
Neur2SP: Neural Two-Stage Stochastic Programming

Justin Dumouchelle∗ Rahul Patel∗ Elias B. Khalil† Merve Bodur
Department of Mechanical & Industrial Engineering, University of Toronto

Abstract

Stochastic Programming is a powerful modeling framework for decision-making
under uncertainty. In this work, we tackle two-stage stochastic programs (2SPs),
the most widely used class of stochastic programming models. Solving 2SPs
exactly requires optimizing over an expected value function that is computationally
intractable. Having a mixed-integer linear program (MIP) or a nonlinear program
(NLP) in the second stage further aggravates the intractability, even when special-
ized algorithms that exploit problem structure are employed. Finding high-quality
(first-stage) solutions – without leveraging problem structure – can be crucial in
such settings. We develop Neur2SP, a new method that approximates the expected
value function via a neural network to obtain a surrogate model that can be solved
more efficiently than the traditional extensive formulation approach. Neur2SP
makes no assumptions about the problem structure, in particular about the second-
stage problem, and can be implemented using an off-the-shelf MIP solver. Our
extensive computational experiments on four benchmark 2SP problem classes with
different structures (containing MIP and NLP second-stage problems) demonstrate
the efficiency (time) and efficacy (solution quality) of Neur2SP. In under 1.66 sec-
onds, Neur2SP finds high-quality solutions across all problems even as the number
of scenarios increases, an ideal property that is difficult to have for traditional 2SP
solution techniques. Namely, the most generic baseline method typically requires
minutes to hours to find solutions of comparable quality.

1 Introduction

Mathematical programming consists of a gamut of tools to solve optimization problems. Under
perfect information, i.e., when all the data is deterministic and known, many of these problems can
be solved as a linear program (LP) or mixed-integer linear program (MIP). However, in many cases,
there is a need to deal with problems with partial information. Stochastic programming is one such
framework that allows us to incorporate uncertainty into decision-making.

In this work, we focus our attention on Two-stage Stochastic Programs (2SPs). A 2SP involves two
sets of decisions, namely the first-stage and second-stage (recourse) decisions, to be made before
and after the uncertainty is realized, respectively. Given the (joint) probability distribution of the
random parameters of the problem, the most common objective of 2SP is to optimize the expected
value of the decisions. For example, in a two-stage stochastic facility location problem, first-stage
decisions consist of which facilities should be built whereas second-stage decisions involve assigning
customers to open facilities to meet their stochastic demand, and the overall objective is to minimize
the sum of the cost of the first-stage decisions and the expected cost of the second-stage decisions.

2SPs are usually solved via Sample Average Approximation (SAA), which limits the future un-
certainty to a finite set of possible realizations (scenarios). The SAA approximation of a 2SP is a

∗These authors contributed equally.
†Corresponding author: khalil@mie.utoronto.ca.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: Overview of Neur2SP. The leftmost block is the input, namely, a 2SP. From the 2SP,
we follow the data generation procedure from Section 4.3 to obtain a dataset consisting of tuples
of (first-stage decision, scenario set, corresponding expected second-stage objective value). We
then train one of the learning models presented in Section 4.1 to predict the expected cost given
a first-stage decision and scenario set. The trained model is then embedded into a MIP using the
procedure in Section 4.2 to obtain an approximate MIP (the “MIPify” step). Lastly, the approximate
MIP is solved with an off-the-shelf MIP solver to obtain a first-stage 2SP solution.

reduction to an equivalent deterministic problem and can be solved by the so-called extensive form: a
monolithic formulation where scenario copies of the second-stage decision variables are created and
linked to the first-stage decisions. However, even for small 2SPs, solving the extensive form may
be intractable as it requires introducing a large number of (possibly integer) variables and (possibly
nonlinear) constraints. As such, specialized algorithms are required. If the second-stage problem
assumes the form of an LP, then algorithms such as Benders’ decomposition (also known as the
L-shaped method) can be leveraged to efficiently solve the problem to optimality. Unfortunately, in
many practical applications of 2SP, the second-stage problem assumes the form of a MIP, for which
specialized decomposition algorithms might not be efficient. The existence of continuous first-stage
variables linked to the second-stage problem significantly increases the difficulty of solving such
problems. This is exacerbated when the second-stage problem is nonlinear, for which no general and
structure-agnostic solution strategy exists.

In this work, we propose Neur2SP, a framework for constructing an easier-to-solve surrogate op-
timization problem for 2SP with the use of supervised deep learning. In a nutshell, a Rectified
Linear Unit (ReLU) neural network is trained to approximate the second-stage objective value for
a set of scenarios. Using MIP-representable activation functions such as the ReLU, the forward
computation of the trained network can be embedded into a MIP. The surrogate problem is then
confined to optimizing only first-stage decisions with respect to the first-stage objective function and
the neural network approximation of the second-stage objective 3. Assuming a small and accurate
neural network can be used, the surrogate problem is much smaller than the extensive form, and
thus faster to solve. The entire procedure is summarized in Figure 1. Our main contributions are as
follows:

1. Novelty: Neur2SP is the first generic machine learning approach for deriving a heuristic
solution for 2SP. We introduce a highly parallelizable data collection procedure and show
two separate neural models which can be used to formulate a deterministic mixed-integer
surrogate problem for 2SP;

2. Generality: Neur2SP can be used out-of-the-box for 2SPs with linear and nonlinear objec-
tives and constraints as well as mixed-integer variables in both the first and second stages,
all without using any problem structure, i.e., in a purely data-driven way;

3. Performance: Neur2SP is shown to produce high-quality solutions significantly faster than
the solely applicable general baseline method, the extensive form approach, for a variety of
benchmark problems, namely, stochastic facility location problem, an investment problem, a
server location problem, and a pooling problem from chemical engineering.

3For a fixed first-stage solution obtained via this surrogate, an optimal second-stage decision can be obtained
relatively quickly for each scenario if desired.

2



2 Preliminaries

We introduce the 2SP setting and describe the MIP formulation for a ReLU activation function which
is central to the surrogate model we propose in this work. Appendix A summarizes the notation used.

2.1 Two-stage Stochastic Programming

A 2SP can be generally expressed as minx{c⊺x + Eξ[Q(x, ξ)] : x ∈ X}, where c ∈ Rn is the
first-stage cost vector, x ∈ Rn represents the first-stage decisions, X is the first-stage feasible set,
and ξ is the vector of random parameters that follow a probability distribution P with support Ξ. The
value function Q : X × Ξ → R returns the cost of optimal second-stage (recourse) decisions under
realization ξ given the first-stage decisions of x. In many cases, as the Q(x, ξ) is obtained by solving
a mathematical program, evaluating the expected value function Eξ[Q(x, ξ)] is intractable.

To provide a more tractable formulation, the extensive form (EF) is used. Using a set of K sce-
narios, ξ1, . . . , ξK , sampled from the probability distribution P, EF(ξ1, . . . , ξK) ≡ minx{c⊺x +∑K

k=1 pkQ(x, ξk) : x ∈ X}, where pk is the probability of scenario ξk being realized. If
Q(x, ξ) = miny{F (y, ξ) : y ∈ Y(x, ξ)}, then EF(ξ1, . . . , ξK) can be expressed as

min
x,y

{
c⊺x+

K∑
k=1

pkF (yk, ξk) : x ∈ X ,yk ∈ Y(x, ξk)∀k = 1, . . . ,K

}
,

which can be solved through standard deterministic optimization techniques. However, the number
of variables and constraints of the EF grows linearly with the number of scenarios. Furthermore,
if Q(·, ·) is the optimal value of a MIP or an nonlinear program (NLP), the EF model becomes
significantly more challenging to solve as compared to the LP case, limiting its applicability even at
small scale.

2.2 Embedding Neural Networks into MIPs

Mathematically, an ℓ-layer fully-connected neural network can be expressed as: h1 = σ(W 0α+b0);
hm+1 = σ(Wmhm + bm),m = 1, . . . , ℓ− 1; β = W ℓhℓ + bℓ. Here, α ∈ Rm is the input, β ∈ R
is the prediction, hi ∈ Rdi is the i-th hidden layer, W i ∈ Rdi×di+1 is the matrix of weights from
layer i to i+ 1, bi ∈ Rdi is the bias at the i-th layer, and σ is a non-linear activation function, here
the activation function is given by ReLU(a) = max{0, a} for a ∈ R.

Central to Neur2SP is the embedding of a trained neural network into a MIP. Here, we present the
formulation proposed by [Fischetti and Jo, 2018]. For a given hidden layer m, the j-th hidden unit,
hm
j , can be written as

hm
j = ReLU

dm−1∑
i=1

wm−1
ij hm−1

i + bm−1
j

 , (1)

where wm
ij is the element at the j-th row and i-th column of Wm−1 and bm−1

j is the j-th index of
bm−1. To model ReLU in a MIP for the j-th unit in the m-th layer, we use the variables ĥm

j , ȟm
j and

ĥm−1
i for i = 1, . . . , dm−1. The ReLU activation is then modeled with the following constraints:

dm−1∑
i=1

wm−1
ij ĥm−1

i + bm−1
j = ĥm

j − ȟm
j , (2a)

zmj = 1 ⇒ ĥm
j ≤ 0, (2b)

zmj = 0 ⇒ ȟm
j ≤ 0, (2c)

ĥm
j , ȟm

j ≥ 0, (2d)

zmj ∈ {0, 1}, (2e)

where the logical constraints in Equation (2b) and Equation (2c) are translated into big-M constraints
by MIP solvers. To verify the correctness of this formulation, observe that constraints (2b) and (2c)
in conjunction with the fact the binary zmj ensures that at most one of ĥm

j and ȟm
j are non-zero.

3



Furthermore, since both ĥm
j and ȟm

j are non-negative, if
∑dm−1

i=1 wm−1
ij ĥm−1

i + bm−1
j > 0, then it

follows that ĥm
j > 0 and ȟm

j = 0. If negative, then ĥm
j = 0 and ȟm

j > 0. Thus, we have that if the
left-hand side of (2a) is positive, ĥm

j will be positive; if it is negative, then ĥm
j = 0; this is an exact

representation of the ReLU function.

3 Related Work

3.1 Machine Learning for Nested Optimization

Machine learning has recently been employed to solve nested optimization problems; by “nested",
we mean optimization problems whose objective or constraints involve another optimization. For
example, Nair et al. [2018], Shen et al. [2021], Jiang et al. [2021], Xiong and Hsieh [2020], Shao
et al. [2022] directly predict a binary or continuous solution vector. The major limitation with
predicting solutions directly is the inability to handle variable integrality and hard constraints.
In addition, only Nair et al. [2018] consider 2SP, whereas the others focus on bi-level problems
with a single inner optimization, rather than the expectation as in stochastic programming. For
stochastic programming, there has been a significant interest in the integration of learning to enhance
prevalent solution techniques. We specifically discuss three areas of related work: learning-enabled
optimization, learning-based algorithms for stochastic programming, and scenario reduction for
stochastic programming.

The line of work on learning-enabled optimization [Deng and Sen, 2022, Liu et al., 2022, Diao and
Sen, 2020] introduced “predictive stochastic programming" to leverage contextual information when
formulating SP models. This is in contrast to our approach, which leverages predictions to reduce
computing times in a non-contextual 2SP setting. That being said, Neur2SP admits extensions to the
contextual setting by including the context information during training.

In recent years, several studies have explored the use of integrating predictions within stochastic
programming algorithms for computational improvements. Donti et al. [2017] proposed an end-to-
end approach to directly optimize a task-loss for contextual stochastic programming problems by
differentiating through the argmin operator, specifically for strongly convex problems. Dai et al.
[2022] developed a model to solve multi-stage linear optimization problems by learning the piece-
wise value function of the nested problems. Larsen et al. [2022] leveraged predictions to improve an
exact decomposition-based algorithm for 2SP. Neur2SP differs from these approaches as it can be
applied to problems with both hard constraints and integer/non-linear second-stage problems.

Lastly, another related research direction for learning-based stochastic programming is scenario
reduction, which reduces the complexity of the stochastic programming problem by finding a smaller
set of “representative scenarios". Many of these approaches [Dupačová et al., 2003, Römisch, 2009,
Beraldi and Bruni, 2014, Prochazka and Wallace, 2020, Keutchayan et al., 2021] perform some form
of clustering to reduce the number of scenarios and then solve a smaller surrogate problem with these
scenarios. Recently, Wu et al. [2022] used a conditional variational autoencoder to learn scenario
embeddings and perform clustering on them for scenario reduction. To find representative scenarios,
they use semi-supervised learning with respect to the second-stage cost. However, these predictions
are not leveraged explicitly in the optimization as is done with Neur2SP. Bengio et al. [2020] predicts
a representative scenario for an input scenario set and use it to form a smaller surrogate problem.
They show that using the predicted representative scenario, a near-optimal first-stage decision can be
obtained by solving the surrogate. However, their method requires some domain expertise as it relies
on the problem structure to build the representative scenario for training.

3.2 Neural Network Embeddings

Neur2SP can be broadly classified as both a learning-based scenario reduction approach and a
learning-accelerated heuristic for stochastic programming. The reason for this is that Neur2SP reduces
the computational complexity introduced by the scenarios by computing a compact representation
that is then leveraged to formulate an approximation to the EF. We specifically leverage the recent
line of work by Cheng et al. [2017], Tjeng et al. [2017], Fischetti and Jo [2018], Serra et al. [2018],
which studies the problem of embedding a trained neural network with ReLU activation into a MIP.
The works of Anderson et al. [2020] and Grimstad and Andersson [2019] present MIP encoding

4



Figure 2: NN-E architecture diagram.

formulations with tighter LP relaxations by appropriately setting the big-M constraints, leading to
reduced solving time. The growing interest in embedding predictive models in MIPs has led to the
development of libraries such as JANOS [Bergman et al., 2022] and OMLT [Ceccon et al., 2022]. Say
et al. [2017], Grimstad and Andersson [2019], Murzakhanov et al. [2020], Katz et al. [2020], Kody
et al. [2022] propose the use of embedded neural networks to formulate surrogate MIPs for intractable
and non-linear constraints in optimization problems. To the best of our knowledge, Neur2SP is
the first approach that employs this technique in stochastic programming or more generally for the
simplification of nested optimization problems.

4 The Neur2SP Framework

In this section, we present two neural architectures, the corresponding surrogate problems that ap-
proximate a given 2SP, and a data collection strategy. Figure 1 summarizes the Neur2SP framework.

4.1 Neural Network Architectures

We propose two distinct neural architectures for predicting the second-stage costs: NN-E approximates
the expected value of the second-stage cost of a set of scenarios, whereas NN-P approximates the
per-scenario value of the second-stage cost for a single scenario.

NN-E (Figure 2) learns a mapping from
(
x, {ξk}Kk=1

)
→

∑K
k=1 pkQ(x, ξk). In words, the model

takes in a first-stage solution x and any finite set of scenarios sampled from Ξ, and outputs a prediction
of the expected second-stage objective value. We embed the scenario set {ξk}Kk=1 into a latent space
by passing each scenario, independently, through the same neural network Ψ1, then performing mean-
aggregation over the resulting K embeddings. The aggregated embedding is passed through another
network, Ψ2, to obtain the final embedding of the scenario set, ξλ. This embedding, representing
the scenario set à-la-DeepSets [Zaheer et al., 2017], is appended to the input first-stage decision
and passed through a ReLU feed-forward network ΦE to predict the expected second-stage value.
Hence, the final output is such that ΦE(x,Ψ2(⊕K

k=1Ψ
1(pk, ξk))) ≈

∑K
k=1 pkQ(x, ξk). Note that

the embedding networks, Ψ1 and Ψ2, can be arbitrarily complex as only the latent representation
is embedded into the approximate MIP. Also, although Ψ1 is trained using K scenarios, once the
networks are trained, they can be used with any (potentially much larger) finite number of scenarios.

NN-P learns a mapping ΦP from (x, ξ) → Q(x, ξ) for ξ sampled from Ξ. Once the mapping
ΦP is learned, we can approximate the expected second-stage objective value for any finite set of
scenarios as

∑K
k=1 pkQ(x, ξk) ≈

∑K
k=1 pkΦ

P (x, ξk). Φ
P is a feed-forward neural network with

input given by the concatenation of x and ξ.

4.2 Neural Network Embedding for 2SP

We now describe the surrogate MIP for both the NN-E and NN-P learning models from the preceding
section. Let Λ represent the number of predictions made by the neural network. For the NN-E case,

5



Λ = 1 as we only predict the expected second-stage value for a set of scenarios. In the NN-P case,
Λ = K as we predict the second-stage value for each scenario. In this section, we use [M ] to denote
{1, . . . ,M} for M ∈ Z+.

Let ĥm,λ
j represent the ReLU output for the j-th hidden unit in the m-th hidden layer for output λ, for

all m ∈ [ℓ− 1], j ∈ [dm], and λ ∈ [Λ]. Suppose ȟm,λ
j is a slack variable used to model the ReLU

output for the j-th hidden unit in the m-th hidden layer for scenario k, for all m ∈ [ℓ− 1], j ∈ [dm],
and λ ∈ [Λ]. Let zm,λ

j be a binary variable used to ensure that at most one of ĥm,k
j and ȟm,k

j are
non-zero. This variable is defined for all m ∈ [ℓ− 1], j ∈ [dm], and λ ∈ [Λ]. Suppose βλ is the λ-th
prediction by the neural network, for all λ ∈ [Λ].

With the above variables we can define an approximation to EF as given in Equation (3). The objective
function (3a) minimizes the sum of the cost of the first-stage decisions and the approximate cost of
the second-stage value. Constraints (3b)-(3d) propagate a first-stage solution x to the output of the
neural network for each scenario. Constraints (3e)-(3h) ensure the prediction of the neural network is
respected. Constraint (3i) ensures the feasibility of the first-stage solution.

In this approximation, we introduce a number of additional variables and big-M constraints. Specif-
ically, for a neural network with H hidden units, we introduce Λ · H additional binary variables
for zm,λ

j . In addition, we introduce 2 · Λ ·H continuous variables for ĥm,λ
j and ȟm,λ

j . Lastly, we
require an additional Λ variables for the output of the network. Although the number of variables we
introduce in this approximation is quite large, we hypothesize that the resulting MIP will be easier
to solve than the extensive form, in particular, when the second-stage problem is nonlinear. In the
remainder of the paper, we refer to the surrogate MIP given in (3) as MIP-NN.

min c⊺x+

Λ∑
λ=1

pλβλ (3a)

s.t.
d0∑
i=1

w0
ij [x, ξλ]i + b0j = ĥ1,λ

j − ȟ1,λ
j ∀ j ∈ [d1], λ ∈ [Λ], (3b)

dm−1∑
i=1

wm−1
ij ĥm−1,λ

i + bm−1
j = ĥm,λ

j − ȟm,λ
j ∀ m ∈ [ℓ− 1], j ∈ [dm], λ ∈ [Λ], (3c)

dℓ∑
i=1

wℓ
ij ĥ

ℓ,λ
i + bℓ ≤ βλ ∀λ ∈ [Λ], (3d)

zm,λ
j = 1 ⇒ ĥm,λ

j = 0 ∀ m ∈ [ℓ− 1], j ∈ [dm], λ ∈ [Λ], (3e)

zm,λ
j = 0 ⇒ ȟm,λ

j = 0 ∀ m ∈ [ℓ− 1], j ∈ [dm], λ ∈ [Λ], (3f)

zm,λ
j ∈ {0, 1} ∀ m ∈ [ℓ− 1], j ∈ [dm], λ ∈ [Λ], (3g)

ĥm,λ
j , ȟm,λ

j ≥ 0 ∀ m ∈ [ℓ− 1], j ∈ [dm], λ ∈ [Λ], (3h)

x ∈ X (3i)

4.3 Data Generation

A diverse dataset of input-output pairs is needed to train Neur2SP’s supervised second-stage value
approximation. To generate such a dataset for a given 2SP problem, we adopt an iterative procedure.
We begin by generating a random feasible first-stage decision. For the NN-E case, we sample a
set of scenarios with random cardinality K ′ from the uncertainty distribution. Here, K ′ should be
chosen to balance the trade-off between the time spent to generate a sample of second-stage values
for a given first-stage solution and the time to estimate the expected second-stage value for a set of
first-stage decisions in a given time budget. Specifically, if K ′ is large, then on average more time
will be spent in determining the expected value using a large number of scenarios, while for a small
K ′, the first-stage decision space will be explored more since expected value estimates would be

6



Problem First stage Second Stage Objective Constraints Objective Sense

CFLP Binary Binary Linear Linear Minimization
INVP Continuous Binary Linear Linear Minimization
SSLP Binary Binary Linear Linear Minimization
PP Binary Continuous Bilinear Bilinear Maximization

Table 1: Problem class characteristics.

obtained faster. For a given input, i.e., a first-stage decision and set of scenarios, we then compute a
label by calculating the expected second-stage value

∑K′

k′=1 pk′Qk′(·, ξk′).

For the NN-P case, at each iteration of the data generation procedure, we sample a single scenario
from the uncertainty distribution. For a given input of a first-stage decision and scenario we generate
a label by calculating its second-stage value Q(·, ·). Last, the input-output pair is added to the dataset.

This data generation procedure is fully parallelizable over the second-stage problems to be solved.

4.4 NN-E vs. NN-P Trade-offs

The NN-E and NN-P architectures exhibit trade-offs in terms of the learning task and the resulting
surrogate optimization problem.

Training. In data collection, both models require solving second-stage problems with a fixed first-
stage solution to obtain the label. A sample in for NN-P requires solving only a single optimization
problem, whereas a sample for NN-E requires solving at most K ′ second-stage problems. As this
process is offline and highly parallelizable, this trade-off is easy to mitigate. As for training, NN-E
operates on a subset of scenarios which makes for an exponentially larger input space. Despite the
large input space, our experiments show that the NN-E model in the training converges quite well
and in many cases the embedded model outperforms the NN-P model.

Surrogate Optimization Problem. As the ultimate goal is embedding the trained model into a
MIP, the trade-off in this regard becomes quite important. Specifically, for K scenarios, the NN-P
model will have K times more binary and continuous variables than the NN-E model. For problems
with a large number of scenarios, this makes the NN-E model much more appealing, smaller and
likely faster to solve. Furthermore, it allows for much larger networks given that only a single copy
of the network is embedded.

5 Experimental Setup

All experiments were run on a computing cluster with an Intel Xeon CPU E5-2683 and Nvidia Tesla
P100 GPU with 64GB of RAM (for training). Gurobi 9.1.2 [Gurobi Optimization, LLC, 2021] was
used as the MIP solver. Scikit-learn 1.0.1 [Pedregosa et al., 2011] and Pytorch 1.10.0 [Paszke et al.,
2019] were used for supervised learning. The code to reproduce all of the experiments is available at
https://github.com/khalil-research/Neur2SP.

2SP Problems: We evaluate our approach on four 2SP problems that are commonly considered in the
literature: a two-stage stochastic variant of the Capacitated Facility Location Problem (CFLP) [Cor-
nuéjols et al., 1991], an Investment Problem (INVP) [Schultz et al., 1998], the Stochastic Server
Location Problem (SSLP) [Ntaimo and Sen, 2005], and the Pooling Problem (PP) [Audet et al., 2004,
Gupte et al., 2017, Gounaris et al., 2009, Haverly, 1978]. Table 1 summarizes the types of first and
second-stage variables for these problems and Appendix B includes their detailed descriptions.

Baselines: We consider two baselines. The first is EF, which is perhaps the only generic approach
that can be applied for both integer and nonlinear second-stage problems. We limit the solving time
of EF to 3 hours. Additionally, we compare against an embedded trained linear regressor rather
than a neural network, but defer these results to Appendix D as the solution quality is quite poor in
comparison to the neural network models.

Model & Dataset Selection : As is common in supervised learning, model selection and the size of
the training set can have a significant impact on model performance. We present detailed experiments

7



Problem Data Generation Time Training Time Total Time

NN-E NN-P NN-E NN-P NN-E NN-P

CFLP_10_10 1,823.07 13.59 667.28 127.12 2,490.35 140.71
CFLP_25_25 4,148.83 112.83 2,205.23 840.07 6,354.06 952.90
CFLP_50_50 7,697.91 135.57 463.71 128.11 8,161.62 263.68

SSLP_10_50 942.10 22.95 708.86 116.17 1,650.96 139.13
SSLP_15_45 929.27 16.35 1,377.21 229.42 2,306.48 245.77
SSLP_5_25 860.74 13.18 734.02 147.44 1,594.75 160.62

INVP_B_E 8,951.27 4.17 344.87 1,000.14 9,296.13 1,004.31
INVP_B_H 9,207.90 4.22 1,214.54 607.49 10,422.43 611.71
INVP_I_E 8,759.83 4.34 2,115.25 680.93 10,875.08 685.27
INVP_I_H 8,944.65 3.32 393.82 174.26 9,338.47 177.58

PP 1,202.11 14.86 576.08 367.25 1,778.19 382.11

Table 2: Computing times (in seconds) for data generation and training. Data was generated in
parallel with 43 processes.

for model selection and dataset sizing in Appendix F. As a brief summary, we use random search over
100 hyperparameter configurations for model selection, and observe that accuracy on a validation set
is rather insensitive to hyperparameter choices. For the size of the dataset, we observe diminishing
returns when increasing the size beyond 5000 samples.

Data Generation & Supervised training times : As the data generation and training can be done
offline and are both parallelizable, we report the total times in Table 2 and defer more specific timing
details to Appendix C. We note that for data generation, a single sample can be obtained in less than
two seconds for all instances, and in many cases much faster. The training times are within the range
of 120 to 2100 seconds. For the NN-E data generation, we choose K ′ = 100, a number of scenarios
which was quick to label while exposing the model to a reasonably large number of scenarios in some
cases. The combined time for data generation and model training is typically less than 3 hours (i.e.,
the time given to EF) and depending on the problem, may be much less.

6 Results & Discussion

In this section, we report the results of Neur2SP across the four problem settings. As is standard in
2SP, we evaluate a single “base” instance across varying scenario sets and sizes. For example, in
CFLP, and for a “base” instance with 10 facilities and 10 customers, one can generate an instance by
sampling any number of scenarios. An important advantage of our approach is that we can apply a
single trained model to an instance with an arbitrary number of scenarios. For example, the same
trained model is used for CFLP_10_10_{100,500,1000}.

Tables 3 through 6 report the gaps between approaches, solving times, and the time which EF takes to
achieve the same solution quality as NN-E and NN-P. In addition, we include supplementary results
with the objective values in Appendix D and non-aggregated results for the SSLP SIPLib instances in
Appendix E. For SSLP and CFLP, each row represents mean statistics across 11 and 10 instances
generated by sampling different scenario sets of a given size, respectively. However, for INVP and
PP, each row represents the statistics across 1 instance. Originally, both these problems have infinite
support as the uncertainty distributions are assumed to be continuous. To manage the complexity,
these distributions are typically transformed to have finite support by uniformly sampling equidistant
points over the continuous domain. We adopt this same procedure from the literature, leading to a
static set of scenarios for a given scenario set size.

6.1 Discussion

Tables 3–6 show that NN-E is significantly faster than other approaches, with a minimum and
maximum solving time of 0.11s and 1.66s respectively, across all problems. This highlights the
scalability of the NN-E in terms of problem size and type, which is expected as the size of the
resulting MIP is independent of the number of scenarios. Also, the objective difference is less than
5% in most cases, with a minimum of -102% and a maximum of 13.78%. These differences are
inversely proportional to the scenario set size, which indicates that the NN-E is able to generalize on
larger scenario sets, even though it was trained with a maximum of 100 scenarios per data point. EF

8



Problem Obj. Difference (%) Solving Time EF time to

EF-NN-E EF-NN-P NN-E NN-P EF NN-E NN-P

CFLP_10_10_100 2.58 1.65 0.38 8.28 4,410.60 8.87 (0) 12.69 (0)
CFLP_10_10_500 2.41 0.94 0.60 206.30 10,800.17 415.89 (0) 2,034.73 (0)
CFLP_10_10_1000 0.94 -0.67 0.64 856.77 10,800.87 580.50 (0) 7,551.00 (8)
CFLP_25_25_100 -0.75 -0.75 0.44 4.86 10,800.06 - (10) - (10)
CFLP_25_25_500 -3.62 -3.62 0.54 26.41 10,800.14 - (10) - (10)
CFLP_25_25_1000 -1.32 -1.32 0.58 54.45 10,800.36 - (10) - (10)
CFLP_50_50_100 -0.43 -1.29 1.66 21.10 10,800.05 5,637.98 (6) 2,334.04 (9)
CFLP_50_50_500 -9.58 -10.71 1.25 173.63 10,806.15 - (10) - (10)
CFLP_50_50_1000 -16.62 -17.50 1.44 572.12 10,805.82 - (10) - (10)

Table 3: CFLP results: each row represents an average over ten 2SP instances with varying scenario
sets. “Obj. Difference” for method EF-{NN-E, NN-P} is the percent relative objective value of
{NN-E, NN-P} to EF; a negative (positive) value of −g% (g%) indicates that {NN-E, NN-P} finds a
solution that is g% better (worse) than EF’s for the minimization problem. “Solving Time” is the time
in which {NN-E, NN-P, EF} are solved to optimality. A time of ∼10,800 implies that the solving
limit was reached. “EF time to” is the time in which EF achieves a solution of the same quality as
{NN-E, NN-P}. To the right in parentheses is the number of instances for which EF failed to find a
solution that is as good as {NN-E, NN-P}. If EF did not find any feasible solution, then the entry is
left as “-”. All times are in seconds.

Problem Obj. Difference (%) Solving Time EF time to

EF-NN-E EF-NN-P NN-E NN-P EF NN-E NN-P

SSLP_10_50_50 0.00 0.00 0.11 5.83 10,800.48 228.06 (0) 228.06 (0)
SSLP_10_50_100 -0.00 -0.00 0.11 13.09 10,800.21 145.35 (0) 145.35 (0)
SSLP_10_50_500 -0.00 -0.00 0.14 129.44 10,802.82 7,359.85 (4) 7,359.85 (4)
SSLP_10_50_1000 -55.21 -55.21 0.13 466.38 10,800.47 - (11) - (11)
SSLP_10_50_2000 -102.69 -102.69 0.14 2,182.31 10,800.17 - (11) - (11)
SSLP_15_45_5 3.10 18.71 0.32 0.34 2.54 0.75 (0) 0.12 (0)
SSLP_15_45_10 2.98 18.47 0.31 0.58 1,976.62 2.72 (0) 0.20 (0)
SSLP_15_45_15 2.53 18.90 0.33 0.86 2,052.76 1.84 (0) 0.34 (0)
SSLP_5_25_50 0.12 1.78 0.20 1.14 2.24 1.94 (0) 1.97 (0)
SSLP_5_25_100 0.02 1.60 0.18 1.83 8.43 8.04 (0) 7.75 (1)

Table 4: SSLP results: each row represents an average over eleven 2SP instances with varying
scenario sets, one of which being the instance from Ahmed et al. [2015]. Columns are as in Table 3.

takes significantly longer to reach a solution quality similar to NN-E, often on the order of minutes to
3 hours. For many larger CFLP and SSLP instances, EF finds worse solutions than NN-E even after 3
hours. Not only is NN-E as good or better in solution quality, but also orders of magnitude faster.

For the NN-P, we can observe that the solving time is directly proportional to the size of the problem.
However, for the largest INVP instances, it times out without even generating a feasible solution
(Table 5). This is expected as we need to embed the trained neural network once per scenario, limiting
scalability. In terms of objective differences, we can observe that the difference improves with the
increase in instance size for CFLP and SSLP, whereas no clear trend is visible for For INVP. However,
the objective differences do not exceed 5% in most cases. For PP, the objective difference is around
40%, indicating that the NN-P is not able to generalize, whereas NN-E performs very well. One
important advantage for NN-P over NN-E is the fact that the time required for data generation and
training is notably less. In settings with limited parallel computing resources or time NN-P may be a
more appropriate choice.

7 Conclusion

Two-stage stochastic programming is a powerful modeling framework for decision-making under
uncertainty. These problems are hard to solve in practice, especially when the second-stage problem
is a MIP or NLP. Finding good feasible solutions quickly thus becomes extremely important.

To that end, we proposed Neur2SP, a learning-based, general, and structure-agnostic approach which
approximates the second-stage value function to form an easy-to-solve surrogate problem. The four
problem classes we have tackled are (1) widely used in the literature, (2) vary in the types of first and
second-stage problems, and (3) span a wide range in terms of number of variables, constraints, and
scenarios. Through our experiments, we show that Neur2SP achieves high-quality solutions quickly,
especially for larger instances. In 1–2 seconds, a model trained in the Neur2SP framework can find

9



Problem Obj. Difference (%) Solving Time EF time to

EF-NN-E EF-NN-P NN-E NN-P EF NN-E NN-P

INVP_B_E_4 9.54 3.01 0.36 0.34 0.02 0.02 0.02
INVP_B_E_9 7.54 2.00 0.31 0.53 0.04 0.03 0.03
INVP_B_E_36 2.72 4.96 0.30 9.53 0.08 0.02 0.02
INVP_B_E_121 1.37 2.42 0.33 86.42 1.69 0.06 0.02
INVP_B_E_441 2.80 2.43 0.37 4,342.19 117.59 0.78 1.15
INVP_B_E_1681 1.36 - 0.34 - 10,800.01 17.41 0.00
INVP_B_E_10000 -1.48 - 0.36 - 10,803.98 - 0.00
INVP_B_H_4 8.81 9.50 0.46 0.25 0.01 0.01 0.01
INVP_B_H_9 5.04 5.04 0.30 0.57 0.03 0.02 0.02
INVP_B_H_36 1.61 1.61 0.26 6.79 1.29 0.01 0.01
INVP_B_H_121 1.77 1.77 0.33 45.89 34.69 0.01 0.01
INVP_B_H_441 2.13 5.50 0.28 1,870.42 217.46 2.21 0.21
INVP_B_H_1681 -0.71 - 0.36 - 10,800.01 - 0.00
INVP_B_H_10000 -2.72 - 0.36 - 10,800.03 - 0.00
INVP_I_E_4 12.83 0.00 0.38 0.23 0.01 0.01 0.01
INVP_I_E_9 7.40 2.64 0.27 0.35 0.06 0.01 0.02
INVP_I_E_36 5.48 5.17 0.27 1.39 0.04 0.01 0.01
INVP_I_E_121 5.30 4.49 0.29 49.51 1.65 0.02 0.03
INVP_I_E_441 3.00 0.68 0.26 2,049.93 46.92 0.08 0.10
INVP_I_E_1681 1.31 3.08 0.26 10,834.53 10,800.00 0.41 0.41
INVP_I_E_10000 -1.35 - 0.30 - 10,800.10 - 0.00
INVP_I_H_4 13.78 12.16 0.35 0.21 0.02 0.01 0.01
INVP_I_H_9 9.12 0.81 0.37 0.31 0.03 0.01 0.02
INVP_I_H_36 4.97 3.44 0.36 1.99 1.27 0.03 0.03
INVP_I_H_121 4.01 4.99 0.32 23.10 7.43 0.07 0.07
INVP_I_H_441 3.15 3.15 0.32 1,231.48 10,800.00 0.33 0.33
INVP_I_H_1681 -0.34 0.11 0.33 10,816.89 10,800.03 - 252.70
INVP_I_H_10000 -1.60 - 0.38 - 10,802.10 - 0.00

Table 5: INVP results: each row represents a single instances. Columns are as in Table 3.

Problem Obj. Difference (%) Solving Time EF time to

EF-NN-E EF-NN-P NN-E NN-P EF NN-E NN-P

PP_125 3.25 36.64 1.51 144.08 10,800.00 10,717.05 2.48
PP_216 9.06 40.14 1.47 254.94 364.98 59.79 3.59
PP_343 0.67 40.85 1.46 570.64 10,800.00 1,450.54 9.12
PP_512 8.69 39.77 1.60 1,200.37 10,800.01 167.77 13.80
PP_729 1.38 37.98 1.62 3,440.19 10,800.01 5,867.67 36.34
PP_1000 5.92 41.32 1.49 10,853.59 10,800.00 1,596.22 210.48

Table 6: PP results: each row represents a single instances. Columns are as in Table 3.

solutions of the same or better quality than the most generic method in the literature, EF, with the
latter taking minutes to hours.

In terms of future work, this methodology can be extended in many directions. Further innovations
in the NN-E model architecture may improve our already positive results. Another direction is the
extension of the general idea of embedding trained models into other complex optimization problems,
such as bilevel optimization or multi-stage stochastic programming.

Another direction for future work is a more comprehensive comparison of Neur2SP with algorithms
that are specialized to a given problem class. However, we note that on SSLP instances, the computing
times of progressive hedging [Rockafellar and Wets, 1991], a widely used heuristic for 2SP, is on the
order of hours [Torres et al., 2022]. These experiments are not directly comparable as they were run
on different hardware. However, this would not meaningfully impact the several order of magnitude
reduction in solving time achieved by our approach.

Lastly, in this work, we propose NN-E and NN-P, however, a natural middle ground between these
models is a clustering approach which embeds a trained model for a subset of scenarios, rather than a
single or the entire scenario set at evaluation time.

Acknowledgments: Bodur would like to acknowledge support from an NSERC Discovery Grant.
Dumouchelle, Patel, and Khalil acknowledge support from the Scale AI Research Chair Program and
an NSERC Discovery Grant.

10



References
Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization. Con-

straints, 23(3):296–309, 2018.

Vinod Nair, Dj Dvijotham, Iain Dunning, and Oriol Vinyals. Learning fast optimizers for contextual
stochastic integer programs. In UAI, pages 591–600, 2018.

Jiayi Shen, Xiaohan Chen, Howard Heaton, Tianlong Chen, Jialin Liu, Wotao Yin, and Zhangyang
Wang. Learning a minimax optimizer: A pilot study. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=nkIDwI6oO4_.

Haoming Jiang, Zhehui Chen, Yuyang Shi, Bo Dai, and Tuo Zhao. Learning to defend by learning to
attack. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 577–585. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.
press/v130/jiang21a.html.

Yuanhao Xiong and Cho-Jui Hsieh. Improved adversarial training via learned optimizer. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV
2020, pages 85–100, Cham, 2020. Springer International Publishing.

Zhihui Shao, Jianyi Yang, Cong Shen, and Shaolei Ren. Learning for robust combinatorial opti-
mization: Algorithm and application. In IEEE INFOCOM 2022 - IEEE Conference on Computer
Communications, pages 930–939, 2022. doi: 10.1109/INFOCOM48880.2022.9796715.

Yunxiao Deng and Suvrajeet Sen. Predictive stochastic programming. Computational Management
Science, 19(1):65–98, 2022.

Junyi Liu, Guangyu Li, and Suvrajeet Sen. Coupled learning enabled stochastic programming with
endogenous uncertainty. Mathematics of Operations Research, 47(2):1681–1705, 2022.

Shuotao Diao and Suvrajeet Sen. Distribution-free algorithms for learning enabled optimization with
non-parametric estimation. Management Science, 66(3):1025–1044, 2020.

Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochastic
optimization. Advances in Neural Information Processing Systems, 30, 2017.

Hanjun Dai, Yuan Xue, Zia Syed, Dale Schuurmans, and Bo Dai. Neural stochastic dual dynamic
programming. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=aisKPsMM3fg.

Eric Larsen, Emma Frejinger, Bernard Gendron, and Andrea Lodi. Fast continuous and integer
L-shaped heuristics through supervised learning. arXiv preprint arXiv:2205.00897, 2022.

Jitka Dupačová, Nicole Gröwe-Kuska, and Werner Römisch. Scenario reduction in stochastic
programming. Mathematical Programming, 95(3):493–511, 2003.

Werner Römisch. Scenario reduction techniques in stochastic programming. In International
Symposium on Stochastic Algorithms, pages 1–14. Springer, 2009.

Patrizia Beraldi and Maria Elena Bruni. A clustering approach for scenario tree reduction: an
application to a stochastic programming portfolio optimization problem. Top, 22(3):934–949,
2014.

Vit Prochazka and Stein W Wallace. Scenario tree construction driven by heuristic solutions of the
optimization problem. Computational Management Science, 17(2):277–307, 2020.

Julien Keutchayan, Janosch Ortmann, and Walter Rei. Problem-driven scenario clustering in stochastic
optimization. arXiv preprint arXiv:2106.11717, 2021.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning scenario representation for solving
two-stage stochastic integer programs. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=06Wy2BtxXrz.

11



Yoshua Bengio, Emma Frejinger, Andrea Lodi, Rahul Patel, and Sriram Sankaranarayanan. A
learning-based algorithm to quickly compute good primal solutions for stochastic integer programs.
In International Conference on Integration of Constraint Programming, Artificial Intelligence, and
Operations Research, pages 99–111. Springer, 2020.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial neural
networks. In International Symposium on Automated Technology for Verification and Analysis,
pages 251–268. Springer, 2017.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. arXiv preprint arXiv:1711.07356, 2017.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In International Conference on Machine Learning, pages
4558–4566. PMLR, 2018.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong
mixed-integer programming formulations for trained neural networks. Mathematical Programming,
pages 1–37, 2020.

Bjarne Grimstad and Henrik Andersson. ReLU networks as surrogate models in mixed-integer linear
programs. Computers & Chemical Engineering, 131:106580, 2019.

David Bergman, Teng Huang, Philip Brooks, Andrea Lodi, and Arvind U Raghunathan. JANOS: an
integrated predictive and prescriptive modeling framework. INFORMS Journal on Computing, 34
(2):807–816, 2022.

Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D Laird, and
Ruth Misener. OMLT: Optimization & machine learning toolkit. arXiv preprint arXiv:2202.02414,
2022.

Buser Say, Ga Wu, Yu Qing Zhou, and Scott Sanner. Nonlinear hybrid planning with deep net learned
transition models and mixed-integer linear programming. In IJCAI, pages 750–756, 2017.

Ilgiz Murzakhanov, Andreas Venzke, George S Misyris, and Spyros Chatzivasileiadis. Neu-
ral networks for encoding dynamic security-constrained optimal power flow. arXiv preprint
arXiv:2003.07939, 2020.

Justin Katz, Iosif Pappas, Styliani Avraamidou, and Efstratios N. Pistikopoulos. The integration
of explicit MPC and ReLU based neural networks. IFAC-PapersOnLine, 53(2):11350–11355,
2020. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2020.12.544. URL https://
www.sciencedirect.com/science/article/pii/S2405896320308429. 21st IFAC World
Congress.

Alyssa Kody, Samuel Chevalier, Spyros Chatzivasileiadis, and Daniel Molzahn. Modeling the AC
power flow equations with optimally compact neural networks: Application to unit commitment.
Electric Power Systems Research, 213:108282, 2022. ISSN 0378-7796. doi: https://doi.org/10.
1016/j.epsr.2022.108282. URL https://www.sciencedirect.com/science/article/pii/
S0378779622004771.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov,
and Alexander J. Smola. Deep sets. In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 3391–3401, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
f22e4747da1aa27e363d86d40ff442fe-Abstract.html.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. https://www.gurobi.com.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

12



Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf.

Gérard Cornuéjols, Ranjani Sridharan, and Jean-Michel Thizy. A comparison of heuristics and
relaxations for the capacitated plant location problem. European Journal of Operational Research,
50(3):280–297, 1991.

Rüdiger Schultz, Leen Stougie, and Maarten H Van Der Vlerk. Solving stochastic programs with
integer recourse by enumeration: A framework using Gröbner basis. Mathematical Programming,
83(1):229–252, 1998.

Lewis Ntaimo and Suvrajeet Sen. The million-variable “march” for stochastic combinatorial opti-
mization. Journal of Global Optimization, 32(3):385–400, 2005.

Charles Audet, Jack Brimberg, Pierre Hansen, Sébastien Le Digabel, and Nenad Mladenović. Pooling
problem: Alternate formulations and solution methods. Management Science, 50(6):761–776,
2004.

Akshay Gupte, Shabbir Ahmed, Santanu S Dey, and Myun Seok Cheon. Relaxations and discretiza-
tions for the pooling problem. Journal of Global Optimization, 67(3):631–669, 2017.

Chrysanthos E Gounaris, Ruth Misener, and Christodoulos A Floudas. Computational comparison of
piecewise-linear relaxations for pooling problems. 48(12):5742–5766, 2009.

Co A Haverly. Studies of the behavior of recursion for the pooling problem. Acm sigmap bulletin,
(25):19–28, 1978.

Shabbir Ahmed, R Garcia, N Kong, L Ntaimo, G Parija, F Qiu, and S Sen. SIPLIB: A stochastic inte-
ger programming test problem library. https://www2.isye.gatech.edu/~sahmed/siplib/,
2015.

R Tyrrell Rockafellar and Roger J-B Wets. Scenarios and policy aggregation in optimization under
uncertainty. Mathematics of operations research, 16(1):119–147, 1991.

Juan J Torres, Can Li, Robert M Apap, and Ignacio E Grossmann. A review on the performance of
linear and mixed integer two-stage stochastic programming software. Algorithms, 15(4):103, 2022.

Niels van der Laan and Ward Romeijnders. A loose Benders decomposition algorithm for approxi-
mating two-stage mixed-integer recourse models. Mathematical Programming, 190(1):761–794,
2021.

Xiang Li, Emre Armagan, Asgeir Tomasgard, and Paul I Barton. Stochastic pooling problem for
natural gas production network design and operation under uncertainty. AIChE Journal, 57(8):
2120–2135, 2011.

13



Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] All code to
reproduce the experiments is available at https://anonymous.4open.science/r/
neural_stochastic_programming-437E.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] The both training and evaluation are done over varying
configurations and realizations of randomness.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] These are detailed in Section 5 and
the Appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] All software used in

the development has been cited
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


