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Appendix

Proof of Lemma (2). Let us begin by specifying the class of discriminators LX ≡ L 1
c . Now, given

α, β ∈ P(Y)

dLX
(ϕ#α, ϕ#β) = sup

l∈LX

[
Eϕ#αl − Eϕ#βl

]
= sup

l∈LX

[
Eα(l ◦ ϕ)− Eβ(l ◦ ϕ)

]
.

Due to the definition of supremum, for any ϵ > 0 ∃ lϵ ∈ LX for which

dLX
(ϕ#α, ϕ#β) ≤ Eα(lϵ ◦ ϕ)− Eβ(lϵ ◦ ϕ) + ϵ

= inf
g∈lϵ◦GLip

{
Eα

∣∣(lϵ ◦ ϕ)− g
∣∣− Eβ

∣∣(lϵ ◦ ϕ)− g
∣∣+ Eα(g)− Eβ(g)

}
+ ϵ

≤ 2 inf
g′∈GLip

∥∥∥ϕ− g
′
∥∥∥
∞

+
{

sup
l∈LX

[
Eα(l ◦ g∗)− Eβ(l ◦ g∗)

]}
+ ϵ, ∀ g∗ ∈ GLip.

Here, lϵ ◦GLip := {lϵ ◦ f : f ∈ GLip}. Now,

sup
l∈LX

[
Eα(l ◦ g∗)− Eβ(l ◦ g∗)

]
= inf

γ∈Γ(α,β)

∫
c
(
g∗(x), g∗(y)

)
dγ(x, y)

≤ LG inf
γ∈Γ(α,β)

∫
c
′
(x, y)dγ(x, y), (1)

where (1) is due to the fact that g∗ ∈ GLip. As such,

dL 1
c
(ϕ#α, ϕ#β) ≤ 2 inf

g′∈GLip

∥∥∥ϕ− g
′
∥∥∥
∞

+ LG dL 1

c
′
(α, β).

Proof of Corollary (1). We have already noticed Eν [dL 1

c
′
(ν, ν̂n2

)] ≤ O((k2n2)
− 1

k ), k ≥ 2. Since

the distance dL 1

c
′
(., .) satisfies the bounded difference inequality, the application of McDiarmid’s

inequality leads to

P
(
dL 1

c
′
(ν, ν̂n2) ≤ O((k2n2)

− 1
k ) + t

)
≥ 1− exp

{
− 2n2t

2

By
2

}
, (2)

where By = diam(Ωy) with respect to the metric c
′
. We point out that (2) is a generalized version

of Proposition 20 in [1]. Now, Theorem (1) tells us,

dL 1
c
(µ̂n1

, ϕ#ν̂n2
) ≤ ϵ+ LG dL 1

c
′
(ν, ν̂n2

) +O(C1W
− 2

kL− 2
k ),
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given ϵ > 0 and n1 ≤ W−d−1
2 ⌊W−d−1

6d ⌋⌊L
2 ⌋+ 2. Combining these two results, we get

P
(
dL 1

c
(µ̂n1

, ϕ#ν̂n2
) ≤ O((k2n2)

− 1
k )+

(1 + LG)By√
2

n2
− 1

2

√
ln
(1
δ

)
+O(C1W

− 2
kL− 2

k )
)
≥ 1−δ,

by taking δ = exp
{
− 2n2t

2

By
2

}
. The statement also holds if we replace the two sample sizes n1, n2

with min(n1, n2). In such a case, the Borel-Cantelli lemma implies that dL 1
c
(µ̂n1

, ϕ#ν̂n2
) −→ 0

almost surely (under P), provided d, k remain fixed.

Remark. We draw the attention of the reader to a particular consequence of this result. Observe
that the width (W ) and depth (L) of the translator network are intrinsically related to the sample size
(n1) from the target law. In case min(n1, n2) −→ ∞, W also follows suit, given that L remains
constant. As such, our ideal backward translator, achieving generation consistency, is a finite sample
approximation of an infinitely wide ReLU network. Maps induced by such an infinitely wide network
converge in distribution to a Gaussian process [2]. This determines the large sample property of ϕ.
Finding out the exact statistical properties of such a process in a parametric setup might be taken up
as future work.
Remark. For any n1 ∈ N+, dL 1

c
(µ, ϕ#ν̂n2

) ≤ dL 1
c
(µ, µ̂n1

) + dL 1
c
(µ̂n1

, ϕ#ν̂n2
). We have already

seen that the second term on the right-hand side of the inequality vanishes eventually [Corollary 1].
Moreover, similar to (2)

P
(
dL 1

c
(µ, µ̂n1) ≤ O((d2n1)

− 1
d ) + t

)
≥ 1− exp

{
− 2n1t

2

Bx
2

}
.

As a result, dL 1
c
(µ, µ̂n1

)
a.s.−→ 0 (using Borel-Cantelli lemma). Hence, it can be concluded that ϕ#ν̂n2

converges weakly to µ in P(X ) [Theorem 6.9 in [3]].

Proof of Theorem (2). Let us carry out the decomposition of the realized backward translation error,
similar to that in Theorem (1).

dWm,∞
1

(µ̂n1
, ϕ#ν̂n2

) ≤ dWm,∞
1

(µ̂n1
, ϕ#ν) + dWm,∞

1
(ϕ#ν, ϕ#ν̂n2

).

Observe that Wm,∞
1 ⊂ W1,∞

1 , for any positive integer m. Also, the class W1,∞
1 is a dense subset of

1-Lipschitz functions on X . As such, dWm,∞
1

(µ̂n1
, ϕ#ν) ≤ dL 1

c
(µ̂n1

, ϕ#ν) ≤ ϵ, where ϵ > 0 (as in
the proof of Theorem (1)).

The remaining approximation error can similarly be upper bound using the same technique. However,
it would be far from tight. Let us define a class of functions that help in the pursuit of sharper bounds.

Definition (Hölder Space). For s ∈ R>0, with ⌊s⌋ indicating the largest integer strictly smaller than
s, the Hölder space of order s is defined as

Cs
L(Rd) =

{
f ∈ Cu(Rd) :∥f∥Cs ≡ ∥f∥W⌊s⌋ +

∑
|α|=⌊s⌋

sup
x̸=y

x,y∈Rd

|Dαf(x)−Dαf(y)|
|x− y|s−⌊s⌋ < L

}
.

Now, similar to the proof of Lemma (2), for any ϵ
′
> 0 ∃ lϵ′ ∈ Wm,∞

1 such that

dWm,∞
1

(ϕ#α, ϕ#β) ≤ Eα(lϵ′ ◦ ϕ)− Eβ(lϵ′ ◦ ϕ) + ϵ
′
, where α, β ∈ P(Y)

= inf
g∈l

ϵ
′ ◦GLip

{
Eα

∣∣(lϵ′ ◦ ϕ)− g
∣∣− Eβ

∣∣(lϵ′ ◦ ϕ)− g
∣∣+ Eα(g)− Eβ(g)

}
+ ϵ

′

≤ 2 inf
g′∈GLip

∥∥∥ϕ− g
′
∥∥∥
∞

+
{

sup
l∈Wm,∞

1

[
Eα(l ◦ g∗)− Eβ(l ◦ g∗)

]}
+ ϵ

′
, ∀ g∗ ∈ GLip.

(3)

The first term in (3) is obtained due to the Lipschitz property of lϵ′ . Here,

sup
l∈Wm,∞

1

[
Eα(l ◦ g∗)− Eβ(l ◦ g∗)

]
= dWm,∞

1
(g∗#α, g

∗
#β) ≤ dCm

r
(g∗#α, g

∗
#β) (4)

= sup
l∈Cm

r ◦g∗

{
Ex∼α[l(x)]− Ex∼β [l(x)]

}
. (5)

2



Inequality (4) is based on the observation that there exists r > 0 for which Wm,∞
1 ⊂ Cm

r [4]. Given
any f ∈ Cm

r and g∗ ∈ GLip,

∥f ◦ g∗∥∞ =
{
sup |f(g∗(y))| : y ∈ Rk

}
=

{
sup |f(x)| : x = g∗(y) ∈ Rd, y ∈ Rk

}
≤

{
sup |f(x)| : x ∈ Rd

}
=∥f∥∞ .

Moreover, for x, y ∈ Rk, x ̸= y

|Dαf(g∗(x))−Dαf(g∗(y))|
|x− y|s−⌊s⌋ =

|Dαf(g∗(x))−Dαf(g∗(y))|
|g∗(x)− g∗(y)|s−⌊s⌋

{ |g∗(x)− g∗(y)|
|x− y|

}s−⌊s⌋

≤ |Dαf(x∗)−Dαf(y∗)|
|x∗ − y∗|s−⌊s⌋ (LG)

s−⌊s⌋,

assuming x∗ ̸= y∗ ∈ Rd. Here, we choose both the metrics c, c
′

to be L1 in their respective spaces.
This convention conforms to the rest of the discussion as well.

Also, for 1 ≤ |s| ≤ m we have

Ds(f ◦ g∗)(x) = s!
∑

1≤|i|≤|s|

(Dif)(g∗(x))

i!
Ps,i(g

∗;x),

where Ps,i(g
∗;x) is a homogeneous polynomial of degree |i|. Schreuder et al. [Lemma 7.2 in [5]]

show that
∣∣Ds(f ◦ g∗)(x)

∣∣ < C, where C > 0 is a constant. This implies that there exists r∗ > 0

for which f ◦ g∗ ∈ Cm
r∗(Rk). As such, we may upper bound (5) by replacing the supremum over

Cm
r (Rd) ◦ g∗ by the same over Cm

r∗(Rk).

Hence, for ϵ > 0

dWm,∞
1

(µ̂n1
, ϕ#ν̂n2

) ≤ 2 inf
g′∈GLip

∥∥∥ϕ− g
′
∥∥∥
∞

+ dCm
r∗
(ν, ν̂n2

) + ϵ.

The expected approximation error in the base domain can be put under a deterministic upper
bound given by Eν

[
dCm

r∗
(ν, ν̂n2)

]
≾ n2

−m
k + logn2√

n2
[Lemma 2.8 in [6]]. As such, we get

E
[
dWm,∞

1
(µ̂n1 , ϕ#ν̂n2)

]
≤ O

(
n2

−m
k + logn2√

n2

)
+O(

√
kLGByW

− 2
kL− 2

k ).

Proof of Proposition (1). Let us denote the VC dimension of Y(P(X )) by vx <∞. This criteria
ensures that the target class of distributions are ‘learnable’. For example, VC-dim[Y(Gd)] = O(d2),
where Gd = the class of d-dimensional Gaussian distributions [7]. Now, given g ∈ GLip, for any
n ∈ N+

dL 1
c
(g#ν̂n, (̂g#ν)n) ≤ dL 1

c
(g#ν̂n, g#ν) + dL 1

c
(g#ν, (̂g#ν)n)

≤ LG dL 1

c
′
(ν̂n, ν) +Bx

∥∥∥g#ν − (̂g#ν)n

∥∥∥
TV

. (6)

Inequality (6) exploits the relation between Wasserstein and TV metrics [Theorem 4 in [8]]. We know
there exists constants C̃1, C̃2 > 0 such that

P
(∥∥∥g#ν − (̂g#ν)n

∥∥∥
TV

≥ C̃1

√
vx
n

+ t
)
≤ exp (−C̃2nt

2),

[Lemma 2 in [9]]. Using this argument along with (2) we obtain

P
(
dL 1

c
(g#ν̂n, (̂g#ν)n) ≤ t+O(n−

1
k ) +O(

√
vxn

− 1
2 )
)
≥ 1− 2 exp (−C2nt

2),

where C2 = 1
4 min

{
2

(ByLG)2
, C̃2

Bx
2

}
> 0. As such, the function g is an information preserving map

of degree 1, under the 1-Wasserstein metric, with a decaying error of order O(n−
1

k∨2 ).
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Proof of Lemma (4). Our characterization of the critics allow LX to be L 1
c or Wm,∞

1 . Under this
setup, for any backward translator G

dLX
(µ̂n1

, G#ν̂n2
) ≤ dLX

(µ̂n1
, (̂G#ν)n2

) + dLX

(
(̂G#ν)n2

, G#ν̂n2

)
(7)

≤ Bx

∥∥∥µ̂n1
− (̂G#ν)n2

∥∥∥
TV

+ E3

≤ Bx ∥µ̂n1 − Γn1∥TV + Λ(n1,n2) + E3,

where Γn1 = argminτ∈P(X )∥τ − µ̂n1∥TV . It is often called the Empirical Yatracos Minimizer
[10]. Observe that,∥µ̂n1 − Γn1∥TV ≤∥µ̂n1 − µ∥TV . Now, in case the OT map T exists such that
T#ν = µ, we get∥µ̂n1 − Γn1∥TV ≤ E1.

Remark. The information loss (in the right-hand side of (7)) can be taken care of by deploying an
IPT as the translator. As such, it is the term dLX

(µ̂n1 , (̂G#ν)n2
) that mainly contributes to the upper

bound. We had built the empirical distribution µ̂n1 based on {Xi}n1
i=1

i.i.d.∼ µ. Similarly, let (̂G#ν)n2

be based on {Yi}n2
i=1

i.i.d.∼ G#ν. We may write

dLX
(µ̂n1

, (̂G#ν)n2
) = sup

f∈LX

∣∣∣∣∣∣
N∑
i=1

Wif(Zi)

∣∣∣∣∣∣ , (8)

where N = n1 + n2; Wi =
1
n1

when Zi = Xi, i = 1, ..., n1 and Wn1+j = − 1
n2

when Zn1+j = Yj ,
j = 1, ..., n2. Under this framework, the solution to (8) can be achieved by solving a linear program,
given that LX ≡ L 1

c [Theorem 2.1 in [11]]. This provides a pathway to get hold of the realized
approximation error, making the upper bound deterministic.

Proof of Lemma (5). Given translator maps G ∈ F (Y,P(X )) and F ∈ F (X ,P(Y)), the cyclic
loss in the space X can be broken down as the following:∥∥µ− (G ◦ F )#µ

∥∥
1
≤
∥∥µ−G#ν

∥∥
1
+
∥∥G#ν − (G ◦ F )#µ

∥∥
1
,

where∥∥G#ν − (G ◦ F )#µ
∥∥
1
=

∥∥G#ν −G#(F#µ)
∥∥
1
= 2 sup

ω⊆σ(X )

∣∣G#ν(ω)−G#(F#µ)(ω)
∣∣

= 2 sup
ω⊆σ(X )

∣∣∣ν(G−1(ω))− F#µ(G
−1(ω))

∣∣∣
≤ 2 sup

ω′⊆σ(Y)

∣∣∣ν(ω′
)− F#µ(ω

′
)
∣∣∣ = ∥∥ν − F#µ

∥∥
1
.

The inequality holds by taking supremum over all measurable sets belonging to the Borel σ-algebra
on Y instead of the particular path directed by G−1. As such∥∥µ− (G ◦ F )#µ

∥∥
1
≤
∥∥µ−G#ν

∥∥
1
+
∥∥ν − F#µ

∥∥
1
.

Similarly,
∥∥ν − (F ◦G)#ν

∥∥
1
≤
∥∥ν − F#µ

∥∥
1
+
∥∥µ−G#ν

∥∥
1
. Hence the proof.

Proof of Theorem (3). Given a measurable function f : Rd → R, let us define its convolution with
the kernel K : Rd × Rd → R as the following:

Kh(f) =

∫
Rd

Kh(., y)f(y)dy =
1

hd

∫
Rd

K(
.

h
,
y

h
)f(y)dy,

where y
h = (y1

h , ...,
yd

h )
′
, h > 0. We begin by taking K to be regularly invariant. Now,∥∥∥pµ − pϕ#ν

∥∥∥
1
≤
∥∥pµ −Kh(pµ)

∥∥
1
+
∥∥∥Kh(pµ)−Kh(pϕ#ν)

∥∥∥
1
+
∥∥∥Kh(pϕ#ν)− pϕ#ν

∥∥∥
1

≤ J
∥∥pµ −Kh(pµ)

∥∥
p
+
∥∥∥Kh(pµ)−Kh(pϕ#ν)

∥∥∥
1
+ J

∥∥∥Kh(pϕ#ν)− pϕ#ν

∥∥∥
p′
,

(9)
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where J > 0. The existence of such a constant, and hence the inequality (9), is ensured by the fact
∥f∥1 ≤ J∥f∥p, p ≥ 1 since we have λ(Ωx) <∞. Also, there exists a constant l depending upon mx

and K, such that
∥∥Kh(pµ)− pµ

∥∥
p
≤ l

∥∥Dmxpµ
∥∥
p
hmx [Proposition 4.3.33 in [12]]. As such, we get

hold of a constant J∗ = Jl for which∥∥∥pµ − pϕ#ν

∥∥∥
1
≤ J∗

{∥∥Dmxpµ
∥∥
p
+
∥∥∥Dmxpϕ#ν

∥∥∥
p′

}
hmx +

∥∥∥Kh(pµ)−Kh(pϕ#ν)
∥∥∥
1

(by Assumption 2). Observe that,

Kh(pµ)(x)−Kh(pϕ#ν)(x) =
1

hd

∫ {
K(

x

h
,
y

h
)−K(

x

h
,
z

h
)
}
dκ(y, z),

where κ is a coupling between µ and ϕ#ν. Hence,∥∥∥Kh(pµ)−Kh(pϕ#ν)
∥∥∥
1
≤

∫ { 1

hd

∫ ∣∣∣∣K(
x

h
,
y

h
)−K(

x

h
,
z

h
)

∣∣∣∣ dx}dκ(y, z) (10)

=

∫ {∫ ∣∣∣K(x
′
, yh )−K(x

′
, zh )

∣∣∣ dx′

|y − z|

}
|y − z| dκ(y, z)

≤ M∗

h

∫
|y − z| dκ(y, z), (11)

where M∗ is a positive constant. The step (10) is due to Jensen’s inequality, whereas (11) exploits
the invariance of K. Since the inequality holds for all possible measure couples κ, we conclude∥∥∥Kh(pµ)−Kh(pϕ#ν)

∥∥∥
1
≤ M∗

h
W 1

c (µ, ϕ#ν),

given that c ≡ L1. A similar inference can be drawn for a general class of metrics c by altering the
specification of the same in the definition of invariance. Now, choose

h =

{
W 1

c (µ, ϕ#ν)∥∥Dmxpµ
∥∥
p
+
∥∥∥Dmxpϕ#ν

∥∥∥
p′

} 1
mx+1

.

Finally, we obtain∥∥∥pµ − pϕ#ν

∥∥∥
1
≤M

[∥∥Dmxpµ
∥∥
p
+
∥∥∥Dmxpϕ#ν

∥∥∥
p′

] 1
mx+1 [

W 1
c (µ, ϕ#ν)

] mx
mx+1 ,

where M = 2(J∗ ∨M∗).

Proof of Proposition (2). Using Lemma (5),

Lcyc(µ̂n1
, ν̂n2

, F,G) =
∥∥µ̂n1

− (G ◦ F )#µ̂n1

∥∥
1
+
∥∥ν̂n2

− (F ◦G)#ν̂n2

∥∥
1

≤ 4
{∥∥µ̂n1

−G#ν̂n2

∥∥
TV

+
∥∥ν̂n2

− F#µ̂n1

∥∥
TV

}
.

Now, a similar decomposition of the translation errors under the TV metric, as in the proof of Lemma
(4), results in the following:∥∥µ̂n1 −G#ν̂n2

∥∥
TV

≤∥µ̂n1 − Γn1∥TV +
∥∥∥Γn1 − (̂G#ν)n2

∥∥∥
TV

+
∥∥∥(̂G#ν)n2

−G#ν̂n2

∥∥∥
TV

≤∥µ̂n1
− µ∥TV +

Λ(n1,n2)

Bx
+
∥∥∥(̂G#ν)n2

−G#ν̂n2

∥∥∥
TV

.

Similarly, given that Γ
′

n2
= argminτ∈P(Y)∥τ − ν̂n2

∥TV

∥∥ν̂n2
− F#µ̂n1

∥∥
TV

≤∥ν̂n2
− ν∥TV +

Λ
′

(n1,n2)

By
+
∥∥∥(̂F#µ)n1

− F#µ̂n1

∥∥∥
TV

.
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Proof of Theorem (4). Let ϕ ∈ Φ(W,L)dk, as specified in Theorem (1). Also, let ψ ∈ Φ(W
′
, L

′
)kd

be a forward translator that achieves consistency. Observe that

L̂cyc(µ̃n1 , ν̃n2 , ψ, ϕ) ≤∥µ̃n1 − µ∥1 +∥ν̃n2 − ν∥1 + Lcyc(µ, ν, ψ, ϕ)

≤∥µ̃n1 − µ∥1 +∥ν̃n2 − ν∥1 + 2
{∥∥µ− ϕ#ν

∥∥
1
+
∥∥ν − ψ#µ

∥∥
1

}
. (12)

For 1 ≤ p, q <∞, we know that

E
[∥∥p̂µ,n1

− pµ
∥∥
p

]
≾ n1

− mx
2mx+d ,

[Theorem 6.1 in [13]]. Similarly, for the estimation error in Y , E
[∥∥p̂ν,n2

− pν
∥∥
q

]
≾ n2

− my
2my+k .

Moreover, Theorem (3) implies that{∥∥∥pµ − pϕ#ν

∥∥∥
1

}mx+1
mx ≤ R dL 1

c
(µ, ϕ#ν) ≤ R

{
dL 1

c
(µ, µ̂n1

) + dL 1
c
(µ̂n1

, ϕ#ν)
}
, (13)

where R = M
mx+1
mx

[∥∥Dmxpµ
∥∥
p
+
∥∥∥Dmxpϕ#ν

∥∥∥
p′

] 1
mx , and µ̂n1 is an usual empirical measure

corresponding to µ. The term dL 1
c
(µ̂n1

, ϕ#ν) can be made arbitrarily small due to the construction

of ϕ [Lemma (1)]. Also, we have already seen that E
[
dL 1

c
(µ, µ̂n1

)
]
≾ n1

− 1
d .

As such,

E
[
∥µ̃n1

− µ∥1 + 2
∥∥µ− ϕ#ν

∥∥
1

]
≤ O

(
n1

− mx
(d∨2)mx+d

)
,

by applying Jensen’s inequality to (13). This bound, together with a similar result corresponding to
its forward counterpart, will imply

E
[
L̂cyc(µ̃n1 , ν̃n2 , ψ, ϕ)

]
≾ max

{
n1

− mx
(d∨2)mx+d , n2

− my
(k∨2)my+k

}
.

Proof of Corollary (2). We point out that, K
(
x, y

)
can be taken in particular as K̃

(
|x− y|

)
, where

K̃ : Rd → R identically follows the traits of K. Under such a kernel function,∥∥∥E[p̂µ,n1

]
− pµ

∥∥∥
1
≤ l∗hmx ,

for some constant l∗ > 0 [12]. Now, given an ϵ ≤ 2
3 , concentration inequalities on kernel density

estimates tell us: there exists constants E1, E2 > 0 such that

P
(∥∥∥p̂µ,n1

− E
[
p̂µ,n1

]∥∥∥
∞
> ϵ

)
≤ E1

(√dBx

hd+1ϵ

)d

exp
(
− E2n1ϵ

2hd
)
.

The exact value of E2 = 3
28K̃(0)

can be obtained based on the convention that K̃(.) achieves its
modal value at 0. Such a centering can always be done. Hence,

P
(∥∥p̂µ,n1 − pµ

∥∥
1
> ϵ+ l∗hmx

)
≤ E1

(√dBx

hd+1ϵ

)d

exp
(
− E2n1ϵ

2hd
)
. (14)

By applying Borel-Cantelli lemma one can show that
∥∥p̂µ,n1

− pµ
∥∥
1
−→ 0 almost surely, under

suitable choice of h ≡ h(n1,mx, d). (14) inspires a similar concentration for the estimate p̂ν,n2

around pν , under L1. As such, by taking the corresponding bandwidth h
′ ≡ h

′
(n2,my, k), it can

also be said that
∥∥p̂ν,n2

− pν
∥∥
1
−→ 0 almost surely. To unify the two processes, one may assess

the convergence based on n = min{n1, n2}. Putting these results back in (12), along with (13), we
conclude

L̂cyc(µ̃n1
, ν̃n2

, ψ, ϕ) −→ 0, almost surely.

In other words, (ϕ ◦ ψ)#µ̃n1
→ µ and (ψ ◦ ϕ)#ν̃n2

→ ν, both in total variation.
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Identity loss

Let us first rewrite the identity loss in terms of the underlying measures. Based on the notations in
our framework,

Lid(µ, ν, F,G) =
∥∥µ− F#µ

∥∥
1
+
∥∥ν −G#ν

∥∥
1
.

Observe that the distributions must be equivariate to conform to this loss. Moreover,

∥µ− ν∥1 −
∥∥F#µ− ν

∥∥
1
≤
∥∥µ− F#µ

∥∥
1
. (15)

If the forward translated law F#µ is Sobolev-smooth of order my (Assumption 2), Theorem (3)

asserts the existence of a constant R
′
> 0 such that

∥∥∥pν − pF#µ

∥∥∥
1
≤ R

′[
dL 1

c
′
(ν, F#µ)

] my
my+1 . In

case F is also translation consistent, the second term on the left-hand side of (15) vanishes. A similar
conclusion can be drawn for the quantity

∥∥ν −G#ν
∥∥
1

as well. As such, the cumulative identity
loss from both domains cannot be minimized beyond the intrinsic discrepancy between the input
distributions.
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