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Abstract

Recording the dynamics of unscripted human interactions in the wild is challenging
due to the delicate trade-offs between several factors: participant privacy, ecological
validity, data fidelity, and logistical overheads. To address these, following a
datasets for the community by the community ethos, we propose the Conference
Living Lab (ConfLab): a new concept for multimodal multisensor data collection of
in-the-wild free-standing social conversations. For the first instantiation of ConfLab
described here, we organized a real-life professional networking event at a major
international conference. Involving 48 conference attendees, the dataset captures
a diverse mix of status, acquaintance, and networking motivations. Our capture
setup improves upon the data fidelity of prior in-the-wild datasets while retaining
privacy sensitivity: 8 videos (1920× 1080, 60 fps) from a non-invasive overhead
view, and custom wearable sensors with onboard recording of body motion (full
9-axis IMU), privacy-preserving low-frequency audio (1250 Hz), and Bluetooth-
based proximity. Additionally, we developed custom solutions for distributed
hardware synchronization at acquisition, and time-efficient continuous annotation
of body keypoints and actions at high sampling rates. Our benchmarks showcase
some of the open research tasks related to in-the-wild privacy-preserving social
data analysis: keypoints detection from overhead camera views, skeleton-based
no-audio speaker detection, and F-formation detection.

1 Introduction

A crucial challenge towards developing artificial socially intelligent systems is understanding how
real-life situational contexts affect social human behavior [1]. Social-science findings indeed show
that the dynamics of how we conduct daily interactions vary significantly depending on the social
situation [2–4]. Unfortunately, such dynamics are not adequately captured by many data collection
setups where role-played or scripted scenarios are typical [5].

In this paper we address the problem of collecting a privacy-sensitive dataset of unscripted social
dynamics of real-life relationships where encounters can influence someone’s daily life. We argue
that doing so requires recording these exchanges in the natural ecology, requiring an approach
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Figure 1: Snapshot of the interaction area from our cameras. We annotated only cameras highlighted
with red borders (high scene overlap). For a clearer visual impression of the scene, we omit cameras
1 (few people recorded) and 5 (failed early in the event). Faces blurred to preserve privacy.

different from the typical setup of locally-organized studies. Specifically, we focus on free-standing
interactions within the setting of an international conference (see Figure 1).

Recording an international community in its natural habitat is characterized by several intersect-
ing challenges: an intrinsic trade-off exists between data fidelity, ecological validity, and privacy
preservation. For ecological validity, a non-invasive capture setup is essential for mitigating any
influence on behavior naturalness [6–8].The most common solution involves mounting cameras from
aerial perspectives such as top-down [9, 10] and elevated-side views [11–13]. Now elevated-side
views make it easy to capture sensitive personal information such as faces, which leads to several
ethical concerns. For instance, capturing faces has been related to harmful downstream surveillance
applications [14]. Besides, state-of-the-art (SOTA) body-keypoint estimation techniques perform
poorly on aerial perspectives [9, 15], making the extraction of automatic pose annotations challenging
(Figure 3). To avoid such issues, some researchers have turned to more privacy-preserving wearable
sensors shown to benefit many behavior analysis tasks [8, 16, 17].

In all, the closest related datasets (see Table 1) suffer from several technical limitations precluding
the analysis and modeling of fine-grained social behavior: (i) lack of articulated pose annotations;
(ii) a limited number of people in the scene, preventing complex interactions such as group split-
ting/merging behaviors, and (iii) an inadequate data sampling-rate and synchronization-latency to
study time-sensitive social phenomena [18, Sec. 3.3]. To address all these limitations, we propose
the Conference Living Lab (ConfLab): a new concept for multimodal multisensor data collection of
ecologically-valid social settings. From the first instantiation of ConfLab, we provide a high-fidelity
dataset of 48 participants at a professional networking event.

Methodological Contributions: We describe a data collection design that captures a diverse mix
of real levels of seniority, acquaintance, affiliation, and motivation to network (see Figure 2). This
was achieved by organizing ConfLab as part of a major international scientific conference. ConfLab
had these goals: (i) a data collection effort follwing a by the community for the community ethos: the
more volunteers, the more data, (ii) volunteers who potentially use the data can experience first-hand
potential privacy and ethical considerations related to sharing their own data, (iii) in light of recent
data sourcing issues [14, 20], we incorporated privacy and invasiveness considerations directly into
the decision-making process regarding sensor type, positioning, and sample-rates.

Figure 2: Frequency of newcomer/veteran participants (left)
and reported research interests (right).

Figure 3: Keypoint detection using pre-
trained RSN [19]. Additional SOTA
results are in Appendix F.1
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Table 1: Comparison of ConfLab with prior datasets of free-standing conversation groups in in-the-
wild social interaction settings. Conflab is the first and only social interaction dataset that offers
skeletal keypoints and speaking status at high annotation resolution, as well as hardware synchronized
camera and multimodal wearable signals at high resolution.

Dataset People/
Scene Video Manual Annotations Wearable Signals Synchronization

Cocktail [13]† 7 512 × 384
F-formations
(20 and 30 min, 1/5 Hz) None Unknown

CoffeeBreak [12] 14 1440 × 1080
F-formations
(130 frames in two sequences) None None

IDIAP [10] > 50
180 min;

654 × 439
20 fps

F-formations
(82 independent frames) None None

SALSA [11]† 18
60 min;

1024 × 768
15 fps

Bounding boxes (30 min)
Head & body ori. (30 min)
F-formations (60 min)
(all 1/3 Hz)

Audio MFCCs (30 Hz)
Acceleration (20 Hz)
IR proximity (1 Hz)

Post-hoc infra-red
event-based (no-drift
assumption)

MnM [9]† 32
30 min;

1920 × 1080
30 fps

Bounding boxes (30 min, 1 Hz ‡ )
F-formations (10 min, 1 Hz )
Actions (45 min, 1 Hz‡)

Accelerometer (20 Hz)
Radio proximity (1 Hz)

Intra-wearable sync via
gossiping protocol;
Inter-modal sync using
manual inspection @1 Hz

ConfLab 48
∼ 45 min;

1920 × 1080
60 fps

17 keypoints (16 min, 60 Hz)
F-formations (16 min, 1 Hz)
Speaking status (16 min, 60 Hz)

Low-freq. audio (1250 Hz)
BT proximity (5 Hz)
9-axis IMU (56 Hz)

Wireless hardware sync at
acquisition, max latency
of ∼ 13 ms [18]

† Includes self-assessed personality ratings ‡ Upsampled to 20 Hz using Vatic [25] BT: Bluetooth IMU: Inertial Measurement Unit

Technical Contributions: (i) aerial-view articulated pose: our annotations of 17 full-body
keypoints enable improvements in (a) pose estimation and tracking, (b) pose-based recognition of
social actions (under-explored in the top-down perspective), (c) pose-based F-formation estimation
(has not been possible from prior work [10, 21–23]), and (d) the direct study of interaction dynamics
using full body poses (previously limited to lab settings [24]). (ii) subtle body dynamics: we are
the first to use a full 9-axis Inertial Measurement Unit (IMU) enabling a richer representation of
behaviour at higher sample rates; previous rates were found to be insufficient for downstream tasks
[17]. (iii) enabling finer temporal-scale research questions: a sub-second crossmodal latency of
∼ 13 ms along with higher sampling rate of features (60 fps video, 56 Hz IMU) opens the gateway
for the in-the-wild study of nuanced time-sensitive social behaviors like mimicry and synchrony.

2 Related Work

Early datasets of in-the-wild social events either spanned only a few minutes (e.g. Coffee Break [12]),
or were recorded at such a large distance from the participants that performing robust, automated
person detection or tracking with SOTA approaches was non-trivial (e.g. Idiap Poster Data [10]).
More recently, two different strategies have emerged to circumvent such issues.

One approach involves fully instrumented labs with a high resolution multi-camera setup for video and
audio data. Here automatic detectors [24, 26, 27] could be applied to obtain poses. This circumvents
the cost- and labor-intensive process of manually labeling head poses, at the cost of less portable
sensing setups. Notable examples of such in-the-lab studies include seated scenarios, such as the
AMI meeting corpus [28], and more recently standing scenarios like the Panoptic Dataset [24]. Both
enable the learning of multimodal behavioral dynamics. However, the dynamics of seated, scripted,
or role-playing scenarios are different from that of an unconstrained social setting such as ours. In
contrast, ConfLab moves out of the lab with a more modular and portable multimodal, multisensor
solution that scales easily in the wild.

Another approach exploited wearable sensor data to allow for multimodal processing—sensors
included 3 or 6 DOF inertial measurement units (IMU); infrared, bluetooth, or radio sensors to
measure proximity; or microphones for speech behavior [9, 11]. While proximity has been used as a
proxy of face-to-face interaction [11, 29–32], recent findings highlight significant problems with such
an assumption [33]. Such errors can have a significant impact on the machine-perceived experience
of an individual, precluding the development of personalized technology. Chalcedony badges used by
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Figure 4: Screenshots from the ConfLab: Meet the Chairs! event website Figure 5: The Midge

[9] show more promising results with a radio-based proximity sensor and accelerometer [34], but
such data remains insufficient for more downstream tasks due to the relatively low sample (20Hz) and
annotation (1Hz) frequency [17]. In light of these challenges in wearable sensing, ConfLab features
custom-developed Midge sensors that enable more flexible and fine-grained on-device recording. At
the same time, ConfLab enables researchers in the wearable and ubiquitous computing communities
to investigate the benefit of exploiting wearable and multimodal data.

Furthermore, while both SALSA [11] and MatchNMingle [9] capture a multimodal dataset of a
large group of individuals involved in mingling behavior, the inter-modal synchronization is only
guaranteed at 1/3 Hz and 1 Hz, respectively. Prior works coped with lower tolerances by computing
summary statistics over input windows [17, 35, 36]. While 1 Hz is able to capture some conversation
dynamics [37], it is insufficient to study fine-grained social phenomena such as back-channeling or
mimicry that involve far lower latencies [18, Sec. 3.3]. ConfLab provides data streams with higher
sampling rates, synchronized at acquisition with our method shown to yield a 13 ms latency at worst
[18] (see Sec. 3). Table 1 summarizes the differences between ConfLab and other related datasets.

3 Data Acquisition

In this section we describe the considerations, design, and supporting community engagement
activities for the first instantiation of ConfLab at ACM Multimedia 2019 (MM’19), to serve as a
template and case study for other similar efforts.

Ecological Validity and Recruitment An often-overlooked but crucial aspect of in-the-wild
data collection is the design and ecological validity of the interaction setting [6–8]. To capture
natural interactions in a professional setting and encourage mixed levels of status, acquaintance,
and motivations to network, we co-designed a networking event with the MM’19 organizers called
Meet the Chairs! Our event website (https://conflab.ewi.tudelft.nl/) served to inform
participants about the goals of a community created dataset, and transparently describe the data
collection process (Figure 4). During the conference, participants were recruited via word-of-mouth
marketing, social media, conference announcements, and the event website. As an additional
incentive beyond interacting with the Chairs and participating in a community-driven data endeavor,
we provided attendees with post-hoc insights into their networking behavior from the collected
wearable-sensors data. See Supplementary material for a sample participant report.

Privacy and Ethics The collection and sharing of ConfLab is GDPR compliant. The dataset design
and process was approved by both, the Human Research Ethics Committee (HREC) at our institution
(TUDelft) and the conference location’s national authorities (France). All participants gave consent
for the recording and sharing of their data at registration.(See the Datasheet in the Appendix for the
consent form.) Given the involvement of private human data, ConfLab is only available for academic
research purposes under an End User License Agreement. Such an as open as possible and as closed
as necessary ethos for open science acknowledges the limitation that personal data places on open
sharing [38, 39].

Data Capture Setup Our goal while designing the capture setup was to find the best trade-off
between maximizing data fidelity and interfering with the naturalness of the interaction (ecological
validity) or violating participant privacy (ethical considerations). Through discussions with the HREC
and General Chairs of MM’19 we decided to mitigate the capture of faces, which constitute one of the
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Figure 6: Comparing the top-down (top-left, camera 4) and elevated-side camera views (rest). Note
how the top-down view is better at mitigating the capture of faces and suffers from fewer occlusions.
This allows for a clearer capture of gestures and lower extremities for the most number of people
while also preserving privacy.

most sensitive personally-identifiable features. Avoiding the inclusion of faces serves two purposes.
First, it safeguards against misuse in downstream tasks with potential negative societal impacts
such as harmful surveillance. Such issues have led to the retraction of some person re-identification
datasets [14]. Second, it protects the participants who are part of a real research community; since
the dataset does not involve role-playing or scripted conversations, the dataset contains their actual
behavior. Consequently, we chose an aerial perspective for the video modality (see Figure 6). The
10 m × 5 m interaction area was recorded by 14 GoPro Hero 7 Black cameras (60fps, 1080p, Linear,
NTSC) [40]. 10 of these were placed directly overhead at a height of ∼ 3.5 m at 1 m intervals, with
4 cameras at the corners providing an elevated-side-view perspective. (The HREC has suggested
not sharing the elevated-side-view videos due to the presence of faces.) For capturing multimodal
data streams, we designed a custom wearable multi-sensor pack called the Midge2 (see Figure 5 for
a design render), based on the open-source Rhythm Badge designed for office environments [41].
We improved upon the Rhythm Badge to achieve more fine-grained and flexible data capture (see
Appendix D). We designed the Midge in a conference badge form-factor for seamless integration.
Unlike smartphones, wearable badges allow for a simple grab-and-go setup and do not suffer from
sensor/firmware differences across models. Popular human behavior datasets are synchronized by
maximizing similarity scores around manually identified common events, such as infrared camera
detections [11], or speech plosives [42]. While recordings in lab settings can allow for fully wired
recording setups, recording in-the-wild requires a distributed wireless solution. We developed a
solution to synchronize the cameras and wearable sensors directly at acquisition while significantly
lowering the cost of the recording setup [18], making it easier for others to replicate our capture setup.
See Appendix D for synchronization and calibration details, and Appendix B for images of the setup.

Data Association and Participant Protocol One consideration for multimodal data recording
is the data association problem—how can pixels corresponding to an individual be linked to their
other data streams? To this end, we designed a participant registration protocol. Arriving participants
were greeted and fitted with a Midge. The ID of the Midge acted as the participant’s identifier. One
team member took a picture of the participant while ensuring both the face of the participant and
the ID on the Midge were visible. In practice, it is preferable to avoid this step by using a fully
automated multimodal association approach. However this remains an open research challenge
[43, 44]. During the event, participants mingled freely—they were allowed to carry bags or use
mobile phones. Conference volunteers helped to fetch drinks for participants. Participants could
leave before the end of the one hour session.

Replicating Data Collection Setup and Community Engagement After the event, we gave a
tutorial at MM’19 [45] to demonstrate how our collection setup could be replicated, and to invite
conference attendees and event participants to reflect on the broader considerations surrounding
privacy-preserving data capture, sharing, and future directions such initiatives could take.

2Documentation and schematics: https://github.com/TUDelft-SPC-Lab/spcl_midge_hardware
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(a) Keypoint annotation interface in covfee [47] (b) Gallery of identities (c) Occlusion

Figure 7: Illustration of the body keypoints annotation procedure: (a): our custom time continuous
annotation interface; (b): the gallery of person identities used by annotators to identify people in the
scene (faces blurred); and (c): the skeleton template with the fraction of occluded frames.

4 Data Annotation

Continuous Keypoints Annotation Existing datasets of in-the-wild social interactions have mainly
focused on localizing subjects via bounding boxes [9, 11]. However, richer information about the
social dynamics such as gestures and changes in orientation cannot be retrieved from bounding boxes
alone, and necessitates the labeling of multiple skeletal keypoints. The typical approach to keypoint
annotation involves using tools such as Vatic [25] or CVAT [46] to manually label every N frames
followed by interpolating over the rest of the frames. This one-frame-at-a-time annotation procedure
makes obtaining keypoint annotations a labor- and cost-intensive process. Moreover, interpolation
fails to capture the finer temporal dynamics of the underlying behavior, and reduces the benefits of
higher-framerate video capture. Limited by existing tools, no related dataset of in-the-wild human
behavior has included time-continuous pose or speaking status annotations.

In contrast, to overcome these issues we collected fine-grained time-continuous annotations of
keypoints via a web-based interface implemented as part of the Covfee framework [48]. Here,
annotators follow individual joints using their mouse or trackpad while playing the video in their
web browser. The playback speed of the video is automatically adjusted using an optical-flow-based
technique to enable annotators to follow keypoints continuously without pausing the video. This
design enables easy keypoint labeling in every frame of the video (60 Hz). We also incorporated
a binary occlusion flag for every body keypoint. Annotators simultaneously controlled this flag to
indicate when a body joint was not directly visible. Note that the flag is only an additional confidence
indicator; we asked the annotators to label the occluded keypoint using their best estimate if it was
deemed to be within the frame. Our pilot study on the efficacy of Covfee compared to non-continuous
annotation via CVAT [46] is presented in [48]. For the pilot annotators, the continuous annotation
methodology resulted in a 3× speedup with statistically indifferent error rates.

We chose the top-down camera views for annotation since they suffer from fewer occlusions than the
elevated-side views, enabling improved capture of gestures and lower extremities for more number
of people (see Figure 6). Given the overlap in the camera views, we annotated keypoints in five of
the ten overhead cameras (see Figure 1). Note that the same subject could be annotated in multiple
cameras due to the overlap in even the five annotated cameras. Videos were split into two-minute
segments to ease the annotation procedure. Each segment was annotated by one annotator by tracking
the joints of all the people in the scene.

Continuous Speaking Status Annotations Speaking status is a key non-verbal cue for many social
interaction analysis tasks [49]. We annotated the binary speaking status of every subject due to its
importance as a key feature of social interaction [16, 50–53] and to contribute the existing community
who are working on this task [17, 54, 55]. Action annotations have traditionally been carried out
using frame-wise techniques [9], where annotators find the start and end frame of the action of
interest using a graphical interface. Given the speed enhancement of continuous annotation, we also
annotated speaking status via a continuous technique. We implemented a binary annotation interface
as part of Covfee [48]. We asked annotators to press a key when they perceived speaking starting or
ending. In a pilot study with two annotators, we measured a frame-level agreement (Fleiss’ κ) of
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(a) speaking turn lengths (b) group size (c) group duration (d) fraction of newcomers
in groups

Figure 8: Data distributions for speaking status and conversation groups

0.552, comparable to previous work [35]. Similar to [9], the annotations were made by watching the
video. We provided the annotators with all overhead views to best capture visual behavior.

F-formation Annotations Identifying who is likely to have social influence on whom is another
important feature for analyzing social behavior. This is operationalised via the theory of F-formations,
which are groups of people arranging themselves to converse or socially interact. Similar to prior
datasets [9, 11, 13], F-formations group membership were annotated using an approximation of
Kendon’s definition [56]. F-formation stands for Facing formation, which is a socio-spatial arrange-
ment where people have direct, easy and equal access while excluding the space from others in
the surroundings. The arrangement commonly maintains a convex space in the middle of all the
participants (determined by the location and orientation of their lower body), although other spatial
arrangements (e.g., side-by-side, L-shaped) are possible, especially for smaller-sized groups of people.
Annotations were labeled by one annotator at 1 Hz, following this definition. Since this is a largely
objective and common framework for defining F-formations, we deemed it sufficient to obtain one
set of annotations. Further, since F-formations may span camera views, we always used the camera
that captured each F-formation in its entirety for annotation.

5 Dataset Statistics

Individual-Level Statistics Figure 7c shows the average occlusion values we obtained from
annotators for each of the 17 keypoints. In Figure 8a we show the distribution of turn lengths in our
speaking status annotations, for both newcomers and veterans, as per their self-reported newcomer
status to the conference. We defined a turn to be a contiguous segment of positively-labeled speaking
status, which resulted in a total of 4096 turns annotated.

Group-Level Statistics We found 119 distinct F-formations of size greater than or equal to two, and
38 instances of singletons. Of these, there are 14 F-formations and 2 singletons that include member(s)
using the mobile phone. The distributions for group size and duration per group size are shown in
Figure 8b and Figure 8c, respectively. Mean group duration doesn’t seem to be influenced by group
size although higher variations are seen at smaller group sizes. The fraction of community newcomers
(first-time attending the conference) in groups is summarized in histogram in Figure 8d. The figure
demonstrates two peaks on both sides of the spectrum (i.e., no newcomers vs. all newcomers in the
same group). This spread over mixed and non-mixed seniority presents opportunities to study how
acquaintance and seniority influence conversation dynamics.

6 Research Tasks

We report experimental results on three baseline benchmark tasks: person and keypoints detection,
speaking status detection, and F-formation detection. The first task is a fundamental building block
for automatically analyzing human social behaviors. The other two demonstrate how learned body
keypoints can be used in the behavior analysis pipeline. We chose these benchmarking tasks since
they have been commonly studied on other in-the-wild behavior datasets. Code for all benchmark
tasks is available at: https://github.com/TUDelft-SPC-Lab/conflab. See the Uses section
of the Datasheet in the Appendix for a discussion of the broader range of tasks ConfLab enables.
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Table 2: Mask-RCNN results for person
bounding box detection and keypoint esti-
mation.

Model
Person Detection Keypoint Estimation

AP50 AP AP75 APOKS
50 APOKS APOKS

75

R50-FPN 73.9 38.9 38.4 45.3 13.5 3.3 Figure 9: Predictions from the Mask-RCNN model;
COCO pretrained (left), and ConfLab finetuned (right).

6.1 Person and Keypoints Detection

This benchmark involves the tasks of person detection (identifying bounding boxes) and pose
estimation (localizing skeletal keypoints). Since pre-trained SOTA methods struggle with a privacy-
sensitive top-down perspective [15] (also see Figure 3 and Appendix F.1 for ConfLab results), we
finetune COCO-pretrained models on our dataset. We used Mask-RCNN [57] (Detectron2 framework
[58] implementation) with a ResNet-50 backbone for both tasks for benchmarking. Since keypoint
annotations were made per camera, we used four of the overhead cameras for training (Cameras 2, 4,
8, 10) and one for testing (Camera 6). Implementation details are available in Appendix E.1.

Evaluation Metrics We evaluated person-detection performance using the standard metrics in
the MS-COCO dataset paper [59]. We report average precision (AP) for intersection over union
(IoU) thresholds of 0.50 and 0.75, and the mean AP from an IoU range from 0.50 to 0.95 in 0.05
increments. For keypoint detection, we use object keypoint similarity (OKS) [59]. APOKS is a mean
average precision for different OKS thresholds from 0.5 to 0.95.

Results and Analyses Table 2 summarizes our person detection and joint estimation results. Our
baseline achieves 73.9 AP50 in detection and 45.3 APOKS

50 in keypoint estimation. Figure 9 shows
qualitative results from our fine-tuned network. For further insight we performed several analyses
and ablations. In Appendix Table 6, we depict the effect of varying the number of training samples
on performance. For training, we use the same four cameras and only vary the number of frames
for each camera. We evaluate on the same testing images from camera 6. We find that performance
saturates at 16% training samples. We next investigated the effect of increasing training data size
by adding specific cameras one at a time. We report results in Appendix Table 7. There is a 260%
performance gain when first doubling the training samples to 69 k with the addition of camera 4, and
a 46% gain when adding another 43 k samples from camera 8. Finally, since the lower body regions
suffer from higher occlusion, we experiment with different sections of body for further insight and
report results in Appendix Table 8.

6.2 Speaking Status Detection

In data collected from real-life social settings, individual audio recordings can be hard to obtain due
to privacy concerns [60]. This has led to the exploration of other modalities to capture some of the
motion characteristics of speaking-related gestures [35, 36]. In this task we explore the use of body
pose and wearable acceleration data for detecting the speaking status of a person in the scene.

Setup We use the SOTA MS-G3D graph neural network for skeleton action recognition [61],
pre-trained on Kinetics Skeleton 400. For the acceleration modality, we evaluated three time se-
ries classifiers, each of which we trained from scratch: 1D Resnet [62], InceptionTime [63], and
Minirocket [64]. We performed late fusion by averaging the scores from both modalities. Like prior
work [17, 36], the task was set up as a binary classification problem. We divided our pose (skeleton)
tracks into 3-second windows with 1.5 s overlap. A window was labeled positive if more than 50%
of the continuous speaking status labels within it are positive. This resulted in an imbalanced dataset
of 42882 windows with 29.2% positive labels. Poses were pre-processed for training following [61].
Three of the keypoints (head, and feet tips) were discarded due to not being present in Kinetics. We
adapted the network by freezing all layers except for the last fully connected layer and training for
five extra epochs. Acceleration readings were not pre-processed, other than by interpolating the
original variable-sampling-rate signals to a fixed 50 Hz.
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Table 3: ROC AUC and accuracy of skeleton-
based, acceleration-based and multimodal speak-
ing status detection (10-fold cross-validation).
Modality Model AUC Acc.

Pose MS-G3D [66] 0.676 0.677

Acceleration
InceptionTime [63] 0.798 0.768

Resnet 1D [62] 0.801 0.767
Minirocket [64] 0.813 0.768

Multimodal MS-G3D + Minirocket 0.823 0.775

Table 4: Average F1 scores for F-formation de-
tection comparing GTCG [23] and GCFF [67]
with the effect of different threshold and orienta-
tions (standard deviation in parenthesis).

GTCG GCFF

T=2/3 T=1 T=2/3 T=1

Head 0.51 (0.09) 0.40 (0.12) 0.47 (0.07) 0.31 (0.23)
Shoulder 0.46 (0.11) 0.38 (0.11) 0.56 (0.25) 0.36 (0.16)
Hip 0.45 (0.10) 0.37 (0.12) 0.39 (0.06) 0.25 (0.11)

Evaluation Evaluation was carried out via 10-fold cross-validation at the subject level, ensuring
that no examples from the test subjects were used in training. We used the area under the ROC curve
(AUC) as main evaluation metric to account for the imbalance in the labels.

Results The results in Table 3 indicate a better performance from the acceleration-based methods.
One possible reason for the lower performance of the pose-based methods is the significant domain
shift between Kinetics and Conflab, especially in camera viewpoint (frontal vs top-down). The
acceleration performance is in line with previous work [17]. Multimodal results were slightly higher
than acceleration-only results, despite our naive fusion approach, a possible point to improve in future
work [65]. Experiments with the rest of the IMU modalities are presented in Appendix F.2.

6.3 F-formation Detection

Setup Like prior work [10, 21–23], we operationalize interaction groups using the framework of
F-formations [56]. We provide performance results for F-formation detection using GTCG [23]
and GCFF [67] as a baseline. Recent deep learning methods such as DANTE [22] are not directly
applicable since they depend on knowing the number of people in the scene, which is variable for
ConfLab. We use pre-trained model parameters (reported in the original GTCG and GCFF papers on
the Cocktail Party dataset [13]) and tuned a subset of parameters more relevant to ConfLab attributes
on camera 6. More details can be found in Appendix E.2. We derive three different sets of orientation
features from (i) head, (ii) shoulder and (iii) hip keypoints.

Evaluation Metrics We use the standard F1 score as evaluation metric for group detection [23, 67].
A group is correctly estimated (true positive) if at least ⌈T ∗ |G|⌉ of the members of group G are
correctly identified, and no more than 1− ⌈T ∗ |G|⌉ is incorrectly identified, where T is the tolerance
threshold. We report results for T = 2

3 and T = 1 (more strict threshold) in Table 4.

Results We show that different results are obtained using different sources of orientations. Different
occlusion levels in keypoints due to camera viewpoint may have affected performance. Another factor
influencing model performance is that F-formations (which are driven by lower-body orientations
[56]) may have multiple conversations floors [51]. Floors are indicated by coordinated speaker turn
taking patterns and influence coordinated head orientations of the group.

7 Conclusion and Discussion

ConfLab contributes a new concept for real-life data collection in the wild and captures a high-fidelity
dataset of mixed levels of acquaintance, seniority, and personal motivations.

ConfLab: the Dataset We improved upon prior work by providing higher-resolution, fidelity, and
synchronization across sensor networks. We also carefully designed our social interaction setup
to enable a diverse mix of seniority, acquaintanceship, and motivations for mingling. The result
is a rich set of 17 body-keypoint annotations of 48 people at 60 Hz from overhead cameras for
developing more robust estimation of keypoints, speaking status and F-formations for further analyses
of more complex socio-relational phenomena. Our benchmark results for these tasks highlight how
the improved fidelity of ConfLab can assist in the development of more robust methods for these key
tasks. We hope that models trained on ConfLab for localizing keypoints would fill the gap in the cue
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extraction pipeline, enabling past datasets [9, 10] without articulated pose data to be reinvigorated;
this would open the floodgates for more robust analysis of the social phenomena labeled in these other
datasets. Finally, our baseline social tasks form the basis for further explorations into downstream
prediction tasks of socially-related constructs such as conversation quality [68] , dominance [53],
rapport [50], influence [69] etc.

ConfLab: the Data-Collection Concept To relate an individual’s behaviors to trends within their
social network, further iterations of ConfLab are needed. These iterations would enable the study
of behavioral patterns at different timescales, including multiple interactions in one day, multiple
days at a conference, or across distinct conferences. This paper serves as a template for such future
ventures. We hope that if the idea of a conference as a living lab gains traction, the effort and cost of
data collection can be amortized across different research groups, even involving support from the
conference organizers. This data by the community for the community ethos can enable the generation
of a corpus of related datasets enabling new research questions.

Societal Impact ConfLab’s long-term vision is towards developing technology to assist individuals
in navigating social interactions. In this work we have identified choices that maximize data fidelity
while upholding ethical best practices: an overhead camera perspective that mitigates identifying
faces, recording audio at a low-frequency, and using non-intrusive wearable sensors matching a
conference badge form-factor. We argue this is an essential step towards a long-term goal of
developing personalized and socially aware technologies that enhance social experiences. At the
same time, such interventions could also affect a community in unintended ways: worsened social
satisfaction, lack of agency, stereotyping; or benefit only those members of the community who make
use of resulting applications at the expense of the rest. More nefarious uses involve exploiting the
data for developing methods that harmfully surveil or profile people. Researchers must consider such
inadvertent effects while developing downstream applications. Finally, since we recorded the dataset
at a scientific conference and required voluntary participation, there is an implicit selection bias in
the population represented in the data. Researchers should be aware that insights resulting from the
data may not generalize to the general population.

Empowering Users Through an Agentist Rather Than Structurist Approach The analysis of
human behavior in social settings has classically taken a more top-down perspective. For instance,
the analysis of situated interactions (via only proximity networks) has provided insight into the
process of making science in the field of Meta Science [70]. However, while social network science
is a well-populated domain, it lacks a more individualized measurement of social behavior: see
more discussion of the structure vs. agency debate [71]. Relying on the network science approach
jeopardizes an individual’s right to technologies that enable free will. We consider the agency in
choosing such technologies to be a form of individual harm avoidance. ConfLab provides access to
more than just proximity data about social interactions, enabling the study of context-specific social
dynamics. These dynamics are a uniquely dependent not only on the individual, but also the group
they are interacting with [72]. We hope our highlighting of participatory design practices and these
value-sensitive design principles promote social safety in developing socially assistive technologies.
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