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Abstract

We study the problem of PAC learning a single neuron in the presence of Massart
noise. Specifically, for a known activation function f : R→ R, the learner is given
access to labeled examples (x, y) ∈ Rd × R, where the marginal distribution of
x is arbitrary and the corresponding label y is a Massart corruption of f(〈w,x〉).
The goal of the learner is to output a hypothesis h : Rd → R with small squared
loss. For a range of activation functions, including ReLUs, we establish super-
polynomial Statistical Query (SQ) lower bounds for this learning problem. In
more detail, we prove that no efficient SQ algorithm can approximate the optimal
error within any constant factor. Our main technical contribution is a novel SQ-
hard construction for learning {±1}-weight Massart halfspaces on the Boolean
hypercube that is interesting on its own right.

1 Introduction

The success of deep learning has served as a motivation for understanding the complexity of learning
simple classes of neural networks. Here we study arguably the simplest possible setting of learning a
single neuron, i.e., a real-valued function of the form x 7→ f(〈w,x〉), where w is the weight vector of
parameters and f : R 7→ R is a non-linear and monotone activation. The underlying learning problem
is the following: Given i.i.d. samples from a distribution D on (x, y), where x ∈ Rd is the example
and y ∈ R is the corresponding label, the goal is to learn the target function in L2

2-loss. That is, the
objective of the learner is to output a hypothesis h : Rd 7→ R such that E(x,y)∼D[(h(x)− y)2] is as
small as possible, compared to the optimal loss value OPT := minw∈Rd E(x,y)∼D[(f(〈w,x〉)−y)2].
A learning algorithm in this context is called proper if the hypothesis h is restricted to be of the
form hŵ(x) = f(〈ŵ,x〉), for some ŵ ∈ Rd. One of the most popular activations is the ReLU
function, corresponding to f(u) = ReLU(u)

def
= max{0, u}. In this work, we study the complexity

of improperly learning single neurons, where the marginal distribution on examples is fixed but
arbitrary and the hypothesis h is allowed to be any efficiently computable function.

In the realizable case, i.e., when the labels are consistent with a function in the target concept
class, the above learning problem is known to be efficiently solvable for various activation functions. A
line of work, see, e.g., [KS09, Sol17, YS20] and references therein, has shown that simple algorithms
like gradient-descent efficiently converge to an optimal solution (in some cases under assumptions on
the marginal distribution on examples). On the other hand, in the adversarial label noise (aka agnostic)
model, known hardness results [Dan16, DKMR22a] rule out efficient constant factor approximations
to the optimal loss for a range of activations including ReLUs. The aforementioned negative results
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for label agnostic learning motivate the study of weaker corruption models, where non-trivial efficient
learning algorithms may still be possible. A natural class of such models — that may be more
realistic in some practical applications — are semi-random noise models, involving a combination of
adversarial choices and random choices.

Here we focus on the Massart (or bounded) noise model [MN06], a classical semi-random
model first defined in the context of binary classification (see [Slo88] for an equivalent noise model).
Intuitively, in the Massart model, an adversary has control over a (uniformly) random η < 1/2
fraction of the labels (see Definition 1.1). In the context of binary classification, [DGT19] gave
the first non-trivial learning algorithm for halfspaces in this model (see also [CKMY20, DKT21]).
Subsequent work [DK22, NT22] provided evidence that the error guarantee of the latter algorithm
is essentially best possible in the Statistical Query (SQ) model [Kea98]; and, more recently, under
standard cryptographic assumptions [DKMR22b].

To state our results, we formally define the following natural generalization of the Massart model
for real-valued functions (see, e.g., [CKMY21, DPT21]).

Definition 1.1 (Massart Noise Model). Let G be a concept class of real-valued functions over Rd,
Dx be a fixed distribution over Rd, and 0 < η < 1/2. Fix an unknown function g ∈ G. The noiseless
distribution D (corresponding to g) is the distribution on labeled examples (X, Y ), supported on
Rd × R, where X ∼ Dx and Y = g(X). An η-Massart distribution, DMass

η , is a distribution on
labeled examples (X, Y ′), supported on Rd × R, such that for (X, Y ′) ∼ DMass

η we have that (i)
X ∼ Dx, and (ii) for all x ∈ Rd it holds that Pr(X,Y ′)∼DMass

η
[Y ′ 6= g(X) | X = x] ≤ η.

Given sample access to the η-Massart distribution DMass
η , corresponding to an unknown g ∈ G, the

goal is to output a hypothesis h : Rd 7→ R such that L2(h;DMass
η ) := E(X,Y ′)∼DMass

η
[(Y ′−h(X))2]

is small. Let OPTMass := infg∈G E(X,Y ′)∼DMass
η

[(Y ′ − g(X))2] denote the optimal squared error.
We will say that a learning algorithm is α-approximate if it outputs an h : Rd 7→ R that with high
probability satisfies L2(h;DMass

η ) ≤ α(d) · OPTMass. We say that a learner is a constant factor
approximation if α = O(1). We focus on the concept class of single neurons: for an activation
f : R 7→ R, we will denote by Cf

def
= {cw : Rd 7→ R | cw(x) = f(〈w,x〉),w ∈ Rd}.

In Definition 1.1, the Massart adversary corrupts each label independently with probability at most
η. Even though this noise model might appear innocuous, the fact that the corruption probability
is unknown to the learner makes the design of efficient Massart learners challenging. The Massart
model has been extensively studied in the context of binary classification [Slo88, RS94, Slo96,
ABHU15, ABHZ16, DGT19, DKTZ20, CKMY20, DKT21] and, more recently, for learning real-
valued functions [CKMY21, DPT21].

For the task of PAC learning halfspaces with Massart noise (i.e., neurons corresponding to the
sign activation), there is compelling evidence that even approximate learning is computationally
hard [DK22, NT22, DKMR22b]. In sharp contrast, our understanding of the possibilities and
limitations of Massart learning well-behaved real-valued functions (including ReLUs and other
Lipschitz monotone activations) remains limited. On the positive side, recent work developed the
first efficient learners for linear regression [CKMY21, DPT21] and ReLU regression [DPT21] with
Massart noise. We note that the ReLU regression algorithm of [DPT21] requires a certain anti-
concentration condition on the distribution Dx of examples, which is crucial for its performance
guarantees. In fact, without such an assumption, no non-trivial upper bound is known for ReLUs (or
other non-linear activations). This discussion prompts the following question:

Is there an efficient O(1)-approximate learner for distribution-free learning
of a single neuron with Massart noise?

For the important case of ReLU activations, [DPT21] conjectured that the distribution-independent
PAC learning problem is intractable. As the main contribution of this paper, we provide strong
evidence towards this conjecture, by establishing super-polynomial lower bounds in the Statistical
Query (SQ) model — a restricted but powerful family of algorithms. Specifically, we show that no
efficient SQ algorithm can achieve any constant factor approximation. Moreover, our SQ-hardness
result is not specific to ReLUs, but generalizes to a broad class of non-linear activation functions.
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1.1 Our Results

In this work, we give strong evidence that the problem of learning single neurons with Massart
noise does not admit any constant factor approximation. Specifically, we show that any efficient SQ
algorithm cannot achieve a constant factor approximation. In fact, the hardness gap that we establish
is super-constant, scaling with the dimensionality of the problem.

Instead of directly accessing samples, SQ algorithms [Kea98] are only to adaptively query
expectations of bounded functions of the underlying distribution up to some tolerance (see Section 2).
The class of SQ algorithms is fairly broad: a wide range of known algorithmic techniques in machine
learning are known to be implementable in the SQ model [FGR+17].

For the important class of ReLU activations, our main result is the following:
Theorem 1.2 (SQ Hardness of Massart Learning ReLUs). Any SQ algorithm that learns a single
neuron with ReLU activation on Rd, in the presence of Massart noise with η = 1/3, to squared error
better than 1/poly(log(d)) requires either queries of accuracy better than 2−(log d)c1 or at least
2(log d)c1 statistical queries, for some constant c1 > 1. This holds even if the optimal squared error is
at most 2−(log d)c2 for some 0 < c2 < 1, and the total weight of the neuron is poly(d).

Theorem 1.2 rules out the existence of efficient SQ algorithms (i.e., using polynomially many
queries of inverse polynomial accuracy) with approximation ratio 2(log d)c for some 0 < c < 1. It
therefore a fortiori rules out any constant factor approximate SQ learner.

We note that the SQ-hardness result of Theorem 1.2 does not require the linearity of the ReLU (on
positive inputs); a similar result can be shown for a broader class of activation functions. Specifically,
we can generalize our SQ-hardness result to any activation f of the form f(u) = 0, u < 0, and
∃u0 ≥ 0, f(u0) 6= 0.

Theorem 1.2 establishes SQ-hardness of learning single neurons under the Massart noise notion
of Definition 1.1. We note that for learning real-valued functions, one can consider other natural
definitions of “Massart noise”. Specifically, Definition 1.1 considers anL0-perturbation (the adversary
is allowed to arbitrarily corrupt a random η-fraction of the labels). Another natural definition considers
L2-perturbations, as stated below (note that in the definition below, the parameter η does not need to
be bounded above by 1/2).
Definition 1.3 (L2-Massart Noise Model). Let G be a concept class of real-valued functions
over Rd, Dx be a fixed distribution over Rd, and η > 0. Fix an unknown function g ∈ G.
An η-L2-Massart distribution, DMass−L2

η , is a distribution on labeled examples (X, Y ), sup-
ported on Rd × R, such that for (X, Y ) ∼ DMass−L2

η we have that (i) X ∼ Dx, and (ii)
for all x ∈ Rd it holds that E(X,Y )∼DMass−L2

η
[(Y − g(X))2 | X = x] ≤ 4η. We will use

OPTMass−L2 := infg∈G E(X,Y )∼DMass−L2
η

[(Y − g(X))2] to denote the optimal squared error.

Note that for {±1} labels, with noise rate η < 1/2, the above model generalizes the standard
Massart model (for binary classification) with the same noise rate η. For this noise model, we
establish SQ-hardness for the following general family of non-linear activations (including ReLUs):
Definition 1.4 (Fast Convergent Activation). We say that a function f : R 7→ R is a fast-convergent
activation if either g(t) := f(t) or g(t) := f(−t) satisfies the following: (i) limt→−∞ g(t) exists.
(ii) For t < 0 with absolute value sufficiently large, |g(t)− g(−∞)| = 1/poly(|t|).

Intuitively, the second condition above requires that the function converges to its limit at inverse
polynomial rate. Without loss of generality, we consider activation which converge on the negative
side. For such an activation f , let f− := f(−∞) and c+ be a constant such that f(c+) 6= f−.

Our proof technique establishing Theorem 1.2 is quite robust and can be adapted to L2-Massart
noise under fast convergent activations. Our main result in this context is the following:
Theorem 1.5 (SQ Hardness of L2-Massart Learning). Let f : R 7→ R be a fast convergent activation.
Any SQ algorithm that learns a single neuron with activation f on Rd, in the presence of η-L2-
Massart noise with η = 2(f(c+)−f−)2

9 , to squared error better than 1/poly(log(d)) requires either
queries of accuracy better than 2−(log d)c1 or at least 2(log d)c1 statistical queries, for some constant
c1 > 1. This holds even if the optimal squared error is at most 2−(log d)c2 for some 0 < c2 < 1, and
the total weight of the neuron is poly(d).
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Interestingly, the key ingredient for our aforementioned SQ-hardness results for real-valued functions
is a new SQ-hardness construction for low-weight halfspaces (i.e., neurons with a sign activation) on
the Boolean hypercube. In this context, we prove:

Theorem 1.6 (SQ Hardness for Low-weight Massart Halfspaces on {0, 1}d). Any SQ algorithm that
learns {±1}-weight halfspaces on {0, 1}d, in the presence of Massart noise with η = 1/3, to 0-1
error better than 1/poly(log(d)) requires either queries of accuracy better than 2−(log d)c1 or at
least 2(log d)c1 statistical queries, for some constant c1 > 1. This holds even if the optimal 0-1 error
is at most 2−(log d)c2 for some 0 < c2 < 1.

Theorem 1.6 rules out any efficient polynomial (relative) approximation for {±1}-weight halfspaces
on the hypercube. This is the first hardness result for approximate learning of Boolean Massart
halfspaces. Prior work either obtained SQ-hardness of exact learning [CKMY20] or was inherently
applicable to halfspaces on Rd [DK22, NT22].

A number of learning problems involving halfspaces are computationally easy when the weights
are small integers (aka in the “large margin” case) and computationally hard for arbitrary weights. The
conceptual message of Theorem 1.6 is that the Massart halfspace learning problem is SQ-hard due to
the combinatorial nature of the problem (and not due to the magnitude of the weights). This addresses
an open problem of [Blu03] regarding the complexity of Massart learning simple halfspaces.

1.2 Technical Overview
We start by describing the proof of Theorem 1.6. Our SQ lower bound for learning Boolean Massart
halfspaces requires a number of novel ideas. Our starting point is the construction of [DK22] that
proves a similar lower bound in the continuous setting. They begin by producing a one-dimensional
construction of a Massart PTF whose distributions conditional on y = 1 and y = −1 approximately
match many moments. Using techniques from [DKS17], they show that by embedding this one-
dimensional construction into higher dimensions, they can produce d-dimensional instances of
Massart polynomial threshold functions (PTFs) that are SQ-hard to learn. They then further embed
these instances via the Veronese embedding to produce SQ-hard LTF instances (essentially using the
fact that a PTF in x is an LTF in the low-degree monomials of x).

Our proof adapts this general idea to the discrete setting. The first obstacle is developing an
appropriate analogue of the one-dimensional construction. The construction from [DK22] uses the
fact that a discrete Gaussian nearly matches moments with a standard Gaussian; thus, making the
conditional distributions of x mixtures of discrete Gaussians ensures that the moment matching
condition is satisfied. By carefully picking this mixture, they ensure that the conditional distributions
have no overlap for |x| small (thus ensuring a small value of OPT), but that the y = 1 case is always
more likely for |x| sufficiently large. This construction does not work in our case, as we need our
one-dimensional construction to be discrete.

Our basic idea is to begin by noting that the binomial distribution conditioned on x being 0
mod s approximately matches many moments with the full binomial. As a first attempt, we let
y = −1 if x ≡ 0 mod s and y = 1 otherwise. This matches many moments with the binomial, but
alternates between y = 1 and y = −1 many times, and thus cannot be considered to be a low-degree
PTF with Massart noise. To fix this, we need to modify our distributions so that: (i) Conditioned
on any x far from n/2, y is more likely to be 1 than −1, (ii) the two distributions conditioning
on y = 1 and y = −1 have little overlap, and (iii) each conditional distribution approximately
matches moments with the full binomial. We can fix (i) at the cost of (ii) by replacing the conditional
distribution on y = 1 with the full binomial distribution. As long as the prior probability of y = 1
exceeds that of y = −1 by enough, even for x ≡ 0 mod s, y = 1 will be more likely than y = −1.
Unfortunately, the conditional distributions now have too much overlap. We can address this by
moving the mass in the y = 1 conditional off of the points with x ≡ 0 mod s and |x− n/2| small.
Importantly, we must find a way to do this without destroying property (iii). To that end, we show
that there is a way to move mass from each of these points x and redistribute it to nearby points in
such a way so as to not affect any of the low-order moments (see Lemma 3.8). By doing this to each
x ≡ 0 mod s with |x− n/2| small, we get our final construction.

We also need to modify the method by which we embed the one-dimensional construction into
higher dimensions in order to obtain the family of SQ-hard PTF instances. This construction must
differ from previous constructions, as our family of distributions will be discrete and not Gaussian-
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like as in [DKS17]. Fortunately, we can leverage the recent technique of [DKS22], embedding our
low-dimensional construction as a junta. In particular, a significant difference with the Gaussian
case is in the way we embed the low-dimensional distribution as a higher-dimensional one. In the
Gaussian case, we simply take the distribution to be Gaussian in independent directions. In our
discrete setting, we begin by embedding into a moderate dimensional hypercube by taking the unique
symmetric distribution, where our one-dimensional distribution over some subset S is the distribution
over

∑
i∈S Xi. We note that this distribution will approximately match low-degree moments with the

uniform distribution over the hypercube. We then embed this distribution into a higher-dimensional
hypercube as a random junta.

As an application of the above general recipe to obtain SQ lower bounds for discrete distributions,
we note that the hard instances we construct for learning Boolean halfspaces with Massart noise,
also (with a slight change of variables) produce hard instances for ReLUs (and other activations). In
particular, in our hard instance for PTFs, the optimal classifier f is given by f(x) = −1 if xS ≡ 0
mod s and |xS − n/2| < ds/2, and 1 otherwise, where xS is the sum over the coordinates of x in
some particular subset S. We note that the function (1 − f(x))/2, which is equal to 1 if xS ≡ 0
mod s and |xS − n/2| < ds/2 and 0 otherwise, can be written as ReLU(p(x)) for some degree
O(d) polynomial p, where p(x) = 1 for xS ≡ 0 mod s and |xS − n/2| < ds/2, and p(x) ≤ 0
otherwise. By replacing x by its Vernonese embedding as before, we can produce hard instances of
ReLU functions with Massart noise.

2 Preliminaries
Notation For n ∈ Z+, we denote [n]

def
= {1, . . . , n}. For two distributions p, q over a probability

space Ω, let dTV (p, q) = supS⊆Ω |p(S)− q(S)| denote the total variation distance between p and q.
We use Pr[E ] and I[E ] for the probability and the indicator of event E . For a real random variable
X , we use E[X],Var[X] to denote the expectation and variance of X , respectively. For n ∈ Z+

and 0 ≤ p ≤ 1, we use Bin(n, p) to denote the Binomial distribution with parameters n and p.
Throughout this article, we will use capital letters (e.g., X,X) to denote random variables and
random vectors, and small letters (e.g, x,x) to denote corresponding values.

Statistical Query Algorithms We will use the framework of Statistical Query (SQ) algorithms for
problems over distributions [FGR+17]. We require the following standard definition.
Definition 2.1 (Decision/Testing Problem over Distributions). Let D be a distribution and D be a
family of distributions over RM . We denote by B(D, D) the decision (or hypothesis testing) problem
in which the input distribution D′ is promised to satisfy either (a) D′ = D or (b) D′ ∈ D, and the
goal of the algorithm is to distinguish between these two cases.

We define SQ algorithms as algorithms that do not have direct access to samples from the distribution,
but instead have access to an SQ oracle. We will consider the following standard oracle.
Definition 2.2 (STAT Oracle). LetD be a distribution on RM . A Statistical Query (SQ) is a bounded
function f : RM → [−1, 1]. For τ > 0, the STAT(τ) oracle responds to the query f with a value
v such that |v − EX∼D[f(X)]| ≤ τ . We call τ the tolerance of the statistical query. A Statistical
Query (SQ) algorithm is an algorithm whose objective is to learn some information about an unknown
distribution D by making adaptive calls to the corresponding STAT(τ) oracle.

3 SQ Hardness Construction for Supervised Learning

3.1 Generic SQ Lower Bound Construction

We start with some basic definitions. Let UM be the uniform distribution over {0, 1}M . For a subset
T ⊆ [M ] and x ∈ {0, 1}M , we denote χT (x) = (−1)

∑
i∈T xi . For a distribution P over {0, 1}M , let

P̂(T ) = EX∼P[χT (X)]. We will require the orthogonal polynomials under the binomial distribution.
Definition 3.1 (Kravchuk Polynomial [Sze89]). For k,m, x ∈ Z+ with 0 ≤ k, x ≤ m, the
Kravchuk polynomial Kk(x;m) is the univariate degree-k polynomial in x defined by Kk(x;m) :=∑
T⊆[m],|T |=k χT (y) =

∑k
j=0(−1)j

(
x
j

)(
m−x
k−j

)
, where y has x 1’s and m− x 0’s.

The following distribution family that is the basis of our discrete SQ lower bound construction.
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Definition 3.2 (High-Dimensional Hidden Junta Distribution). Let m,M ∈ Z+ with m < M . For
a distribution A on [m] ∪ {0} with probability mass function (pmf) A(x) and a subset S ⊆ [M ]
with |S| = m, consider the probability distribution over {0, 1}M , denoted by PAS , such that for
X ∼ PAS the distribution (Xi)i 6∈S is the uniform distribution on its support and the distribution
(Xi)i∈S is symmetric with

∑
i∈S Xi distributed according to A. Specifically, PAS is given by the pmf

PAS (x) = 2−M+mA
(∑

i∈S xi
) (

m∑
i∈S xi

)−1
.

The following condition describes the approximate moment-matching property of the desired distri-
bution A with the Binomial distribution.

Condition 3.3. Let k,m ∈ Z+ with k < m and ν > 0. The distribution A on [m] ∪ {0} is such that
|EX∼A[Kt(X;m)]| ≤ ν, for all 1 ≤ t ≤ k.

We now define the hypothesis testing and learning problem which will be used throughout this paper:

Definition 3.4 (Hidden Junta Binary Testing Problem). Fix a 6= b ∈ R. Let A and B be distributions
on [m] ∪ {0} satisfying Condition 3.3 with parameters k ∈ Z+ and ν ∈ R+, and let p ∈ (0, 1).
For M ∈ Z+, M > m, and a subset S ⊆ [M ] with |S| = m, define the distribution PA,B,pS,a,b on
{0, 1}M × {a, b} that returns a sample from (PAS , a) with probability p and a sample from (PBS , b)
with probability 1− p. In the (A,B, a, b,M)-Hidden Junta Testing Problem, one is given access to a
distribution D so that either H0: D = UpM , where for (X, Y ) ∼ UpM we have that X is a uniform
random element of {0, 1}M , and Y is independently a with probability p and b with probability 1− p.
H1: D is given by PA,B,pS,a,b for some subset S ⊆ [M ] with |S| = m. One is then asked to distinguish
between H0 and H1.

Note that this is just the hypothesis testing problem B(D, D) with D = UpM and D = {PA,B,pS,a,b }.
Proposition 3.5 (Generic Discrete SQ Lower Bound). Let m,M ∈ Z+ with M > m. Let A,B
be distributions on [m] ∪ {0} satisfying Condition 3.3. Let τ ≥ kν2 + 2−k(χ2(A,Bin(m, 1/2)) +
χ2(B,Bin(m, 1/2))). Any SQ algorithm that solves the testing problem of Definition 3.4 with
probability at least 2/3 must either make queries of accuracy better than

√
2τ or must make at least

2Ω(m)τ/(χ2(A,Bin(m, 1/2)) + χ2(B,Bin(m, 1/2))) statistical queries.

We give a proof sketch here and defer the full proof to Appendix B. We first pick a collection C of
s = 2Ω(m) subsets S ⊆ [M ] of size m whose pairwise intersections are small. For any S, S′ ∈ C,
we write the correlation between PA,B,pS,a,b ,P

A,B,p
S′,a,b as a linear combination of the correlation between

PAS ,P
A
S′ and the correlation between PBS ,P

B
S′ . Since we can directly obtain an upper bound for the

correlation between the hidden junta distributions, applying existing techniques will yield our result.

3.2 Construction of Univariate Moment-Matching Distributions

Here we give the construction of our approximate moment-matching distributions. For convenience,
we use the “expectation” and “moments” for the unnormalized measure without clarification. The
main result of this section is captured in the following proposition.

Proposition 3.6. Let d, k, s,m ∈ Z+ and ζ ∈ (0, 1/2) such that: (i) s ≥ ω(k4), (ii) k < m/2, (iii)
ds ≥ Ω(

√
m log(1/ζ)), and (iv) s2d ≤ o(m). There exist measures D+ and D− over [m] ∪ {0}

and a union J of d points in [m] ∪ {0} such that: 1. (a) D+ = 0 on J , and (b) D+ > 2D−
on J = [m] ∪ {0} \ J . 2. All but ζ-fraction of the measure of D− lies in J . 3. The distributions
D+/‖D+‖1 andD−/‖D−‖1 satisfy Condition 3.3 with parameters k and ν ≤

(
m
k

)
exp(−Ω(m/s2)).

4. (a) D+ is at most O(1)Bin(m, 1/2) and (b) ‖D+‖1 = Θ(1). 5. ‖D−‖1 = Θ(1/s).

Proof. We start by constructing each measure in turn.

Definition of the Measure D−. We define the measure D− as follows: D−(x) := Bin(m, 1/2)(x)
if x ≡ 0 (mod s); otherwise D−(x) = 0. We claim that this satisfies Condition 3.3. This is shown
in the following lemma.

Lemma 3.7. D−(x) satisfies Condition 3.3 with parameters k and ν = s
(
m
k

)
exp(−Ω(m/s2)).
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Proof. We need to bound EZ∼D− [Kt(Z;m)] for 1 ≤ t ≤ k. By definition, we have that

EZ∼D− [Kt(Z;m)] =
∑

T⊆[m],|T |=t
EZ∼D− [χT (Y)] =

(
m

t

)
EX∼R[χT0

(X)] ,

where Y has Z 1’s and m−Z 0’s, andR ∈ {0, 1}m is the unique symmetric measure with
∑m
i=1Xi

having measure D−, and T0 ⊆ [m] is some subset with |T0| = t. Let ω be a primitive sth root of
unity. We note that the pmfR(x) of the measureR satisfies

R(x) =
1

2ms

s−1∑
j=0

ω

(
j
∑m

i=1
xi
)

=
1

2ms

s−1∑
j=0

m∏
i=1

ωjxi .

Therefore, we can write

R(x)χT0(x) =
(

(−1)
∑m
i=1 I[i∈T0]xi

)( 1

2ms

s−1∑
j=0

m∏
i=1

ωjxi
)

=
1

2ms

s−1∑
j=0

m∏
i=1

(
ωj(−1)I[i∈T0]

)xi
.

Since the expectation is the sum of the above over all x ∈ {0, 1}m and since this separates as a
product, we get that

EX∼R[χT0
(X)] =

1

2ms

∑
x∈{0,1}m

s−1∑
j=0

m∏
i=1

(
ωj(−1)I[i∈T0]

)xi
=

1

2ms

s−1∑
j=0

m∏
i=1

(
1 + ωj(−1)I[i∈T0]

)
.

Note that the terms with 2j ≡ 0 (mod s) have indices i such that ωj(−1)I[i∈T0] = −1, and do not
contribute to the sum. Other terms will have each value of |1 + ωj(−1)I[i∈T0]| at most 2− Ω(1/s2).
Therefore, EX∼R[χT0(X)] = exp(−Ω(m/s2)). This completes our proof.

We also note that D− is clearly bounded above by Bin(m, 1/2). We define J to be the union of
the d elements of m∪{0} congruent to 0 modulo s that are closest to m/2. We note that the measure
of D− outside J is clearly at most the probability that Bin(m, 1/2) is more than ds/2 from m/2,
which is at most ζ by standard tail bounds.

Definition of the MeasureD+. Intuitively, we would like to defineD+ to be equal to some suitable
multiple (say, 3) of the standard Binomial measure Bin(m, 1/2). Such a definition would satisfy the
desired moment-matching conditions (property 3 of Proposition 3.6) with zero error and would also
guarantee that D+ > 2D− on J , as desired (property 1(b)). However, this candidate definition does
not satisfy property 1(a), i.e., that D+ be equal to 0 on J . To satisfy the latter property, we will need
to carefully modify this measure. The key lemma is the following (see Appendix B for the proof):

Lemma 3.8. Let s ≥ ω(k4). There exists a signed measure µ on {−s+ 1,−s+ 2, . . . , s− 1} such
that: (i) For any integer 0 ≤ t ≤ k,

∑s−1
i=1−s µ(i)it = 0, (ii) µ(0) = −1, (iii) |µ(i)| < 1/10, i 6= 0.

We are now ready to construct the measure D+. We begin with the measure 3Bin(m, 1/2). We
then for each element x ∈ J take the measure µ from Lemma 3.8, translate it to center around x
and add an appropriate multiple of it to D+ in order to make D+(x) = 0. It is clear that the first
k moments of D+ agree with those moments of 3Bin(m, 1/2), and from there it follows that D+

satisfies Condition 3.3 with ν = 0, since for any 0 ≤ t ≤ k and any point x ∈ J , we have that
s−1∑
i=1−s

µ(i)(x+ i)t =
s−1∑
i=1−s

µ(i)
t∑̀
=0

(
t

`

)
i`xt−` =

t∑̀
=0

(
t

`

)
xt−`

s−1∑
i=1−s

µ(i)i` = 0 ,

which means that we never change the moments by making D+(x) = 0. Therefore, we have D+

is 0 on J by our construction. We also claim that D+ is bounded between 2Bin(m, 1/2) and
4Bin(m, 1/2) on J̄ . For this, we note that for any x /∈ J , there are at most two integers, x′ and x′′,
that are in J and within distance s of x. It is clear that

|D+(x)− 3Bin(m, 1/2)(x)| ≤ (3/10)(Bin(m, 1/2)(x′) + Bin(m, 1/2)(x′′)) .

It suffices to show that Bin(m,1/2)(x′)
Bin(m,1/2)(x) < 3/2 along with the analogous statement for x′′. However,

the log of the ratio is easily seen to be O(s2d/m) = o(1), which suffices. This completes the proof
of Proposition 3.6.
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3.3 Parameter Setting for the SQ-hard Distributions

We will consider the following family of hardness distributions which will be used in the proof
of all SQ hardness results throughout this article. Let C > 0 be a sufficiently large universal
constant. Let m be a positive integer and m′ be an integer on the order of Cm. Let d be an integer
on the order of m1/10, s an integer on the order of m4/9, and k an integer on the order of m2/19.
Observe that

(
2d+m′

m′

)
≤ (m′)2d = exp(O(Cm1/10 log(m))). Select m as large as possible so that

the above is less than M . Decreasing M if necessary, we can assume that M =
(

2d+m′

m′

)
. We

consider the Veronese mapping VO(d) : Rm′ → RM , such that the coordinate functions of VO(d)

are exactly the monomials in m′ variables of degree at most O(d). We define measures D+ and
D− on [m] ∪ {0}, as given by Proposition 3.6, with k, s and d as above, and taking log(1/ζ) a
sufficiently small multiple of (ds)2/m, so that ζ = exp(−Ω(m4/45)) = exp(−Ω(log(M)8/9)).
It is easily verified that these parameters satisfy the assumptions of Proposition 3.6. For a subset
S ⊆ [m′] of size m and labels a 6= b ∈ R, define the distribution P

D+,D−,p
S,a,b as in Definition 3.4, with

p = ‖D+‖1/(‖D+‖1 + ‖D−‖1). We will consider the distribution (X′, Y ′) on {0, 1}M × {a, b}
by drawing (X, Y ) from P

D+,D−,p
S,a,b and letting X′ = VO(d)(X) and Y ′ = Y . It is easy to see that

finding a hypothesis that predicts y′ given x′ is equivalent to finding a hypothesis for y given x
(since y = y′ and there is a known 1-1 mapping between x and x′). The pointwise bounds on
D+ and D− imply that χ2(D+/‖D+‖1,Bin(m, 1/2)) + χ2(D−/‖D−‖1,Bin(m, 1/2)) = O(s2).
The parameter ν in Proposition 3.5 is at most smk exp(−Ω(m/s2)) = exp(−Ω(m1/9)). Note
that as M = exp(Õ(m1/10)), this is exp(−Ω(log(M)1.1)). As k is also Ω(log(M)1.05), we have
that τ = exp(−Ω(log(M)1.05)) ≤ 1/poly(M). In the remaining part of this article, we will use
x′,X′, y′, Y ′ without clarification to denote the results of x,X, y, Y after the Veronese mapping
VO(d) : Rm′ → RM .

4 Concrete SQ Hardness Results

In this section, we prove our SQ hardness results for Massart learning low-weight half-spaces and
ReLUs. We provide additional SQ hardness results for learning fast convergent activations with
respect to L2-Massart noise in Appendix D.

4.1 SQ Hardness of Learning Low-Weight Boolean Halfspaces with Massart Noise

In this subsection, we prove the following theorem.
Theorem 4.1 (SQ Hardness for Low-weight Massart Halfspaces on {0, 1}M ). Any SQ algorithm
that learns {±1}-weight halfspaces on {0, 1}M , in the presence of Massart noise with η = 1/3,
to 0-1 error better than 1/poly(log(M)) requires either queries of accuracy better than τ :=
exp(−Ω(log(M)1.05)) or at least 1/τ statistical queries. This holds even if the optimal classifier
has 0-1 error exp(−Ω(logM)8/9).

Proof. Our proof will make use of the SQ framework of Section 3.1 and will crucially rely on the
one-dimensional construction of Proposition 3.6. In this subsection, we fix the labels a = 1, b = −1,
and apply the construction in Section 3.3 to obtain the joint distributions (X, Y ) and (X′, Y ′). Note
that y = y′ and there is a known 1-1 mapping between x and x′, therefore finding a hypothesis that
predicts y′ given x′ is equivalent to finding a hypothesis for y given x.

Claim 4.2. The distribution (X′, Y ′) over {0, 1}M × {±1} is a Massart LTF distribution with
optimal misclassification error OPTMass ≤ exp(−Ω(log(M)8/9)) and Massart noise rate upper
bound of η = 1/3.

We defer the proof of the above claim to Appendix C. We now show that the (D+,D−, 1,−1,m′)-
Hidden Junta Testing Problem efficiently reduces to our learning task. In more detail, we show that
any SQ algorithm that computes a hypothesis h′ satisfying Pr(X′,Y ′)[h

′(X′) 6= Y ′] < min(p, 1−
p) − 2

√
2τ can be used as a black-box to distinguish between P

D+,D−,p
S,a,b , for some unknown

subset S ⊆ [m] with |S| = m, and Upm′ . Since there is a 1-1 mapping between x ∈ {0, 1}m′

and x′ ∈ {0, 1}M , we denote h : {0, 1}m′ 7→ {±1} to be h(x) = h′(x′). We note that we
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can (with one additional query to estimate the Pr[h′(X′) 6= Y ′] within error
√

2τ ) distinguish
between (i) the distribution P

D+,D−,p
S,a,b , and (ii) the distribution Upm′ . This is because for any h we

have that Pr(X,Y )∼Up
m′

[h(X) 6= Y ] ≥ min(p, 1 − p). Applying Proposition 3.5, we determine
that any SQ algorithm which, given access to a distribution P so that either P = Upm′ , or P is
given by P

D+,D−,p
S,a,b for some unknown subset S ⊆ [m′] with |S| = m, correctly distinguishes

between these two cases with probability at least 2/3 must either make queries of accuracy better
than

√
2τ or must make at least 2Ω(m)τ/(χ2(A,Bin(m, 1/2)) + χ2(B,Bin(m, 1/2))) statistical

queries. Therefore, it is impossible for an SQ algorithm to learn a hypothesis with error better
than min(p, 1− p)− 2

√
2τ = Θ(1/s)−Θ(

√
τ) = 1/polylog(M) without either using queries of

accuracy better than τ or making at least 2Ω(m)τ/polylog(M) > 1/τ many queries. This completes
the proof of the SQ-hardness.

It remains to argue that the underlying halfspaces in the hard instance can be assumed to
have {±1} weights. To deal with the weights, we note that g is a degree-2d PTF that can be
defined as the product of 2d linear polynomials Li, so that each Li has integer coefficients and
the sum of the absolute values of these coefficients is O(m). This means that g can be defined
by a degree-2d polynomial with integer coefficients and the sum of whose absolute values is at
most O(m)2d = poly(M). By doubling these coefficients, we can assume that they are all even.
Therefore, the linear threshold function L can be defined by a linear polynomial with even integer
weights each of which has absolute value at most W . If we replace our distribution over {0, 1}M
by a distribution over {0, 1}MW by duplicating each coordinate W times (i.e., creating a new
distribution with coordinates zi,j for i ∈ [M ] and j ∈ [W ] with zi,j = xi for all i, j), we can
rewrite L(x) as an LTF L′(z), where L′ has {±1}-weights. This is done by replacing a term aixi by∑(ai+W )/2
j=1 zi,j −

∑W
j=(ai+W )/2+1 zi,j . This completes the proof of Theorem 4.1.

4.2 SQ Hardness of Learning a Single Neuron with Massart Noise

In this subsection, we prove our SQ hardness result of learning a single neuron with ReLU activation
and Massart noise. The standard ReLU function is defined by ReLU(t) = max(t, 0),∀t ∈ R. For
technical convenience, we will consider the following linear transformation of the standard ReLU,
R̂eLU(t) = −1 if t < 0, and R̂eLU(t) = −1 + 2t otherwise. We note that our SQ hardness result
for the R̂eLU function applies to the standard ReLU function as well.

Theorem 4.3 (SQ Hardness of Massart Learning ReLUs). Any SQ algorithm that learns a single
neuron with ReLU activation on RM , in the presence of Massart noise with η = 1/3, within
squared error better than 1/poly(log(M)) requires either queries of accuracy better than τ :=
exp(−Ω(log(M)1.05)) or at least 1/τ statistical queries. This holds even if (i) the optimal neuron
has squared error exp(−Ω(logM)8/9), (ii) The X values are supported on {0, 1}M , and (iii) the
total weight of the neuron is poly(M).

Throughout this subsection, we need the following technical lemma.

Lemma 4.4. Let J be a union of d points in [m] ∪ {0} for some odd integer d. Then there exists a
real univariate polynomial p(x) of degree O(d) such that p(x) = 1,∀x ∈ J , and p(x) ≤ 0,∀x ∈ J̄ .
In addition, the absolute value of the coefficients of p(x) is at most mO(d) = poly(M).

Proof. Let J = {x1, . . . , xd}. Define q(x) = −
∏d
i=1(x − (xi − 1/2))(x − (xi + 1/2)). By

definition, we have that q(x) > 0,∀x ∈ J , and q(x) < 0,∀x ∈ J̄ . Then, by polynomial interpolation,
there exists a real univariate polynomial r of degree d − 1 such that r(xi) = 1√

q(xi)
, 1 ≤ i ≤ d.

Consider the real univariate polynomial p(x) = r2(x)q(x). For any 1 ≤ i ≤ d, we have that
p(xi) = r2(xi)q(xi) = 1 and for any x ∈ J̄ , we have that p(x) ≤ 0 since q(x) < 0,∀x ∈ J̄ . Finally
by polynomial interpolation, we know that the absolute value of every coefficient of r(x), p(x) is at
most mO(d) = poly(M).

Proof of Theorem 4.3. Our proof will make use of the SQ framework of Section 3.1 and will crucially
rely on the one-dimensional construction of Proposition 3.6. In this section, we fix the labels
a = −1, b = 1, and apply the construction in Section 3.3 to obtain the joint distributions (X, Y ) and
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(X′, Y ′). Note that y = y′ and there is a known 1-1 mapping between x and x′, therefore finding a
hypothesis that predicts y′ given x′ is equivalent to finding a hypothesis for y given x.

Claim 4.5. The distribution (X′, Y ′) over {0, 1}M × {±1} is a Massart single neuron distribution
with ReLU activation and with optimal squared error OPTMass−L2 ≤ exp(−Ω(log(M)8/9)) and
Massart noise rate upper bound of η = 1/3.

We defer the proof of the above claim to Appendix C. We now show that the (D+,D−,−1, 1,m′)-
Hidden Junta Testing Problem efficiently reduces to our learning task. In more detail, we show that any
SQ algorithm that computes a hypothesis h′ satisfying E(X′,Y ′)[(h

′(X′)−Y ′)2] < 4p−4p2−2
√

2τ

can be used as a black-box to distinguish between P
D+,D−,p
S,a,b , for some unknown subset S ⊆ [m′]

with |S| = m, and Upm′ . Since there is a 1-1 mapping between x ∈ {0, 1}m′ and x′ ∈ {0, 1}M , we
denote h : {0, 1}m′ 7→ R to be h(x) = h′(x′). We note that we can (with one additional query to
estimate the E[(h′(X′)− Y ′)2] within error

√
2τ ) distinguish between (i) the distribution P

D+,D−,p
S,a,b ,

and (ii) the distribution Upm′ . This is because for any h we have that
E(X,Y )∼Up

m′
[(h(X)− Y )2] = 1− 2(1− 2p)E(X,Y )∼Up

m′
[h(X)] + E(X,Y )∼Up

m′
[h(X)2]

≥ 1− 2(1− 2p)E(X,Y )∼Up
m′

[h(X)] + E(X,Y )∼Up
m′

[h(X)]2 ≥ 4p− 4p2 .

Applying Proposition 3.5, we determine that any SQ algorithm which, given access to a distribution
P so that either P = Upm′ , or P is given by P

D+,D−,p
S,a,b for some unknown subset S ⊆ [m′] with

|S| = m, correctly distinguishes between these two cases with probability at least 2/3 must either
make queries of accuracy better than

√
2τ or must make at least 2Ω(m)τ/(χ2(A,Bin(m, 1/2)) +

χ2(B,Bin(m, 1/2))) statistical queries. Therefore, it is impossible for an SQ algorithm to learn a
hypothesis with error better than 4p− 4p2 − 2

√
2τ = Θ(1/s)−Θ(

√
τ) = 1/polylog(M) without

either using queries of accuracy better than τ or making at least 2Ω(m)τ/polylog(M) > 1/τ many
queries. This completes the proof of Theorem 4.3.

5 Conclusion and Future Directions

In this work, we showed that no efficient SQ algorithm can approximate the optimal error within
any constant factor for learning single neurons with Massart noise. In the process, we constructed
new moment-matching distributions corresponding to Boolean halfspaces with Massart noise, which
is a result of independent interest. Importantly, our construction has some additional desirable
properties which allows us to establish hardness for learning low-weight LTFs, strengthening the
result of [DK22]. In addition, we provide a simple technique for transforming our binary construction
into hardness of learning real-valued single neurons with Massart noise.

A number of avenues for future work remain, some of which we briefly discuss below. Recent
work [DKK+22] studied the problem of learning halfspaces under the Gaussian distribution with
Massart noise for η = 1/2. It is plausible that the η = 1/2 case in our distribution-independent setting
is much harder than the η = 0.49 case. Establishing such a statement is left as an interesting open
question. Another direction concerns the distribution-specific setting. Are there efficient algorithms
with non-trivial error guarantees (e.g., achieving a constant factor approximation) for learning single
neurons under simple discrete distributions (e.g., under the uniform distribution on the hypercube)?
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