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Abstract

In this work, we study data-driven decision-making and depart from the classical
identically and independently distributed (i.i.d.) assumption. We present a new
framework in which historical samples are generated from unknown and different
distributions, which we dub heterogeneous environments. These distributions are
assumed to lie in a heterogeneity ball with known radius and centered around the
(also) unknown future (out-of-sample) distribution on which the performance of a
decision will be evaluated. We quantify the asymptotic worst-case regret that is
achievable by central data-driven policies such as Sample Average Approximation,
but also by rate-optimal ones, as a function of the radius of the heterogeneity
ball. Our work shows that the type of achievable performance varies considerably
across different combinations of problem classes and notions of heterogeneity. We
demonstrate the versatility of our framework by comparing achievable guarantees
for the heterogeneous version of widely studied data-driven problems such as
pricing, ski-rental, and newsvendor. En route, we establish a new connection
between data-driven decision-making and distributionally robust optimization.

1 Introduction

In optimization under uncertainty, the desirability of a decision (e.g., inventory) depends on an
unknown future outcome (e.g., demand). Typically, past data is collected to be indicative of the future,
and hence inform our decision. However, ideal data-driven decision-making requires postulating
beliefs about the reliability of the past data, and importantly, whether the future may deviate from it.
In practice, past data may depend on contexts, some of which can be controlled for, and some of which
cannot (unobserved confounders). This may introduce data heterogeneity that is not "correctable."

In this paper, we consider a framework for modeling how the future may deviate from past data. At
a high level, it accomplishes three goals: i.) capture different forms of future deviation, including
no deviation, under the same umbrella; ii.) understand the performance of a central policy, which
makes the decision that optimizes the average objective value over past data, under different forms of
unexpected deviation; iii.) if the central policy performs poorly, then derive modifications that are
robust to different forms of anticipated deviation, and quantify the achievable performance.

This framework is general, capturing different problems, and our analysis leads to insightful problem-
specific conclusions. The only assumption is that the policy defined in ii.) above can be computed,
which requires perfect counterfactual evaluation of any decision on all data points, as opposed to
settings where past data are affected by previous actions [5, 16, 33, 41, 42, 43]. The policy described
in ii.) is widely studied across different fields, known as Sample Average Approximation (SAA)
[37, 36, 39], although we emphasize that we also derive new policies beyond SAA when it falters.

∗Authors ordered alphabetically.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



1.1 Framework description

Framework (Section 2.1). Our first contribution lies in studying a framework which models the future
outcome as being drawn from an unknown distribution, and past data as being drawn independently
from (also unknown) "nearby" distributions. In this way, past data is indicative of the future, and
we emphasize that the samples of data can be drawn from different nearby distributions. In accord,
we call this setting a heterogeneous environment. Using varying definitions of "nearby distribution"
(e.g. based on Kolmogorov/Wasserstein distances; see Section 1.3), we analyze different forms of
deviation possible between the past and future, and let a radius ϵ bound the allowed deviation. When
ϵ = 0, our framework captures the classical independent and identically distributed (i.i.d.) setting,
in which past data are drawn from the same distribution as the future outcome [37, 45, 4]. This
framework presents another possible parametrization to interpolate between the i.i.d. setting and the
adversarial one and shares conceptually similar goals to previous approaches considering algorithm
analysis beyond worst-case [51, 7, 53, 25, 10, 24].

Performance measure (Section 2.2). We consider the performance of different data-driven policies,
which map past data into a decision for a given problem; SAA defines a feasible data-driven policy
for any problem. Regret is measured as the difference in objective between the policy’s decision and
the optimal decision knowing the future distribution, taking an expectation over the draws of past
data (which affect the policy’s decision), any intrinsic randomness in the policy, and the outcome
realization (which affects the objective of both the policy’s decision and the optimal decision). We
then take a worst case regret over all possible distributions that could have been chosen for the future
outcome and the data points, to evaluate the performance of a fixed data-driven policy. We note that
this performance depends on the problem (see Section 1.3 for examples), the number of data points
n, the definition of "nearby distribution," and the radius ϵ.

1.2 General results

Our second contribution lies in developing a set of general results for this framework. A central
result we present in Section 3 is a general reduction we develop in Theorem 1 in which we establish
the following: asymptotically, as the number of samples goes to ∞, the worst-case regret of a
policy (in a broad subclass we call sample-size-agnostic) is upper-bounded by that of an alternative
problem with two major simplifications: i.) the worst-case is now taken over only a single distribution
for historical environments as opposed to a sequence of heterogeneous distributions; and ii.) the
decision-maker (DM) has access to the exact historical distribution. This upper bound can be seen
as a uniform distributionally robust optimization problem under a regret performance metric, and
offers a systematic way to derive upper bounds for policies of interest. This result is closely related
to equation (7) in [46] and we discuss in detail the connections to their result after stating Theorem 1.

We develop problem-independent results that hold whenever the objective function is Lipschitz as a
function of the future outcome that materializes (Section 4). In that case, we establish in Theorem 2
that SAA scales linearly in ϵ for both the Kolmogorov and Wasserstein forms of deviation. We also
show that for this class of problems, the Lipschitz constant characterizes the hardness of the instance.

1.3 Problem-specific, deviation-specific results

Our third contribution lies in deriving problem-specific conclusions in our general heterogeneous
environments. In particular, we consider three classical problems in the context of our framework—
newsvendor, pricing, and ski-rental—that have received significant attention in the literature across
Operations Research, Economics, and Computer Science in the known-prior, data-driven, distribu-
tionally robust, adversarial, and advice-augmented settings. Problem-specific results are obtained by
using: i.) our general reduction and results to upper-bound their asymptotic worst-case regret, and
ii.) a combination of algorithm design and the development of impossibility results (lower bounds)
on the worst-case regret. We analyze the regret for the SAA policy as well as alternative policies.

Problem descriptions. First, we consider the newsvendor problem (Section 4.1), in which a DM
must decide how much capacity or inventory to plan in the face of unknown demand. The objective
is to minimize the sum of underage cost, paid for each unit by which capacity falls short of realized
demand, and overage cost, paid for each unit of capacity in excess of demand that needs to sit idle.
This is a foundational problem in Operations Research, with early focus on the setting where the
demand distribution is known [see 47], and since then studied in various distributionally robust
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[54, 22, 49] settings but also in data-driven ones [40, 15, 6]. Newsvendor captures the fundamental
tradeoff in guessing an unknown value when there are asymmetric consequences for going under/over.

Second, we consider the single-item pricing problem (Section 5.1), in which a DM must find the best
price to offer to a customer with unknown willingness to pay (wtp). The objective is to maximize
revenue. This is a foundational problem in Economics, with early focus on the setting with known
prior [see 48, 52], and more recently in data-driven [21, 29, 2, 1, 17] and distributionally robust
[12, 23] settings. Pricing captures the fundamental tradeoff between margin and volume.

Finally, we consider the ski-rental problem (Section 5.2), in which a DM must decide each day
whether to buy skis or keep renting, without knowing the length of their trip. The objective is to
minimize total cost, where buying eliminates the rental cost going forward. Although typically
presented as an online problem that requires a decision to be made every day, any (randomized) buy-
or-rent policy can be described by a (randomized) duration for which to rent skis, before committing to
buying (if the trip has not ended by then). This is a foundational problem in Computer Science, critical
to the development of competitive analysis [see 11] which considers the adversarial setting where
nothing is known, and recently also important to the development of advice-augmented algorithms
which receive a prediction on the length of the ski trip [50, 19]. Ski rental captures the fundamental
tradeoff between proceeding with a suboptimal process vs. paying the cost of refactoring.

Definitions of "nearby distribution." Our framework generally models past data to be drawn from
distributions that lie within an ϵ-distance of the future distribution, for any notion of distance between
probability distributions. For our problems of interest, we focus on two specific distance metrics:
Kolmogorov and Wasserstein (see Section 2.1 for formal definitions). This dichotomy suffices
to demonstrate the importance of distance metric in determining performance in our problems of
interest, and moreover, represents contrasting inductive philosophies about how the future might
deviate from the past: Wasserstein allows every data point to be erroneous by ϵ, whereas Kolmogorov
allows an ϵ fraction of data points to be arbitrarily erroneous. We note that similar notions of
“nearby distributions” were considered in [51] in the online learning setting and in [7, Example 5]
for the expert selection problem. Our work differs from these two papers because we consider an
offline setting and our benchmark is stronger since we focus on the oracle knowing the ground-truth
out-of-sample distribution, as opposed to the “best action in hindsight” benchmark.

SAA vs. robustified policies. Finally, performance is demarcated by the policy used. We first
provide tight asymptotic performance bounds for the SAA policy, which we note is agnostic to the
heterogeneity that might arise. We then analyze the best-possible asymptotic performance bounds
that can be achieved by any policy when the notion of distance and the radius ϵ are known.

In Table 1, we present a high level summary of our results across problem classes. We assume that
the support of the unknown environment is in [0,M ] for some positive real number M which M can
be interpreted as parametrizing the “extent” of uncertainty one faces (e.g., maximal values of demand
in newsvendor) We track the dependence on both the heterogeneity radius ϵ, as well as M . These
results are for the asymptotic setting in which n → ∞.

Kolmogorov Wasserstein

Lipschitz Newsvendor (§4.1) SAA Θ(Mϵ) Θ(ϵ)
best policy Θ(Mϵ) Θ(ϵ)

Beyond Lipschitz

Pricing (§5.1) SAA Θ(Mϵ) Ω(M)

best policy Θ(Mϵ) Θ(
√
Mϵ)

Ski-rental (§5.2) SAA Θ(Mϵ) Θ(1)
best policy Θ̃(ϵ)∗ Θ(

√
ϵ)

Table 1: SAA and achievable performance for different problem classes and heterogeneity balls.
*(Here Θ̃ provides rate order up to logarathimic factors.)

For newsvendor problems, through a combination of the general result for Lipschitz-continuous
problems and lower bounds, we show that SAA actually achieves the optimal rate for asymptotic
worst-case regret both as a function of ϵ and M and that this rate is linear.

We then turn to problems whose objective is not Lipschitz. For the pricing problem, we establish
that while under Kolmogorov distance, SAA is near-optimal and the optimal performance is again
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of order Mϵ, the picture is starkly different under the Wasserstein distance. In this case, SAA has
arbitrarily poor performance. We then show that a robustification procedure that deflates SAA by an
appropriate factor can yield the best achievable asymptotic worst-case regret that shrinks to zero at
rate

√
Mϵ. To our understanding, analyzing these non-SAA policies (which are required for good

performance on pricing) deviates from standard analyses used in learning theory (see Remark 2).

A second prototypical problem that is not Lipschitz is the ski-rental problem. While SAA was
near-optimal for the Kolmogorov distance for pricing and newsvendor, we establish the surprising
fact that SAA, even under the Kolmogorov distance, has arbitrarily poor performance. Indeed, its
asymptotic worst-case regret scales as Θ(Mϵ), while the optimal policy achieves a performance of
Θ(ϵ). As a consequence, the performance of SAA can be arbitrarily worse than the optimal one as
the support grows to infinity. Meanwhile, for the Wasserstein distance, we show that the performance
of SAA is also suboptimal. Indeed, SAA incurs a regret of Θ(1); but by inflating SAA appropriately,
one can construct a policy that achieves order

√
ϵ performance, which is the best dependence on ϵ.

These examples demonstrate that SAA fails for both heterogeneity types for ski-rental, but also more
broadly the intricate interplay between problem class and type of heterogeneity.

Connection to offline data corruption models. Different notions of offline data corruptions and
robustness have been previously studied in statistics [30, 26], learning theory [55, 28, 35, 34, 55, 38,
18, 8, 20] and, more recently in revenue management [13, 12, 14, 23]. Most approaches consider
ϵ-contamination settings [30] in which the adversary can shift a small proportion of data arbitrarily
far from the true distribution. They consider either oblivious adversaries who fix a single corrupted
distribution from which samples are generated or adaptive one who observe samples before corrupting
them. [8] establishes that adaptive adversaries yield equivalent performance to oblivious ones in
many settings. Closest to us are [12, 23] who study optimal auctions. They assume the distribution
is common across all past observations; the former focuses on regret and the the latter on a ratio
metric when data is generated from MHR distributions close in Kolmogorov distance. The framework
we develop is anchored around a setting that allows for heterogeneous "nearby" distributions for
each past observation, and is general in that it allows us to unify a variety of problems/metrics and
highlight how these affect the levels of achievable performance.

Connection to online and batch learning in non-stationary environments. Our work also relate
broadly to papers studying learnability in changing environment. [27, 9] adopt a universal learning
approach and analyze algorithms which are able to achieve vanishing long-term average loss for
general data-generation processes. [44, 3, 46] derive generalization guarantees in a setting where the
training set distribution may differ from the test set distribution.

2 Problem formulation: data-driven decisions in heterogeneous environments

We consider a general stochastic optimization problem in which a DM wants to optimize an objective
in a stochastic environment. Formally, we denote by X the decision space and by Ξ the space of
environment realizations. The objective of the DM is represented by a function g : X × Ξ → R
which maps each pair of decision x ∈ X and environment realization ξ ∈ Ξ to an objective value.

The DM faces a subset of possible probability measures P ⊂ ∆(Ξ), where ∆(Ξ) denotes the space
of probability measures supported on Ξ. For every probability measure µ ∈ P , the goal of the DM is
to optimize the objective defined as

G (·, µ) :
{
X → R
x 7→ Eξ∼µ [g(x, ξ)] .

(1)

We extend the definition of G (·, µ) to allow for randomized decisions ρ ∈ ∆(X ), in which case we
define G (ρ, µ) = Ex∼ρ [G (x, µ)] to also take an expectation over the randomized decision.

Remark that depending on the nature of the problem, the objective could represent for example a
function to maximize (profit) or to minimize (cost). In turn, we formally define for every µ ∈ P , the
optimal objective opt(µ) as the objective value achieved by an optimal action, given by an oracle
operator ORACLE that is a mapping from ∆(Ξ) to X .
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2.1 Heterogeneous environments

In the absence of distributional knowledge on the underlying environment, a common approach
consists in assuming that historical samples are independent and identically drawn from a fixed
probability measure µ. We relax the assumption that the samples are identically distributed and
introduce a generalization of this framework that we refer to as ϵ-heterogeneity.

Let d : P × P → R be a metric on P . Given a target probability measure µ ∈ P and a level of
heterogeneity ϵ, we define the heterogeneity ball anchored around µ and with radius ϵ as

Uϵ(µ) := {ν ∈ P, s.t d (µ, ν) ≤ ϵ}.
The heterogeneity ball Uϵ(µ) includes all distributions that are within a distance of ϵ from µ. Next,
we formally define a data-driven decision-making problem in a heterogeneous environment.
Definition 1 (Data-driven decision-making problem in heterogeneous environment). A data-
driven decision-making problem in a heterogeneous environment is defined by the tuple:
(X ,Ξ,P, d, g, ORACLE), where X is the set of possible actions, Ξ is the environment space, P
is the space of measures nature can select from, d is a metric on the space of measures, g is an
objective function, and ORACLE is a mapping from environment measures to target actions.

Focal metrics. The definition above is general, and the framework can be applied to a variety of
metrics. In this work, we aim at developing an understanding of the effect of heterogeneity under
various metrics and problem classes. We focus on two prototypical and central distances: Kolmogorov
and Wasserstein. We formally define them in one dimension as follows.
Definition 2 (Kolmogorov and Wasserstein distances). Given an environment space Ξ ⊂ R and a
subset of probability measures P supported on Ξ, the Kolmogorov (resp. Wasserstein) distance dK
(resp. dW ) is defined for every µ1, µ2 ∈ P as

dK(µ1, µ2) = sup
ξ∈Ξ

|F1(ξ)− F2(ξ)| and dW (µ1, µ2) =

∫
ξ∈Ξ

|F1(ξ)− F2(ξ)| dξ,

where F1 (resp. F2) is the cumulative distribution associated with µ1 (resp. µ2).

Note that when Ξ is a compact interval of R, both distances are related as for every µ1, µ2 ∈ P,

dW (µ1, µ2) ≤ diam Ξ · dK (µ1, µ2) . (2)

2.2 Data-driven policies and performance

Data-driven policies. In most settings, the probability measure µ is unknown to the DM and the
optimal objective opt(µ) is not achievable. In turn, the DM observes a sequence of historical samples
ξ1, ξ2, . . . , ξn representing the previous environment realizations. A data-driven policy is then a
mapping from the past samples to a (randomized) decision. Define the empirical measure µ̂ξn as

µ̂ξn(ξ) :=
1

n

n∑
i=1

1 {ξ = ξi} , for every ξ ∈ Ξ.

In a setting in which the order of the samples does not matter (as the one we will consider), to
represent a policy taking as input ξn := (ξ1, . . . , ξn), one only needs to consider mappings that take
as an input the number of samples and the empirical measure. We define a data-driven policy π as a
mapping from N∗ × P to ∆(X ), the space of measures on the action space X , that associates (n, µ̂)
to a distribution of actions π(n, µ̂). We let Π denote the set of all such mappings. We assume that
such a mapping can be made with knowledge of the metric d and radius ϵ. Moreover, we say that π is
sample-size-agnostic if its decision does not depend on n, in which case we write π(µ̂) for brevity.

A widely-studied policy that achieves excellent performance across a vast range of data-driven
decision-making problems is Sample Average Approximation (SAA). Given an empirical distribution
µ̂, SAA (denoted by πSAA) selects the target action ORACLE (µ̂), the best action associated with µ̂.

Performance through worst-case regret. Given an out-of-sample distribution µ ∈ P the best
achievable objective is opt(µ). For a sequence of historical distributions ν1, . . . , νn in Uϵ(µ), the
expected objective of a policy π is

Eξi∼νi
[G (π(n, µ̂ξn), µ)] .
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In turn, we define the expected (absolute) regret of a policy π ∈ Π against an out-of-sample
distribution µ ∈ P and a sequence of n historical distributions ν1, . . . , νn ∈ Uϵ(µ) as

Rn (π, µ, ν1, . . . , νn) := |Eξi∼νi
[G (π(n, µ̂ξn), µ)]− opt(µ)|.

We note that we use the absolute value in this definition, as our framework applies to minimization
and maximization problem. Once the type of problem is specified (i.e., the operator associated with
ORACLE), this definition of regret coincides with the usual regret for minimization or maximization
problems, as we will see in Sections 4 and 5, when describing specific applications.

In this work, we will assess the performance of a policy based on its worst-case expected regret. Given
an instance I = (X ,Ξ,P, d, g, ORACLE), we define the worst-case expected regret of a data-driven
policy π ∈ Π for a degree of heterogeneity ϵ ≥ 0 as

Rπ
I,n(ϵ) := sup

µ∈P
sup

ν1,...,νn∈Uϵ(µ)

Rn (π, µ, ν1, . . . , νn) . (3)

We finally define the worst-case asymptotic regret of a data-driven policy π ∈ Π in a ϵ-heterogeneous
environment as the number of samples n grows large as

Rπ
I,∞(ϵ) := lim sup

n→∞
Rπ

I,n(ϵ). (4)

We sometimes write Rπ
K,∞(ϵ) or Rπ

W,∞(ϵ) instead of Rπ
I,∞(ϵ) when the problem class is specified

to highlight the dependence on the Kolmogorov or Wasserstein metrics.

3 Reduction to distributionally robust optimization in the asymptotic regime

A significant challenge in the analysis of problem (4) stems from the difficulty to characterize a
potentially complex worst-case sequence of historical probability measures ν1, . . . , νn and out-of-
sample measure µ. We illustrate in the appendix that analyzing every element in the sequence of
historical probability measures as a function of n is a priori challenging as nature will attempt to use
different distributions for each of the past environments. We will show that, asymptotically, it suffices
to consider cases in which nature selects a common distribution for all of the past environments.
Formally, we define for a sample-size-agnostic policy π ∈ Π the following optimization problem:

sup
µ∈P

sup
ν∈Uϵ(µ)

|opt(µ)− G (π(ν), µ) |. (5)

While Problem (5) resembles Problem (3), it differs on two crucial dimensions: i.) in Problem (5),
nature selects the same distribution ν in the heterogeneity ball for all past environments; ii.) in
Problem (5), the policy π is assumed to know the actual distribution of the past environments ν,
whereas in Problem (3), the policy only observed the empirical distribution of past realizations.

Next, we will establish that Problems (5) and (3) are tightly connected under some mild assumptions.
We introduce the following definition on the distance d defining the heterogeneity.
Definition 3 (Empirical triangular convergence). We say that a distance d on the space of probability
measures satisfies the empirical triangular convergence (ETC) property if and only if for every
triangular array sequence of probability measures (µi,n)1≤i≤n,n∈N∗ all belonging to P , we have

lim
n→∞

d(µ̂n, µ̄n) = 0 a.s.,

where µ̂n(ξ) :=
1
n

∑n
i=1 1 {ξ = ξi,n} for samples ξi,n ∼ µi,n and µ̄n = 1

n

∑n
i=1 µi,n.

The ETC property requires that the sequence of empirical distributions converges to the average of
ground truth distributions for arbitrary triangular arrays. In what follows we also impose convexity
on the metric d. We note that both properties are satisfied by many common distances on probability
spaces, including the Kolmogorov and Wasserstein distances on compact sets, as we discuss in the
appendix. We now state our first main result which establishes a fundamental reduction.
Theorem 1 (Upper bound reduction). Given an instance I = (X ,Ξ,P, d, g, ORACLE), let π ∈ Π be
a sample-size-agnostic policy. Assume that g is bounded on X × Ξ and that d is a convex metric
which satisfies the empirical triangular convergence property. Then

Rπ
I,∞(ϵ) ≤ lim

η→ϵ+
sup
µ∈P

sup
ν∈Uη(µ)

|opt(µ)− G (π(ν), µ) |. (6)
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Theorem 1 establishes, that under some mild conditions, in the asymptotic regime, one may restrict
attention to problem (5). This reduction significantly simplifies the analysis of sample-size-agnostic
policies2 as problem (5) does not involve any form of randomness in the input received by the policy,
and only allows the adversary to select a single distribution.
Remark 1 (Relation to [46]). We note that [46, eq. (7)] presents a finite-time bound on the regret
of SAA in a similar setting to ours. Therefore by taking the limit in their bound, one may derive an
asymptotic performance guarantee for SAA. In our notation, their result imply that,

RπSAA

I,∞ ≤ 2 · sup
µ∈P

sup
ν∈Uϵ(µ)

sup
x∈X

|G (x, µ)− G (x, ν) |. (7)

Theorem 1 differs from (7) because our reduction applies to any policy in the wide range of sample-
size-agnostic policies. In particular, this enables us to characterize the minimax optimal asymptotic
regret even when SAA is not (rate) optimal (see Sections 5.1 and 5.2).

We also show in the appendix that Theorem 1 holds whenever Ξ is finite without restricting the policy.

4 Lipschitz-continuous problems

In this section, we study a broad class of problems for which the underlying objective function g(x, ·)
is Lipschitz-continuous as a function of the environment.
Theorem 2 (Upper bounds for Lipschitz-continuous objectives). Suppose that Ξ = [0,M ] for some
M > 0. Let IK = (X ,Ξ,P, dK , g, ORACLE) and IW = (X ,Ξ,P, dW , g, ORACLE) be instances of
the data-driven decision problem under the Kolmogorov and Wasserstein distances, respectively.
Assume that for every x ∈ X , the function g(x, ·) is L-Lipschitz-continuous and that ORACLE is either
a minimization or maximization oracle. Then for every ϵ ≥ 0,

RπSAA

IK ,∞(ϵ) ≤ 2L ·M · ϵ and RπSAA

IW ,∞(ϵ) ≤ 2L · ϵ.

Theorem 2 implies that for this class of problems, the asymptotic regret of SAA vanishes as the
radius of the heterogeneity ball goes to 0. Furthermore, this theorem shows that the dependence of
the asymptotic worst-case regret in the heterogeneity parameter ϵ is at most linear. We show next that
this dependence is the best possible for this class of problems and this notion of heterogeneity.

4.1 Newsvendor problem

Recall the newsvendor problem described in Section 1.3.Using M > 0 to denote an upper bound
on demand, we let Ξ = X = [0,M ], and our regret bounds may (or may not) depend on M . The
objective function is the newsvendor cost which is parameterized by two quantities: cu the underage
cost and co the overage cost. The cost of an inventory level x ∈ X when observing demand ξ ∈ Ξ is,

g(x, ξ) = cu (ξ − x)
+
+ co (x− ξ)

+
,

where (·)+ := max{·, 0} is the positive part operator. The measure space P is the set of probability
measures on Ξ without restrictions and for every µ ∈ P , we define the cost of the oracle as opt(µ) =
minx∈X G (x, µ) . Therefore the oracle mapping is defined as ORACLE : µ 7→ argminx∈X G (x, µ) .

We note that the objective function g satisfies the L-Lipschitz-continuity property on the environment
realization variable ξ with L = max(cu, co). Theorem 2 thus directly yields an upper bound on the
achievable regret for this class of problems, for both Kolmogorov and Wasserstein, through the regret
of SAA. We next show that these dependencies are the best possible, under any policy.
Proposition 1 (Heterogeneous newsvendor). For the data-driven newsvendor problem in a heteroge-
nous environment under the Kolmogorov and Wasserstein distances, given any ϵ ≥ 0,

cu + co
2

· ϵ ·M ≤ infπ∈Π Rπ
K,∞(ϵ) ≤ RπSAA

K,∞(ϵ) ≤ 2max (cu, co) · ϵ ·M,

cu + co
2

· ϵ ≤ infπ∈Π Rπ
W,∞(ϵ) ≤ RπSAA

W,∞(ϵ) ≤ 2max (cu, co) · ϵ.
2Note that considering sample-size-agnostic policies is not very restrictive. As we will see in Section 4 and 5

this class is sufficient to achieve optimal rates for the asymptotic worst-case regret as a function of ϵ.
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Proposition 1 first shows that SAA is robust to deviation under multiple forms of heterogeneity and
that the regret scales linearly with the radius of the heterogeneity ball for both distances. We show
furthermore that the linear dependence is, for the newsvendor problem, the best rate achievable for
any data-driven policy. We also note that the lower bound obtained for the newsvendor depends
linearly on the Lipschitz constant L through the factor (cu + co).

Beyond newsvendor, the asymptotic worst-case regret of SAA over the general class of L-Lipschitz-
continuous functions is of the order Θ(L · ϵ). This suggests that the performance of SAA may
deteriorate for problems in which the objective function g is not smooth.

5 Beyond Lipschitz-continuous problems

5.1 Pricing problem

Recall the pricing problem presented in Section 1.3. The environment space Ξ = [0,M ] represents
the set of possible wtp. Similarly, the set of possible prices X is [0,M ]. The set of considered
probability measures P is the whole set of probability measures on [0,M ] without restriction. The
revenue generated by the DM with a price decision x ∈ X when facing a customer with wtp ξ ∈ Ξ is,

g(x, ξ) = x · 1 {x ≤ ξ} .

Therefore for any probability measure µ ∈ P associated with the cumulative distribution F , we have
that G (x, µ) = x ·(1− F (x)) . The goal of the DM is to set a price x in order to maximize its revenue.
Equivalently, the goal is to minimize the regret against the oracle which posts the optimal price given
a wtp distribution. Formally, the oracle operator is defined as, ORACLE : µ 7→ argmaxx∈X G (x, µ) .

Kolmogorov pricing. Remark that the pricing objective is not Lipschitz-continuous and that one
cannot use the argument presented in Section 4.1. We show in the appendix that despite the lack of
smoothness of the objective, SAA is still near-optimal in the asymptotic regime under the Kolmogorov
distance. We derive an upper bound on the asymptotic worst-case regret of SAA and a matching
universal lower bound showing that the best achievable performance is order Θ(Mϵ).

Failure of SAA in pricing with Wasserstein heterogeneity. In opposition to the strong performance
achieved by SAA for pricing against Kolmogorov heterogeneity, our next proposition shows that this
result does not hold if one considers instead the Wasserstein heterogeneity ball.

Proposition 2 (SAA and Wasserstein pricing). For the data-driven pricing problem in a heterogenous
environment under the Wasserstein distance, we have for ϵ > 0 that

RπSAA

W,∞(ϵ) = M.

Proposition 2 shows that, in stark contrast with Lipschitz problems, for the pricing problem, the
asymptotic regret of SAA under Wasserstein heterogeneity does not shrink to zero as ϵ goes to zero.
As a matter of fact, the regret of M is the worst possible, as the revenue of the oracle is bounded from
above by M and the revenue of any data-driven policy is bounded from below by 0. Quite notably,
this result holds for any level of heterogeneity ϵ, and an arbitrarily small deviation from the i.i.d.
case leads to extremely poor performance, even with infinite data. We next propose a policy which
"robustifies" SAA and we analyze it under the Wasserstein distance.

Robustification of SAA for Wasserstein pricing. The key challenge in pricing is that for two
distributions µ and ν such that dW (µ, ν) is arbitrarly small, a price x could have a high revenue for µ
but a low revenue for ν, and the difference in revenue between distributions may be arbitrarily large.
This enabled us to construct an instance for which the optimal price for the in-sample distribution ν
generates a low revenue for the out-of-sample distribution µ.

Remark 2 (Proof Sketch, Comparison with Standard Techniques). To the best of our understanding,
our analysis of policies beyond SAA requires a new technique. Assume M = 1 for brevity, and
consider the problem of pricing. We need to upper-bound the loss G (ORACLE (µ) , µ)− G (π(ν), µ).
A standard analysis of SAA, which satisfies πSAA(ν) = ORACLE (ν), would write,

G (ORACLE (µ) , µ)− G (ORACLE (ν) , µ) ≤ 2 sup
x∈X

|G(x, µ)− G(x, ν)|.
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However, for certain decisions x, the error |G (x, µ) − G (x, ν) | can be non-vanishing even if the
distance dW (µ, ν) is vanishing. Our fix is the following. For a generic policy π, we write

G(ORACLE (µ) , µ)− G(π(ν), µ) ≤ (G(ORACLE (µ) , µ)− G(π(µ), ν))
+ (G(ORACLE (ν) , ν)− G(π(ν), µ)) (8)

The key observation is that if we set π(ν) not to ORACLE (ν), but to ORACLE (ν)− δ, then both large
parentheses in (8) can be (identically) upper-bounded using the relation we introduce in Proposition 3.
Proposition 3. Let µ and ν ∈ P and let x1 and x2 be two prices such that x1 < x2. We have that,

G (x2, ν)− G (x1, µ) ≤ (x2 − x1) +M · dW (µ, ν)

x2 − x1
.

Proposition 3 unveils an interesting tradeoff faced by a DM who prices in a heterogeneous environ-
ment. By selecting appropriately the difference between two prices x1 and x2, one can ensure that
the gap in revenues for two different distributions can be controlled by the Wasserstein distance.

We next restrict attention to the class of policies which additively deviate from the action selected by
SAA and leverage Proposition 3 to define the correct deviation parameter.
Definition 4 (δ-SAA policies). For any one-dimensional problem we say that a policy is a δ-SAA
policy if for every empirical distribution µ̂, the policy selects the closest action in X to ORACLE (µ̂)+δ,
for some δ ∈ R that could be positive or negative. We denote this policy by πSAA(δ).

We note that when δ = 0, we recover the usual SAA policy. Our next result establishes the best
possible regret dependence on ϵ and M for the class of pricing problems, using a δ-SAA policy.
Theorem 3 (Deviation for Wasserstein pricing). For the data-driven pricing problem in a heteroge-
nous environment under the Wasserstein distance, for any ϵ > 0, let δ̃ = −

√
M · ϵ. Then,

1

4
·
√
M · ϵ ≤ inf

π∈Π
Rπ

W,∞(ϵ) ≤ RπSAA(δ̃)

W,∞ (ϵ) ≤ 4 ·
√
M · ϵ.

Theorem 3 shows that by appropriately deflating the price posted by SAA, one is able to be robust
against Wasserstein heterogeneity and achieve a worst-case asymptotic regret that vanishes to 0 as
the degree of heterogeneity ϵ goes to 0. This proves that one may operate efficiently for pricing
under Wasserstein heterogeneity as ϵ goes to 0. Our result establishes that in contrast with Lipschitz
problems, it is now impossible to achieve a linear dependence in ϵ (since

√
ϵ > ϵ), with the regret

growing at a rate of Ω(
√
M · ϵ) under any policy. A small radius ϵ has a significantly higher impact

in pricing problems than in, e.g., newsvendor problems.

We note that the deflated policy proposed in Theorem 3 improves over SAA when one can make use
of the knowledge of ϵ. It is worth noting that SAA does not need such knowledge. Furthermore, one
can show that this deflated policy incurs a Ω (

√
ϵ) regret for pricing under Kolmogorov distance and

thus performs poorly compared to SAA in that setting. A natural question would be to understand the
best achievable performance without knowledge of ϵ and/or d.

5.2 Ski-rental problem

We now consider the ski-rental problem in which renting skis costs $1 per unit of time while buying
them costs $b up-front, for some real value b. The environment space Ξ represents the set of possible
lengths of the ski trip and a decision x represents the duration after which skis should be bought
(if the ski trip has not ended by that time). We call x the rental duration. Let X = Ξ = [0,M ],
where we note that setting x = M indicates that skis should never be bought. The set of probability
measures P is the whole space of probability measures supported on [0,M ]. For every rental duration
x ∈ X and any trip length ξ ∈ Ξ, the cost incurred is

g(x, ξ) = ξ · 1 {ξ ≤ x}+ (b+ x) · 1 {ξ > x} .
Finally, as the goal is to minimize cost we have that, ORACLE : µ 7→ argminx∈X G (x, µ) .

Wasserstein ski-rental. We proved in Section 5.1 that SAA performs arbitrarily poorly in pricing
under Wasserstein heterogeneity. We now show that SAA falters similarly for the Wasserstein
ski-rental problem. Furthermore, we design and analyze a δ-SAA policy which inflates the action
selected by SAA (i.e., δ > 0) and achieves the best rate possible as a function of the heterogeneity
radius. Formally, we show the following.
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Theorem 4. For the data-driven ski-rental problem in a heterogenous environment under the Wasser-
stein distance, we have for ϵ > 0 that,

RπSAA

W,∞(ϵ) = Θ (1) and inf
π∈Π

Rπ
W,∞(ϵ) = Θ

(√
ϵ
)
.

Theorem 4 formalizes the failure of SAA for ski-rental under Wasserstein distance. A notable fact
about the ski-rental problem under Wasserstein heterogeneity is that both the regret of SAA and of
the optimal data-driven decision do not scale with the size of the support. For pricing, SAA scaled
linearly with M and the optimal policy scales in

√
M . The fact that RπSAA

W,∞(ϵ) = O(1) in ski-rental
requires a separate non-trivial proof in Theorem 4.3

Kolmogorov ski-rental. Under the Kolmogorov distance, we had seen that SAA was near-optimal
for both the newsvendor and pricing problems. We establish next that the performance of SAA for
the ski-rental problem under Kolmogorov distance is, surprisingly, highly suboptimal.
Theorem 5. For the data-driven ski-rental problem in a heterogenous environment under the Kol-
mogorov distance, we have for ϵ > 0 that,

RπSAA

K,∞(ϵ) = Θ (M · ϵ) and inf
π∈Π

Rπ
K,∞(ϵ) = Θ̃ (ϵ) ,

where Θ̃ provides rates order up to logarithmic factors.

Theorem 5 shows that the asymptotic worst-case regret of SAA scales linearly with the radius of
heterogeneity ϵ and with the size of the support M . We also characterize the rate of the optimal
asymptotic worst-case regret as a function of ϵ. The upper bound on the asymptotic regret is obtained
in [19] through a variant of the SAA policy, which caps the maximum number of days to rent. We
complement this result by providing a matching lower bound. Note that, in contrast to the pricing and
newsvendor problems, the scaling of SAA is not optimal in M . As the scale of the support grows, the
asymptotic worst-case regret of SAA is considerably worse than the optimal achievable rate.

6 Conclusion

All in all, the present results offer a systematic way of understanding and quantifying the implications
of operating in heterogeneous environments. Our framework enables us to develop a common
language to compare achievable performance across central classes of problems and to unveil
novel insights about the performance of a central policy, Sample Average Approximation, when
slightly deviating from the widely studied i.i.d. regime. In settings where SAA fails, we also
design robustification procedures achieving rate-optimal asymptotic guarantees. A key takeaway
of this analysis across a broad class of problems and for different heterogeneity structures is that
it is necessary to understand the structure of the problem we are facing but also the nature of the
heterogeneity when designing data-driven policies that are robust to these environments.

To derive our performance guarantees, we established a crucial connection between data-driven
decision making in heterogeneous environments and distributionally robust optimization. While this
work leverages this connection essentially to derive bounds on achievable performances, we believe
that this connection may be of interest to develop new policies from first principles.

This work also opens many additional questions. First, our analysis characterizes the performance in
the asymptotic regime where the sample size grows large, and could be complemented by quantifying
the performance of policies with finite samples in heterogeneous environments. Furthermore, our
results for Lipschitz problems pin down a key driver of performance, whereas isolating the properties
of the policies and the framework elements that drive different levels of achievable performance
beyond the Lipschitz case remains open. Another key question would be to understand whether there
exists a “best of both worlds” policy that does not use the knowledge of the type of heterogeneity and
performs well across heterogeneity types (as opposed to the robustified policy designed for pricing
and ski-rental) . Finally, we believe that additional exciting and practical complement to this work
include incorporating contexts and deriving statistical tests to characterize the type of heterogeneity
along with its radius and provide an empirical validation of the procedures developed here.

3The fact that RπSAA

W,∞(ϵ) ≤ M in pricing was vacuous.
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