
A Symbols

List of symbols used in the paper with their brief description.

Two-stage stochastic program

x First-stage decision vector
c First-stage objective coefficient vector
K EF scenario set size
k Scenario index
ξk kth scenario realization
pk Probability of scenario k
n Dimension of x

Q(x, ξ) Second-stage sub-problem for first-stage decision x and scenario ξ
F (x, ξ) Second-stage cost for first-stage decision x and scenario ξ

X Constraint set exclusively on the first-stage decision
Y(x, ξ) Scenario-specific constraint set for first-stage decision x and scenario ξ

Neural network

ℓ Number of layers in the network
m Index over the neural network layers
d0 Dimensionality of input layer
dm Dimensionality of layer m
α Input to the neural network
β Output of the neural network
W Weight matrix
b Bias
σ Activation function
hm mth hidden layer
i Index over the column of weight matrix
j Index over the row of weight matrix
Φ1 Scenario-encoding network
Φ2 Post scenario-aggregation network
ΨE Scenario-embedding network for NN-E
ΨP Scenario-embedding network for NN-P

MIP-NN

ĥ Non-negative ReLU input
ȟ Negative ReLU input
z Indicator variables
Λ Number of predictions used in embedding
[M ] The set {1, . . . ,M} for an M ∈ Z+

Table 7: Symbols summary

B Stochastic Programming Problems

B.1 Capacitated Facility Location (CFLP)

The CFLP is a decision-making problem in which a set of facility opening decisions must be made
in order to meet the demand of a set of customers. Typically this is formulated as a minimization
problem, where the amount of customer demand satisfied by each facility cannot exceed its capacity.
The two-stage stochastic CFLP arises when facility opening decisions must be made prior to knowing
the actual demand. For this problem, we generate instances following the procedure described in
[Cornuéjols et al., 1991] and create a stochastic variant by simply generating the first-stage costs and
capacities, then generate scenarios by sampling K demand vectors using the distributions defined in
[Cornuéjols et al., 1991]). To ensure relatively complete recourse, we introduce additional variables
with prohibitively expensive objective costs in the case where customers cannot be served. In the
experiments a CFLP with n facilities, m customers, and s scenarios is denoted by CFLP_n_m_s.
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B.2 Investment Problem (INVP)

The INVP is a 2SP problem studied in [Schultz et al., 1998]. This 2SP has a set of continuous
first-stage decisions which yield an immediate revenue. In the second stage, after a set of random
variables are realized, a set of binary decisions can be made to receive further profit. In this work,
we specifically consider the instance described in the example 7.3. of [Schultz et al., 1998]. This
problem has 2 continuous variables in the first stage with the domain [0, 5], and 4 binary variables in
the second stage. The scenarios are given by two random discrete variables which are defined with
equal probability over the range [5, 15]. Specifically, for K scenarios, each random variable can take
an equally spaced value in the range. Although the number of variables is quite small, the presence of
continuous first-stage decision has made this problem relevant within the context of other recent work
such as the heuristic approach proposed in [van der Laan and Romeijnders, 2021]. As a note, we
reformulate the INVP as an equivalent minimization problem in the remainder of this work. In the
experiments an INVP instance is denoted by INVP_v_t, where v indicates the type of second-stage
variable (B for binary and I for integer) and t indicates the type of technology matrix (E for identity
and H for [[2/3, 1/3], [1/3, 2/3]]).

B.3 Stochastic Server Location Problem (SSLP)

The SSLP is a 2SP, where in the first stage a set of decisions are made to decide which servers should
be utilized and a set of second-stage decisions assigning clients to servers. In this case, the random
variables take binary values, which represent a client with a request occurring in the scenario or not.
A more detailed description of the problem can be found in [Ntaimo and Sen, 2005]. In this work, we
directly use the instances provided in SIPLIB [Ahmed et al., 2015]. In the experiments a SSLP with
n servers, m clients, and s scenarios is denoted by SSLP_n_m_s.

B.4 Pooling Problem (PP)

The pooling problem is a well-studied problem in the field of mixed-integer nonlinear programming
Audet et al. [2004], Gupte et al. [2017], Gounaris et al. [2009], Haverly [1978]. It can be formulated
as a mixed-integer quadratically constrained quadratic program, making it the hardest problem class
in our experiments.

We are given a directed graph, consisting of three disjoint sets of nodes, called the source, pool and
terminal nodes. We need to produce and send some products from the source to the terminal nodes,
using the given arcs, such that the product demand and quality constraints on the terminal nodes,
along with the arc capacity constraints, are satisfied. The pool nodes can be used to mix products
with different qualities in appropriate quantities to generate a desired quality product. The goal is
to decide the amount of product to send on each arc such that the total profit from the operations is
maximized. We consider a stochastic version of the problem as described in the case study of Li
et al. [2011]. Here, in the first stage, we need to design the network by selecting nodes and arcs from
the input graph, without knowing the quality of the product produced on source nodes and the exact
demand on the terminal nodes. Once the uncertainty is revealed, in the second stage, we make the
recourse decisions about the amount of product to be sent on each arc, such that demand and quality
constraints on the terminal nodes are satisfied. In our case, we have 16 binary variables in the first
stage and 11 continuous variables per scenario in the second stage. An instance of this problem is
referred to as PP_s, where s is the number of scenarios.

C Data Generation & Supervised Learning Times

In this section, we report details of the data generation and training times for all problem settings in
Tables 8 and 9, respectively. For training, we split the # samples into an 80%-20% train validation
set, and select the best model on the validation set in the given number of epochs.

D Objective Results

In this section, we report the objective for the first-stage solutions obtained by each approximate
MIP and the objective of EF (either optimal or at the end of the solving time). In addition, we
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Problem NN-E NN-P

# samples Time per sample Total time # samples Time per sample Total time

CFLP_10_10 5,000 0.36 1,823.07 10,000 0.00 13.59
CFLP_25_25 5,000 0.83 4,148.83 10,000 0.01 112.83
CFLP_50_50 5,000 1.54 7,697.91 10,000 0.01 135.57

SSLP_10_50 5,000 0.19 942.10 10,000 0.00 22.95
SSLP_15_45 5,000 0.19 929.27 10,000 0.00 16.35
SSLP_5_25 5,000 0.17 860.74 10,000 0.00 13.18

INVP_B_E 5,000 1.79 8,951.27 10,000 0.00 4.17
INVP_B_H 5,000 1.84 9,207.90 10,000 0.00 4.22
INVP_I_E 5,000 1.75 8,759.83 10,000 0.00 4.34
INVP_I_H 5,000 1.79 8,944.65 10,000 0.00 3.32

PP 5,000 0.24 1,202.11 10,000 0.00 14.86

Table 8: Data generation samples and times. Data was generated in parallel with 43 processes. All
times in seconds.

NN-E NN-P LR

CFLP_10_10 667.28 127.12 0.53
CFLP_25_25 2,205.23 840.07 0.28
CFLP_50_50 463.71 128.11 0.75

SSLP_10_50 708.86 116.17 0.63
SSLP_15_45 1,377.21 229.42 0.57
SSLP_5_25 734.02 147.44 0.05

INVP_B_E 344.87 1,000.14 0.02
INVP_B_H 1,214.54 607.49 0.02
INVP_I_E 2,115.25 680.93 0.02
INVP_I_H 393.82 174.26 0.02

PP 576.08 367.25 0.05

Table 9: Training times. All times in seconds.

report the objective of the approximate MIP. See Tables 10 through 13 for results. As mentioned
in the main paper, the results from linear regressor (LR) are quite poor, with a significantly worse
objective in almost every instance. This is not surprising as a linear function will not likely have the
capacity to estimate the integer and non-linear second-stage objectives. For both NN-E and NN-P we
can see that the true objective and the approximate-MIP objective are relatively close for all of the
problem settings, further indicating that the neural network embedding is a useful approximation to
the second-stage expected cost.

E SSLP SIPLib Results

In this section we report optimally gaps and solving times on the publicly available SSLP SIPLib
instances in Table 14. From the table, we can see that both NN-E and NN-P do quite well in terms of
finding solutions, especially in the larger scenario case where they obtain optimal first-stage solutions.
Perhaps, the most impressive results here is that NN-E is able to obtain optimal results for many
instances in ∼0.1 seconds.

F Model & Dataset Selection

F.1 Model Selection

For the supervised learning task, we implement linear regression using Scikit-learn 1.0.1 [Pedregosa
et al., 2011]. In this case we use the base estimator with no regularization. The NN-P/NN-E neural
models are all implemented using Pytorch 1.10.0 [Paszke et al., 2019]. For model selection, we use
random search over 100 configurations for each problem setting. For NN-P and NN-E we sample
configurations from Table 15. For both cases we limit the ReLU layers to a single layer with a varying
hidden dimension. In the NN-P case the choice of the ReLU hidden dimension is limited since a large
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Problem True objective Approximate-MIP objective

NN-E NN-P LR EF NN-E NN-P LR

CFLP_10_10_100 7,174.57 7,109.62 10,418.87 6,994.77 7,102.57 7,046.37 5,631.00
CFLP_10_10_500 7,171.79 7,068.91 10,410.19 7,003.30 7,102.57 7,084.46 5,643.68
CFLP_10_10_1000 7,154.60 7,040.70 10,406.08 7,088.56 7,102.57 7,064.36 5,622.40
CFLP_25_25_100 11,773.01 11,773.01 23,309.73 11,864.83 11,811.39 12,100.73 10,312.21
CFLP_25_25_500 11,726.34 11,726.34 23,310.34 12,170.67 11,811.39 12,051.51 10,277.01
CFLP_25_25_1000 11,709.90 11,709.90 23,309.85 11,868.04 11,811.39 12,041.12 10,263.37
CFLP_50_50_100 25,236.33 25,019.64 45,788.45 25,349.21 26,309.43 26,004.88 18,290.63
CFLP_50_50_500 25,281.13 24,964.33 45,786.97 28,037.66 26,287.48 25,986.50 18,209.77
CFLP_50_50_1000 25,247.77 24,981.70 45,787.18 30,282.41 26,309.43 26,002.78 18,217.14

Table 10: CFLP detailed objective results: each row represents an average over 10 2SP instance
with varying scenario sets. “True objective" for {NN-E,NN-P,LR} is the cost of the first-stage
solution obtained from the approximate MIP evaluated on the second-stage scenarios. For EF it is the
objective at the solving limit. “Approximate-MIP objective" is objective from the approximate MIP
for {NN-E,NN-P,LR}. All times in seconds.

Problem True objective Approximate-MIP objective

NN-E NN-P LR EF NN-E NN-P LR

SSLP_10_50_50 -354.96 -354.96 -63.00 -354.96 -350.96 -339.42 -294.69
SSLP_10_50_100 -345.86 -345.86 -49.62 -345.86 -350.96 -328.54 -283.96
SSLP_10_50_500 -349.54 -349.54 -54.68 -349.54 -350.96 -332.82 -288.02
SSLP_10_50_1000 -350.07 -350.07 -55.45 -235.22 -350.96 -333.46 -288.55
SSLP_10_50_2000 -350.07 -350.07 -54.72 -172.73 -350.96 -332.87 -288.19
SSLP_15_45_5 -247.27 -206.83 -249.51 -255.55 -238.44 -259.11 -58.28
SSLP_15_45_10 -249.58 -209.49 -252.89 -257.41 -238.44 -265.92 -64.01
SSLP_15_45_15 -251.10 -208.86 -254.58 -257.68 -238.44 -267.01 -66.71
SSLP_5_25_50 -125.22 -123.15 14.50 -125.36 -121.64 -110.18 -119.98
SSLP_5_25_100 -120.91 -119.03 19.87 -120.94 -121.64 -109.59 -117.79

Table 11: SSLP detailed objective results: each row represents an average over eleven 2SP instance
with varying scenario sets. See Table 10 for a detailed description of the columns.

number of predictions each with a large hidden dimension can lead to MILPs which are prohibitively
expensive to solve. For the NN-E specific hidden dimensions, we have 3 layers, with Embed hidden
dimension 1 and Embed hidden dimension 2 corresponding to layers before the aggregation and
Embed hidden dimension 3 being a final hidden layer after the aggregation.

In Tables 16 and 17 we report the best parameters for each problem setting for the NN-P and NN-E
models, respectively. In addition, we report the validation MSE across all 100 configurations for each
problem in box plots in Figures 3 to 6. From the box plots we can observe that lower validation MAE
configurations are quite common as the medians are typically not too far from the lower tails of the
distributions. This indicates that hyperparameter selection can be helpful when attempting to improve
the second-stage cost estimates, however, the gains are marginal in most cases.

F.2 Dataset Size Selection

In this section, we report results for varying dataset sizes. Here, we report only the results for a single
problem setting, namely, CFLP_10_10. We use a validation with 5000 samples and training sets with
100, 500, 1000, 5000, 10000, and 20000 samples. Model selection with random search is done for
each training set size as described in the previous section. Figures 7 and 8 report the results for the
NN-P and NN-E models respectively. In both cases, we can see an improvement in validation MAE
with increases in the dataset sizes, however, diminishing returns start to occur when increasing the
number of samples above 5000 samples. This motivates the choice of dataset sizes which we use
in the remainder of the experiments. Specifically, we use 10000 samples for the NN-P case as data
generation is quite fast. For the NN-E case we limit the number of samples to 5000 as we only see a
small improvement of %4 in validation MAE at the cost of doubling the compute time.
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Problem True objective Approximate-MIP objective

NN-E NN-P LR EF NN-E NN-P LR

INVP_B_E_4 -51.56 -55.29 -46.25 -57.00 -58.59 -52.15 -63.67
INVP_B_E_9 -54.86 -58.15 -53.11 -59.33 -58.81 -55.33 -63.67
INVP_B_E_36 -59.55 -58.19 -58.86 -61.22 -59.38 -57.92 -63.67
INVP_B_E_121 -61.44 -60.78 -61.06 -62.29 -59.60 -58.91 -63.67
INVP_B_E_441 -59.60 -59.83 -59.91 -61.32 -59.91 -58.51 -63.67
INVP_B_E_1681 -59.81 - -59.30 -60.63 -59.94 - -63.67
INVP_B_E_10000 -59.85 - -58.68 -58.98 -59.95 - -63.67
INVP_B_H_4 -51.75 -51.36 -51.75 -56.75 -58.12 -52.41 -61.24
INVP_B_H_9 -56.56 -56.56 -56.56 -59.56 -61.78 -56.67 -61.24
INVP_B_H_36 -59.31 -59.31 -59.31 -60.28 -59.38 -59.52 -61.24
INVP_B_H_121 -59.93 -59.93 -59.93 -61.01 -60.22 -60.54 -61.24
INVP_B_H_441 -60.14 -58.07 -60.14 -61.44 -60.23 -58.13 -61.24
INVP_B_H_1681 -60.47 - -60.47 -60.04 -60.57 - -61.24
INVP_B_H_10000 -60.53 - -60.53 -58.93 -60.65 - -61.24
INVP_I_E_4 -55.35 -63.50 -52.50 -63.50 -66.79 -58.96 -71.57
INVP_I_E_9 -61.63 -64.80 -61.89 -66.56 -66.70 -61.70 -71.57
INVP_I_E_36 -66.03 -66.25 -67.08 -69.86 -67.39 -65.18 -71.57
INVP_I_E_121 -67.35 -67.92 -69.07 -71.12 -67.39 -66.70 -71.57
INVP_I_E_441 -67.55 -69.16 -67.39 -69.64 -67.63 -67.43 -71.57
INVP_I_E_1681 -67.95 -66.73 -66.52 -68.85 -67.69 -67.62 -71.57
INVP_I_E_10000 -67.94 - -65.67 -67.04 -67.82 - -71.57
INVP_I_H_4 -54.75 -55.78 -54.75 -63.50 -65.31 -59.99 -66.07
INVP_I_H_9 -59.78 -65.25 -59.78 -65.78 -64.15 -61.08 -66.07
INVP_I_H_36 -63.78 -64.80 -63.78 -67.11 -66.79 -63.76 -66.07
INVP_I_H_121 -65.03 -64.37 -65.03 -67.75 -65.38 -64.64 -66.07
INVP_I_H_441 -65.12 -65.12 -65.12 -67.24 -67.13 -65.16 -66.07
INVP_I_H_1681 -65.63 -65.34 -65.63 -65.41 -65.87 -65.03 -66.07
INVP_I_H_10000 -65.66 - -65.66 -64.63 -66.45 - -66.07

Table 12: INVP detailed objective results: each row represents single instance. See Table 10 for a
detailed description of the columns.

Problem True objective Approximate-MIP objective

NN-E NN-P LR EF NN-E NN-P LR

PP_125 264.30 173.10 -10.00 273.19 189.75 177.12 70.75
PP_216 200.29 131.83 -10.00 220.25 189.75 168.10 70.75
PP_343 206.38 122.90 -10.00 207.77 189.75 172.17 70.75
PP_512 204.41 134.83 -10.00 223.86 189.75 162.54 70.75
PP_729 219.42 137.97 -10.00 222.48 189.75 167.55 70.75
PP_1000 202.50 126.30 -10.00 215.25 189.75 165.59 70.75

Table 13: PP detailed objective results: each row represents single instance. See Table 10 for a
detailed description of the columns.

Problem Gap to Optimal (%) Solving Time

NN-E NN-P EF NN-E NN-P EF

SSLP_10_50_50 0.00 0.00 0.00 0.11 4.83 10,801.27
SSLP_10_50_100 0.00 0.00 0.00 0.11 11.66 10,800.04
SSLP_10_50_500 0.00 0.00 0.00 0.11 107.88 10,818.23
SSLP_10_50_1000 0.00 0.00 28.64 0.12 383.51 10,800.26
SSLP_10_50_2000 0.00 0.00 51.24 0.13 4,523.19 10,800.20
SSLP_15_45_5 0.46 19.59 0.00 0.32 0.28 4.17
SSLP_15_45_10 1.57 18.23 0.00 0.25 0.40 3.71
SSLP_15_45_15 0.53 16.51 0.00 0.41 0.72 4.74
SSLP_5_25_50 0.00 2.15 0.00 0.26 0.92 2.35
SSLP_5_25_100 0.00 1.40 0.00 0.18 1.68 8.87

Table 14: SSLP SIPLib gap and time comparison among methods. Optimal SIPLib instances values
obtained from Ahmed et al. [2015]. “Gap to Optimal" is the percent gap to the optimal solution.
“Solving Time" is the solving to of the approximate MIP and EF. All times in seconds.
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Parameter NN-P NN-E

Batch size {16, 32, 64, 128} {16, 32, 64, 128}
Learning rate [1e−5, 1e−1] [1e−5, 1e−1]
L1 weight penalty [1e−5, 1e−1] [1e−5, 1e−1]
L2 weight penalty [1e−5, 1e−1] [1e−5, 1e−1]
Optimizer {Adam, Adagrad, RMSprop} {Adam, Adagrad, RMSprop}
Dropout [0, 0.5] [0, 0.5]
# Epochs 1000 2000
ReLU hidden dimension {32, 64} {64, 128, 256, 512}
Embed hidden dimension 1 - {64, 128, 256, 512}
Embed hidden dimension 2 - {16, 32, 64, 128}
Embed hidden dimension 3 - {8, 16, 32, 64}

Table 15: Random search parameter space for NN-P and NN-E models. For values in {}, we sample
with equal probability for each discrete choice. For values in [], we sample a uniform distribution
with the given bounds. For single values, we keep it fixed across all configurations. A value of -
means that parameter is not applicable for the given model type.

Parameter CFLP_10_10 CFLP_25_25 CFLP_50_50 SSLP_5_25 SSLP_10_50 SSLP_15_45 INVP_B_E INVP_B_H INVP_I_E INVP_I_H PP

Batch size 128 16 128 128 128 64 16 32 32 128 64
Learning rate 0.05029 0.05217 0.00441 0.03385 0.07015 0.08996 0.00435 0.00521 0.06613 0.01614 0.0032
L1 weight penalty 0.07512 0.00551 0.08945 0.03232 0.07079 0.09105 0.08321 0.05754 0.01683 0. 01859 0
L2 weight penalty 0.08343 0.02846 0.08602 0.0 0.01792 0.0 0.01047 0.02728 0 0 0.0361
Optimizer Adam Adam Adam RMSprop RMSprop RMSprop RMSProp RMSProp Adam Adam Adam
Dropout 0.02198 0.02259 0.05565 0.00914 0.01944 0.02257 0.17237 0.13698 0.04986 0.0859 0.05945
ReLU hidden dimension 64 32 64 32 64 32 64 64 64 32 64

Table 16: NN-P best configurations from random search.

Parameter CFLP_10_10 CFLP_25_25 CFLP_50_50 SSLP_5_25 SSLP_10_50 SSLP_15_45 INVP_B_E INVP_B_H INVP_I_E INVP_I_H PP

Batch size 32 16 128 64 64 32 128 32 16 128 64
Learning rate 0.0263 0.06571 0.02906 0.08876 0.07633 0.03115 0.01959 0.00846 0.02841 0.02867 0.08039
L1 weight penalty 0.02272 0.06841 0.05792 0.0 0.04529 0.07182 0.0 0.0 0.00022 0 0
L2 weight penalty 0.05747 0.0 0.04176 0.03488 0.0 0.0 0 0.09007 0.02272 0.01882 0
Optimizer RMSprop Adam Adam Adam RMSprop Adam Adagrad Adam Adagrad Adagrad Adam
Dropout 0.01686 0.0028 0.03318 0.00587 0.00018 0.0088 0.08692 0.04096 0.01854 0.01422 0.0072
ReLU hidden dimension 128 256 256 256 64 256 256 256 256 256 512
Embed hidden dimension 1 512 128 256 64 128 512 256 512 64 256 512
Embed hidden dimension 2 16 64 64 16 32 64 16 16 32 32 128
Embed hidden dimension 3 16 16 8 32 64 16 32 16 8 64 16

Table 17: NN-E best configurations from random search.

Figure 3: CFLP validation MAE over random search configurations for NN-P and NN-E models.

20



Figure 4: SSLP validation MAE over random search configurations for NN-P and NN-E models.

Figure 5: INVP validation MAE over random search configurations for NN-P and NN-E models.

Figure 6: PP validation MAE over random search configurations for NN-P and NN-E models.
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Figure 7: NN-P dataset sizing results Figure 8: NN-E dataset sizing results
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