ ζ ≤ exp(−Ω(log(M)8/9)). We then show that (X′, Y ′) is a Massart
LTF distribution with noise rate upper bound of η = 1/3. For any fixed x′ ∈ RM , we have that

Pr(X′,Y ′)[Y
′ = 1 | X′ = x′]

Pr(X′,Y ′)[Y ′ = −1 | X′ = x′]
=

Pr(X,Y )[Y = 1 | X = x]

Pr(X,Y )[Y = −1 | X = x]

=
Pr(X,Y )[Y = 1] ·Pr(X,Y )[X = x | Y = 1]

Pr(X,Y )[Y = −1] ·Pr(X,Y )[X = x | Y = −1]
=
‖D+‖1 ·PD+

S (x)

‖D−‖1 ·PD−S (x)
=
D+(vTSx)

D−(vTSx)
.

Therefore, if vTSx ∈ J , the above ratio will be 0 and L(x′) = −1, which means that the noise rate
η(x′) = 0; otherwise the above ratio will be at least 2 (since D+ > 2D− on J̄ by property 1(b) of
Proposition 3.6) and L(x′) = 1, which means that η(x′) ≤ 1/3. This completes the proof of the
claim.

C.2 Proof of Claim 4.5

Let vS be the vector whose ith coordinate is 1 if i ∈ S and 0 otherwise. By Lemma 4.4, there
is a real univariate polynomial p of degree O(d) such that p(vTSx) = 1,vTSx ∈ J and p(vTSx) ≤
0,vTSx /∈ J . Let g(x) := R̂eLU(p(vTSx)). Since the absolute value of every coefficient of p is
at most mO(d) = poly(M), by our definition, the total weight of the corresponding neuron g is
at most mO(d) = poly(M). Therefore, there exists some R̂eLU function L : RM → R such
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that g(x) = L(x′) = L(VO(d)(x)) for all x. We now bound the error for L under the distribution
(X′, Y ′). By the law of total expectation, we have that

E(X′,Y ′)

[
(Y ′ − L(X′))2

]
= E(X,Y )

[
(Y − g(X))2

]
≤ E(X,Y )

[
(Y − g(X))2 | Y = 1

]
+ E(X,Y )

[
(Y − g(X))2 | Y = −1

]
.

We note that our hard distribution returns (X′, Y ′) with Y ′ = L(X′), unless it picked a sample
corresponding to a sample of D− coming from J , therefore,

E(X′,Y ′)

[
(Y ′ − L(X′))2

]
≤ E(X,Y )

[
(Y − g(X))2 | Y = 1

]
≤ 4ζ .

which implies that OPTMass ≤ 4ζ ≤ exp(−Ω(log(M)8/9)). We then show that (X′, Y ′) is a
Massart single neuron distribution with R̂eLU activation and with noise rate upper bound of η = 1/3.
For any fixed x′ ∈ RM , we have that

Pr(X′,Y ′)[Y
′ = −1 | X′ = x′]

Pr(X′,Y ′)[Y ′ = 1 | X′ = x′]
=

Pr(X,Y )[Y = −1 | X = x]

Pr(X,Y )[Y = 1 | X = x]

=
Pr(X,Y )[Y = −1] ·Pr(X,Y )[X = x | Y = −1]

Pr(X,Y )[Y = 1] ·Pr(X,Y )[X = x | Y = 1]
=
‖D+‖1 ·PD+

S (x)

‖D−‖1 ·PD−S (x)
=
D+(vTSx)

D−(vTSx)
.

Therefore, if vTSx ∈ J , the above ratio will be 0 and L(x′) = −1, which means that the noise rate
η(x′) = 0; otherwise the above ratio will be at least 2 (since D+ > 2D− on J̄ by property 1(b) of
Proposition 3.6) and L(x′) = 1, which means that η(x′) ≤ 1/3. This completes the proof of the
claim.

D SQ Hardness of Learning a Single Neuron with L2-Massart Noise

In this section, we prove our SQ hardness result of learning a single neuron with fast convergent
activations and L2-Massart noise. Without loss of generality, we consider activations which converge
on the negative side. For such an activation f , let f− := f(−∞) and c+ be a constant such that
f(c+) 6= f−. The main theorem of this section is the following.

Theorem D.1 (SQ Hardness of L2-Massart Learning). Let f : R→ R be a fast convergent activation.
Any SQ algorithm that learns a single neuron with activation f on RM , in the presence of η-L2-
Massart noise with η = 2(f(c+)−f−)2

9 , to squared error better than 1/poly(log(M)) requires either
queries of accuracy better than τ := exp(−Ω(log(M)1.05)) or at least 1/τ statistical queries. This
holds even if:

1. The optimal neuron has squared error OPTMass−L2 ≤ exp(−Ω(log(M)8/9)),

2. The X values are supported on {0, 1}M , and

3. The total weight of the neuron is poly(M).

Proof. Our proof will make use of the SQ framework of Section 3.1 and will crucially rely on the
one-dimensional construction of Proposition 3.6. In this section, we fix the labels a = f−, b = f(c+),
and apply the construction in Section 3.3 to obtain the joint distributions (X, Y ) and (X′, Y ′). Note
that y = y′ and there is a known 1-1 mapping between x and x′, therefore finding a hypothesis that
predicts y′ given x′ is equivalent to finding a hypothesis for y given x.

Claim D.2. The distribution (X′, Y ′) on {0, 1}M × {f−, f(c+)} is an L2-Massart single neu-
ron distribution with respect to activation f , it has optimal squared error OPTMass−L2 ≤
exp(−Ω(log(M)8/9)) and L2-Massart noise rate upper bound of η = 2(f(c+)−f−)2

9 .

Proof. We assume M > |c+| to be sufficiently large. Let vS be the vector whose ith coordinate
is 1 if i ∈ S and 0 otherwise. By Lemma 4.4, there is a real univariate polynomial q(x) of degree
O(d) such that q(x) = 1,∀x ∈ J and q(x) ≤ 0,∀x ∈ J̄ . Let p(x) = (c+ + M)q(x) −M and
g(x) = f(p(vTSx)). By definition, we have that p(x) = c+ for x ∈ J and p(x) ≤ −M for x ∈ J̄ .
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Since the absolute value of every coefficient of p is at most mO(d) = poly(M), the weight of the
corresponding neuron g is at most mO(d) = poly(M). Therefore, there exists some fast convergent
activation L : RM → R such that g(x) = L(x′) = L(VO(d)(x)) for all x. We now bound the error
for L under the distribution (X′, Y ′). We note that conditional on Y = f−, we will always have that
vTSx /∈ J and conditional on Y = f(c+), we will have that vTSx /∈ J with probability at most ζ.
Therefore, by the law of total expectation, we have that

E(X′,Y ′)[(Y
′ − L(X))2] = E(X,Y )[(Y − g(X))2]

≤ E(X,Y )[(Y − g(X))2 | Y = f−] + E(X,Y )[(Y − g(X))2 | Y = f(c+)]

≤ E(X,Y )[(f− − g(X))2 | Y = f−] + 2ζE(X,Y )[(f− − f(c+))2 + (f− − g(X))2 | vTSX /∈ J, Y = f(c+)]

≤ 1/poly(M) + 2ζ · (1/poly(M) + (f− − f(c+))2)

≤ exp(−Ω(log(M)8/9)) + exp(−Ω(log(M)8/9)) · (1/poly(M) + (f− − f(c+))2)

≤ exp(−Ω(log(M)8/9)) ,

where the third inequality follows from the definition of fast convergent activation. Therefore, we
have that OPTMass−L2 ≤ exp(−Ω(log(M)8/9)). We then show that (X′, Y ′) is a L2-Massart single
neuron distribution with activation f and with noise rate upper bound of η = 2(f(c+)−f−)2

9 . Note
that for any x ∈ Rm′ , if vTSx ∈ J , then g(x) = f(p(vTSx)) = f(c+) and Y will always be f(c+),
which implies that the error will always be 0. Hence, we assume that vTSx /∈ J and have that

Pr(X,Y )[Y = f− | X = x]

Pr(X,Y )[Y = f(c+) | X = x]
=

Pr(X,Y )[Y = f−] ·Pr(X,Y )[X = x | Y = f−]

Pr(X,Y )[Y = f(c+)] ·Pr(X,Y )[X = x | Y = f(c+)]

=
‖D+‖1 ·PD+

S (x)

‖D−‖1 ·PD−S (x)
=
D+(vTSx)

D−(vTSx)
≥ 2 ,

which implies that Pr(X,Y )[Y = f(c+) | X = x] ≤ 1/3. Therefore,

E(X′,Y ′)[(Y
′ − L(X′))2 | X′ = x′] = E(X,Y )[(Y − g(X))2 | X = x]

= (f(c+)− g(x))2Pr(X,Y )[Y = f(c+) | X = x] + (f− − g(x))2Pr(X,Y )[Y = f− | X = x]

≤ (f(c+)− g(x))2

3
+ (f− − g(x))2 ≤

2
(
(f(c+)− f−)2 + (f− − g(x))2

)
3

+ (f− − g(x))2

≤ 2(f(c+)− f−)2

3
+ 1/poly(M) ≤ 8(f(c+)− f−)2

9
,

where the third inequality follows from vTSx /∈ J and the definition of fast convergent activation.
This completes the proof of the claim.

We now show that the (D+,D−, f−, f(c+),m′)-Hidden Junta Testing Problem efficiently re-
duces to our learning task. In more detail, we show that any SQ algorithm that computes a hypothesis
h′ satisfying E(X′,Y ′)[(h

′(X′)−Y ′)2] < p(1−p)(f−−f(c+))2−2
√

2τ can be used as a black-box
to distinguish between P

D+,D−,p
S,a,b , for some unknown subset S ⊆ [m′] with |S| = m, and Upm′ . Since

there is a 1-1 mapping between x ∈ {0, 1}m′ and x′ ∈ {0, 1}M , we denote h : {0, 1}m′ 7→ R to be
h(x) = h′(x′). We note that we can (with one additional query to estimate the E[(h′(X′)− Y ′)2]

within error
√

2τ ) distinguish between (i) the distribution P
D+,D−,p
S,a,b , and (ii) the distribution Upm′ .

This is because for any h we have that

E(X,Y )∼Up
m′

[(h(X)− Y )2] = E(X,Y )∼Up
m′

[h(X)2]− 2E(X,Y )∼Up
m′

[h(X)]E(X,Y )∼Up
m′

[Y ]

+ E(X,Y )∼Up
m′

[Y 2]

≥ E(X,Y )∼Up
m′

[h(X)]2 − 2E(X,Y )∼Up
m′

[h(X)]E(X,Y )∼Up
m′

[Y ]

+ E(X,Y )∼Up
m′

[Y 2]

≥ E(X,Y )∼Up
m′

[Y 2]−E(X,Y )∼Up
m′

[Y ]2 = p(1− p)(f− − f(c+))2.
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Applying Proposition 3.5, we determine that any SQ algorithm which, given access to a distribution
P so that either P = Upm′ , or P is given by P

D+,D−,p
S,a,b for some unknown subset S ⊆ [m′] with

|S| = m, correctly distinguishes between these two cases with probability at least 2/3 must either
make queries of accuracy better than

√
2τ or must make at least 2Ω(m)τ/(χ2(A,Bin(m, 1/2)) +

χ2(B,Bin(m, 1/2))) statistical queries. Therefore, it is impossible for an SQ algorithm to learn a hy-
pothesis with error better than p(1−p)(f−−f(c+))2−2

√
2τ = Θ(1/s)−Θ(

√
τ) = 1/polylog(M)

without either using queries of accuracy better than τ or making at least 2Ω(m)τ/polylog(M) > 1/τ
many queries. This completes the proof of Theorem D.1.
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