Supplement to : 'On Translation and Reconstruction Guarantees of the Cycle-Consistent Generative Adversarial Networks’

Anish Chakrabarty
Statistics and Mathematics Unit
Indian Statistical Institute, Kolkata West Bengal, India

Swagatam Das
Electronics and Communication Sciences Unit
Indian Statistical Institute, Kolkata
West Bengal, India

Appendix

Proof of Lemma (2). Let us begin by specifying the class of discriminators $\mathscr{L}_{X} \equiv \mathscr{L}_{c}^{1}$. Now, given $\alpha, \beta \in \mathscr{P}(\mathcal{Y})$

$$
d_{\mathscr{L}_{X}}\left(\phi_{\#} \alpha, \phi_{\#} \beta\right)=\sup _{l \in \mathscr{L}_{X}}\left[\mathbb{E}_{\phi_{\#} \alpha} l-\mathbb{E}_{\phi_{\#} \beta} l\right]=\sup _{l \in \mathscr{L}_{X}}\left[\mathbb{E}_{\alpha}(l \circ \phi)-\mathbb{E}_{\beta}(l \circ \phi)\right] .
$$

Due to the definition of supremum, for any $\epsilon>0 \exists l_{\epsilon} \in \mathscr{L}_{X}$ for which

$$
\begin{aligned}
d_{\mathscr{L}_{X}}\left(\phi_{\#} \alpha, \phi_{\#} \beta\right) & \leq \mathbb{E}_{\alpha}\left(l_{\epsilon} \circ \phi\right)-\mathbb{E}_{\beta}\left(l_{\epsilon} \circ \phi\right)+\epsilon \\
& =\inf _{g \in l_{\epsilon} \circ G_{L i p}}\left\{\mathbb{E}_{\alpha}\left|\left(l_{\epsilon} \circ \phi\right)-g\right|-\mathbb{E}_{\beta}\left|\left(l_{\epsilon} \circ \phi\right)-g\right|+\mathbb{E}_{\alpha}(g)-\mathbb{E}_{\beta}(g)\right\}+\epsilon \\
& \leq 2 \inf _{g^{\prime} \in G_{L i p}}\left\|\phi-g^{\prime}\right\|_{\infty}+\left\{\sup _{l \in \mathscr{L}_{X}}\left[\mathbb{E}_{\alpha}\left(l \circ g^{*}\right)-\mathbb{E}_{\beta}\left(l \circ g^{*}\right)\right]\right\}+\epsilon, \forall g^{*} \in G_{\text {Lip }} .
\end{aligned}
$$

Here, $l_{\epsilon} \circ G_{L i p}:=\left\{l_{\epsilon} \circ f: f \in G_{L i p}\right\}$. Now,

$$
\begin{align*}
\sup _{l \in \mathscr{L}_{X}}\left[\mathbb{E}_{\alpha}\left(l \circ g^{*}\right)-\mathbb{E}_{\beta}\left(l \circ g^{*}\right)\right] & =\inf _{\gamma \in \Gamma(\alpha, \beta)} \int c\left(g^{*}(x), g^{*}(y)\right) d \gamma(x, y) \\
& \leq L_{G} \inf _{\gamma \in \Gamma(\alpha, \beta)} \int c^{\prime}(x, y) d \gamma(x, y), \tag{1}
\end{align*}
$$

where (1) is due to the fact that $g^{*} \in G_{L i p}$. As such,

$$
d_{\mathscr{L}_{c}^{1}}\left(\phi_{\#} \alpha, \phi_{\#} \beta\right) \leq 2 \inf _{g^{\prime} \in G_{L i p}}\left\|\phi-g^{\prime}\right\|_{\infty}+L_{G} d_{\mathscr{L}_{c^{\prime}}^{\prime}}(\alpha, \beta) .
$$

Proof of Corollary (1). We have already noticed $\mathbb{E}_{\nu}\left[d_{\mathscr{L}_{c^{\prime}}^{\prime}}\left(\nu, \hat{\nu}_{n_{2}}\right)\right] \leq \mathcal{O}\left(\left(k^{2} n_{2}\right)^{-\frac{1}{k}}\right), k \geq 2$. Since the distance $d_{\mathscr{L}^{1},}(.,$.$) satisfies the bounded difference inequality, the application of McDiarmid's$ inequality leads to

$$
\begin{equation*}
\mathbb{P}\left(d_{\mathscr{L}_{c^{\prime}}^{\prime}}\left(\nu, \hat{\nu}_{n_{2}}\right) \leq \mathcal{O}\left(\left(k^{2} n_{2}\right)^{-\frac{1}{k}}\right)+t\right) \geq 1-\exp \left\{-\frac{2 n_{2} t^{2}}{B_{y}{ }^{2}}\right\} \tag{2}
\end{equation*}
$$

where $B_{y}=\operatorname{diam}\left(\Omega_{y}\right)$ with respect to the metric c^{\prime}. We point out that 2$\}$ is a generalized version of Proposition 20 in [1]. Now, Theorem (1) tells us,

$$
d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \hat{\nu}_{n_{2}}\right) \leq \epsilon+L_{G} d_{\mathscr{L}_{c^{\prime}}^{\prime}}\left(\nu, \hat{\nu}_{n_{2}}\right)+\mathcal{O}\left(C_{1} W^{-\frac{2}{k}} L^{-\frac{2}{k}}\right),
$$

given $\epsilon>0$ and $n_{1} \leq \frac{W-d-1}{2}\left\lfloor\frac{W-d-1}{6 d}\right\rfloor\left\lfloor\frac{L}{2}\right\rfloor+2$. Combining these two results, we get $\mathbb{P}\left(d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \hat{\nu}_{n_{2}}\right) \leq \mathcal{O}\left(\left(k^{2} n_{2}\right)^{-\frac{1}{k}}\right)+\frac{\left(1+L_{G}\right) B_{y}}{\sqrt{2}} n_{2}{ }^{-\frac{1}{2}} \sqrt{\ln \left(\frac{1}{\delta}\right)}+\mathcal{O}\left(C_{1} W^{-\frac{2}{k}} L^{-\frac{2}{k}}\right)\right) \geq 1-\delta$, by taking $\delta=\exp \left\{-\frac{2 n_{2} t^{2}}{B_{y}{ }^{2}}\right\}$. The statement also holds if we replace the two sample sizes n_{1}, n_{2} with $\min \left(n_{1}, n_{2}\right)$. In such a case, the Borel-Cantelli lemma implies that $d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \hat{\nu}_{n_{2}}\right) \longrightarrow 0$ almost surely (under \mathbb{P}), provided d, k remain fixed.

Remark. We draw the attention of the reader to a particular consequence of this result. Observe that the width (W) and depth (L) of the translator network are intrinsically related to the sample size $\left(n_{1}\right)$ from the target law. In case $\min \left(n_{1}, n_{2}\right) \longrightarrow \infty, W$ also follows suit, given that L remains constant. As such, our ideal backward translator, achieving generation consistency, is a finite sample approximation of an infinitely wide ReLU network. Maps induced by such an infinitely wide network converge in distribution to a Gaussian process [2]. This determines the large sample property of ϕ. Finding out the exact statistical properties of such a process in a parametric setup might be taken up as future work.
Remark. For any $n_{1} \in \mathbb{N}^{+}, d_{\mathscr{L}_{c}^{1}}\left(\mu, \phi_{\#} \hat{\nu}_{n_{2}}\right) \leq d_{\mathscr{L}_{c}^{1}}\left(\mu, \hat{\mu}_{n_{1}}\right)+d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \hat{\nu}_{n_{2}}\right)$. We have already seen that the second term on the right-hand side of the inequality vanishes eventually [Corollary 1]. Moreover, similar to (2)

$$
\mathbb{P}\left(d_{\mathscr{L}_{c}^{1}}\left(\mu, \hat{\mu}_{n_{1}}\right) \leq \mathcal{O}\left(\left(d^{2} n_{1}\right)^{-\frac{1}{d}}\right)+t\right) \geq 1-\exp \left\{-\frac{2 n_{1} t^{2}}{B_{x}{ }^{2}}\right\}
$$

As a result, $d_{\mathscr{L}_{c}^{1}}\left(\mu, \hat{\mu}_{n_{1}}\right) \xrightarrow{\text { a.s. }} 0$ (using Borel-Cantelli lemma). Hence, it can be concluded that $\phi_{\#} \hat{\nu}_{n_{2}}$ converges weakly to μ in $\mathscr{P}(\mathcal{X})$ [Theorem 6.9 in [3]].

Proof of Theorem (2). Let us carry out the decomposition of the realized backward translation error, similar to that in Theorem (1).

$$
d_{\mathcal{W}_{1}^{m, \infty}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \hat{\nu}_{n_{2}}\right) \leq d_{\mathcal{W}_{1}^{m, \infty}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \nu\right)+d_{\mathcal{W}_{1}^{m, \infty}}\left(\phi_{\#} \nu, \phi_{\#} \hat{\nu}_{n_{2}}\right)
$$

Observe that $\mathcal{W}_{1}^{m, \infty} \subset \mathcal{W}_{1}^{1, \infty}$, for any positive integer m. Also, the class $\mathcal{W}_{1}^{1, \infty}$ is a dense subset of 1-Lipschitz functions on \mathcal{X}. As such, $d_{\mathcal{W}_{1}^{m, \infty}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \nu\right) \leq d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \nu\right) \leq \epsilon$, where $\epsilon>0$ (as in the proof of Theorem (1)).

The remaining approximation error can similarly be upper bound using the same technique. However, it would be far from tight. Let us define a class of functions that help in the pursuit of sharper bounds.

Definition (Hölder Space). For $s \in \mathbb{R}_{>0}$, with $\lfloor s\rfloor$ indicating the largest integer strictly smaller than s, the Hölder space of order s is defined as

$$
\mathcal{C}_{L}^{s}\left(\mathbb{R}^{d}\right)=\left\{f \in C_{u}\left(\mathbb{R}^{d}\right):\|f\|_{\mathcal{C}^{s}} \equiv\|f\|_{\mathcal{W}^{\lfloor s\rfloor}}+\sum_{|\alpha|=\lfloor s\rfloor} \sup _{\substack{x \neq y \\ x, y \in \mathbb{R}^{d}}} \frac{\left|D^{\alpha} f(x)-D^{\alpha} f(y)\right|}{|x-y|^{s-\lfloor s\rfloor}}<L\right\}
$$

Now, similar to the proof of Lemma (2), for any $\epsilon^{\prime}>0 \exists l_{\epsilon^{\prime}} \in \mathcal{W}_{1}^{m, \infty}$ such that

$$
\begin{align*}
d_{\mathcal{W}_{1}^{m, \infty}}\left(\phi_{\#} \alpha, \phi_{\#} \beta\right) & \leq \mathbb{E}_{\alpha}\left(l_{\epsilon^{\prime}} \circ \phi\right)-\mathbb{E}_{\beta}\left(l_{\epsilon^{\prime}} \circ \phi\right)+\epsilon^{\prime}, \text { where } \alpha, \beta \in \mathscr{P}(\mathcal{Y}) \\
& =\inf _{g \in l_{\epsilon^{\prime}} \circ G_{L i p}}\left\{\mathbb{E}_{\alpha}\left|\left(l_{\epsilon^{\prime}} \circ \phi\right)-g\right|-\mathbb{E}_{\beta}\left|\left(l_{\epsilon^{\prime}} \circ \phi\right)-g\right|+\mathbb{E}_{\alpha}(g)-\mathbb{E}_{\beta}(g)\right\}+\epsilon^{\prime} \\
& \leq 2 \inf _{g^{\prime} \in G_{L i p}}\left\|\phi-g^{\prime}\right\|_{\infty}+\left\{\sup _{l \in \mathcal{W}_{1}^{m, \infty}}\left[\mathbb{E}_{\alpha}\left(l \circ g^{*}\right)-\mathbb{E}_{\beta}\left(l \circ g^{*}\right)\right]\right\}+\epsilon^{\prime}, \forall g^{*} \in G_{L i p} . \tag{3}
\end{align*}
$$

The first term in (3) is obtained due to the Lipschitz property of $l_{\epsilon^{\prime}}$. Here,

$$
\begin{align*}
\sup _{l \in \mathcal{W}_{1}^{m, \infty}}\left[\mathbb{E}_{\alpha}\left(l \circ g^{*}\right)-\mathbb{E}_{\beta}\left(l \circ g^{*}\right)\right] & =d_{\mathcal{W}_{1}^{m, \infty}}\left(g_{\#}^{*} \alpha, g_{\#}^{*} \beta\right) \leq d_{\mathcal{C}_{r}^{m}}\left(g_{\#}^{*} \alpha, g_{\#}^{*} \beta\right) \tag{4}\\
& =\sup _{l \in \mathcal{C}_{r}^{m} \circ g^{*}}\left\{\mathbb{E}_{x \sim \alpha}[l(x)]-\mathbb{E}_{x \sim \beta}[l(x)]\right\} . \tag{5}
\end{align*}
$$

Inequality (4) is based on the observation that there exists $r>0$ for which $\mathcal{W}_{1}^{m, \infty} \subset \mathcal{C}_{r}^{m}$ [4]. Given any $f \in \mathcal{C}_{r}^{m}$ and $g^{*} \in G_{L i p}$,

$$
\begin{aligned}
\left\|f \circ g^{*}\right\|_{\infty}=\left\{\sup \left|f\left(g^{*}(y)\right)\right|: y \in \mathbb{R}^{k}\right\} & =\left\{\sup |f(x)|: x=g^{*}(y) \in \mathbb{R}^{d}, y \in \mathbb{R}^{k}\right\} \\
& \leq\left\{\sup |f(x)|: x \in \mathbb{R}^{d}\right\}=\|f\|_{\infty} .
\end{aligned}
$$

Moreover, for $x, y \in \mathbb{R}^{k}, x \neq y$

$$
\begin{aligned}
\frac{\left|D^{\alpha} f\left(g^{*}(x)\right)-D^{\alpha} f\left(g^{*}(y)\right)\right|}{|x-y|^{s-\lfloor s\rfloor}} & =\frac{\left|D^{\alpha} f\left(g^{*}(x)\right)-D^{\alpha} f\left(g^{*}(y)\right)\right|}{\left|g^{*}(x)-g^{*}(y)\right|^{s-\lfloor s\rfloor}}\left\{\frac{\left|g^{*}(x)-g^{*}(y)\right|}{|x-y|}\right\}^{s-\lfloor s\rfloor} \\
& \leq \frac{\left|D^{\alpha} f\left(x^{*}\right)-D^{\alpha} f\left(y^{*}\right)\right|}{\left|x^{*}-y^{*}\right|^{s-\lfloor s\rfloor}\left(L_{G}\right)^{s-\lfloor s\rfloor}}
\end{aligned}
$$

assuming $x^{*} \neq y^{*} \in \mathbb{R}^{d}$. Here, we choose both the metrics c, c^{\prime} to be L^{1} in their respective spaces. This convention conforms to the rest of the discussion as well.
Also, for $1 \leq|s| \leq m$ we have

$$
D^{s}\left(f \circ g^{*}\right)(x)=s!\sum_{1 \leq|i| \leq|s|} \frac{\left(D^{i} f\right)\left(g^{*}(x)\right)}{i!} P_{s, i}\left(g^{*} ; x\right),
$$

where $P_{s, i}\left(g^{*} ; x\right)$ is a homogeneous polynomial of degree $|i|$. Schreuder et al. [Lemma 7.2 in [5]] show that $\left|D^{s}\left(f \circ g^{*}\right)(x)\right|<C$, where $C>0$ is a constant. This implies that there exists $r^{*}>0$ for which $f \circ g^{*} \in \mathcal{C}_{r^{*}}^{m}\left(\mathbb{R}^{k}\right)$. As such, we may upper bound $\sqrt{5}$ by replacing the supremum over $\mathcal{C}_{r}^{m}\left(\mathbb{R}^{d}\right) \circ g^{*}$ by the same over $\mathcal{C}_{r^{*}}^{m}\left(\mathbb{R}^{k}\right)$.
Hence, for $\epsilon>0$

$$
d_{\mathcal{W}_{1}^{m, \infty}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \hat{\nu}_{n_{2}}\right) \leq 2 \inf _{g^{\prime} \in G_{L i p}}\left\|\phi-g^{\prime}\right\|_{\infty}+d_{\mathcal{C}_{r^{*}}^{m}}\left(\nu, \hat{\nu}_{n_{2}}\right)+\epsilon
$$

The expected approximation error in the base domain can be put under a deterministic upper bound given by $\mathbb{E}_{\nu}\left[d_{\mathcal{C}_{r^{*}}^{m}}\left(\nu, \hat{\nu}_{n_{2}}\right)\right] \precsim n_{2}{ }^{-\frac{m}{k}}+\frac{\log n_{2}}{\sqrt{n_{2}}}$ [Lemma 2.8 in [6]]. As such, we get $\mathbb{E}\left[d_{\mathcal{W}_{1}^{m, \infty}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \hat{\nu}_{n_{2}}\right)\right] \leq \mathcal{O}\left(n_{2}-\frac{m}{k}+\frac{\log n_{2}}{\sqrt{n_{2}}}\right)+\mathcal{O}\left(\sqrt{k} L_{G} B_{y} W^{-\frac{2}{k}} L^{-\frac{2}{k}}\right)$.

Proof of Proposition (1). Let us denote the VC dimension of $\mathcal{Y}(\mathscr{P}(\mathcal{X}))$ by $v_{x}<\infty$. This criteria ensures that the target class of distributions are 'learnable'. For example, VC-dim $\left[\mathcal{Y}\left(\mathcal{G}_{d}\right)\right]=\mathcal{O}\left(d^{2}\right)$, where $\mathcal{G}_{d}=$ the class of d-dimensional Gaussian distributions [7]. Now, given $g \in G_{L i p}$, for any $n \in \mathbb{N}^{+}$

$$
\begin{align*}
d_{\mathscr{L}_{c}^{1}}\left(g_{\#} \hat{\nu}_{n}, \widehat{\left(g_{\#} \nu\right)_{n}}\right) & \leq d_{\mathscr{L}_{c}^{1}}\left(g_{\#} \hat{\nu}_{n}, g_{\#} \nu\right)+d_{\mathscr{L}_{c}^{1}}\left(g_{\#} \nu, \widehat{\left(g_{\#} \nu\right)_{n}}\right) \\
& \leq L_{G} d_{\mathscr{L}_{c^{\prime}}^{\prime}}\left(\hat{\nu}_{n}, \nu\right)+B_{x}\left\|g_{\#} \nu-\widehat{\left(g_{\#} \nu\right)_{n}}\right\|_{T V} . \tag{6}
\end{align*}
$$

Inequality (6) exploits the relation between Wasserstein and TV metrics [Theorem 4 in [8]]. We know there exists constants $\tilde{C}_{1}, \tilde{C}_{2}>0$ such that

$$
\mathbb{P}\left(\left\|g_{\#} \nu-\widehat{\left(g_{\#} \nu\right)_{n}}\right\|_{T V} \geq \tilde{C}_{1} \sqrt{\frac{v_{x}}{n}}+t\right) \leq \exp \left(-\tilde{C}_{2} n t^{2}\right)
$$

[Lemma 2 in [9]]. Using this argument along with (2) we obtain

$$
\mathbb{P}\left(d_{\mathscr{L}_{c}^{1}}\left(g_{\#} \hat{\nu}_{n}, \widehat{\left(g_{\#} \nu\right)_{n}}\right) \leq t+\mathcal{O}\left(n^{-\frac{1}{k}}\right)+\mathcal{O}\left(\sqrt{v_{x}} n^{-\frac{1}{2}}\right)\right) \geq 1-2 \exp \left(-C_{2} n t^{2}\right)
$$

where $C_{2}=\frac{1}{4} \min \left\{\frac{2}{\left(B_{y} L_{G}\right)^{2}}, \frac{\tilde{C}_{2}}{B_{x}{ }^{2}}\right\}>0$. As such, the function g is an information preserving map of degree 1 , under the 1 -Wasserstein metric, with a decaying error of order $\mathcal{O}\left(n^{-\frac{1}{k V 2}}\right)$.

Proof of Lemma (4). Our characterization of the critics allow \mathscr{L}_{X} to be \mathscr{L}_{c}^{1} or $\mathcal{W}_{1}^{m, \infty}$. Under this setup, for any backward translator G

$$
\begin{align*}
d_{\mathscr{L}_{X}}\left(\hat{\mu}_{n_{1}}, G_{\#} \hat{\nu}_{n_{2}}\right) & \leq d_{\mathscr{L}_{X}}\left(\hat{\mu}_{n_{1}},\left(\widehat{\left(G_{\#} \nu\right)_{n_{2}}}\right)+d_{\mathscr{L}_{X}}\left(\widehat{\left(G_{\#} \nu\right)_{n_{2}}}, G_{\#} \hat{\nu}_{n_{2}}\right)\right. \tag{7}\\
& \left.\leq B_{x} \| \hat{\mu}_{n_{1}}-\widehat{\left(G_{\#} \nu\right.}\right)_{n_{2}} \|_{T V}+\mathcal{E}_{3} \\
& \leq B_{x}\left\|\hat{\mu}_{n_{1}}-\Gamma_{n_{1}}\right\|_{T V}+\Lambda_{\left(n_{1}, n_{2}\right)}+\mathcal{E}_{3}
\end{align*}
$$

where $\Gamma_{n_{1}}=\operatorname{argmin}_{\tau \in \mathscr{P}(\mathcal{X})}\left\|\tau-\hat{\mu}_{n_{1}}\right\|_{T V}$. It is often called the Empirical Yatracos Minimizer [10]. Observe that, $\left\|\hat{\mu}_{n_{1}}-\Gamma_{n_{1}}\right\|_{T V} \leq\left\|\hat{\mu}_{n_{1}}-\mu\right\|_{T V}$. Now, in case the OT map T exists such that $T_{\#} \nu=\mu$, we get $\left\|\hat{\mu}_{n_{1}}-\Gamma_{n_{1}}\right\|_{T V} \leq \mathcal{E}_{1}$.
Remark. The information loss (in the right-hand side of (7)) can be taken care of by deploying an IPT as the translator. As such, it is the term $d_{\mathscr{L}_{X}}\left(\hat{\mu}_{n_{1}}, \widehat{\left(G_{\#} \nu\right)_{n_{2}}}\right)$ that mainly contributes to the upper bound. We had built the empirical distribution $\hat{\mu}_{n_{1}}$ based on $\left\{X_{i}\right\}_{i=1}^{n_{1}} \stackrel{i . i . d .}{\sim} \mu$. Similarly, let $\widehat{\left(G_{\#} \nu\right)_{n_{2}}}$ be based on $\left\{Y_{i}\right\}_{i=1}^{n_{2}} \stackrel{i . i . d .}{\sim} G_{\#} \nu$. We may write

$$
\begin{equation*}
d_{\mathscr{L}_{X}}\left(\hat{\mu}_{n_{1}},\left(\widehat{\left(G_{\#} \nu\right)_{n_{2}}}\right)=\sup _{f \in \mathscr{L}_{X}}\left|\sum_{i=1}^{N} W_{i} f\left(Z_{i}\right)\right|,\right. \tag{8}
\end{equation*}
$$

where $N=n_{1}+n_{2} ; W_{i}=\frac{1}{n_{1}}$ when $Z_{i}=X_{i}, i=1, \ldots, n_{1}$ and $W_{n_{1}+j}=-\frac{1}{n_{2}}$ when $Z_{n_{1}+j}=Y_{j}$, $j=1, \ldots, n_{2}$. Under this framework, the solution to (8) can be achieved by solving a linear program, given that $\mathscr{L}_{X} \equiv \mathscr{L}_{c}^{1}$ [Theorem 2.1 in [11]]. This provides a pathway to get hold of the realized approximation error, making the upper bound deterministic.

Proof of Lemma (5). Given translator maps $G \in \mathscr{F}(\mathcal{Y}, \mathscr{P}(\mathcal{X}))$ and $F \in \mathscr{F}(\mathcal{X}, \mathscr{P}(\mathcal{Y}))$, the cyclic loss in the space \mathcal{X} can be broken down as the following:

$$
\left\|\mu-(G \circ F)_{\#} \mu\right\|_{1} \leq\left\|\mu-G_{\# \nu}\right\|_{1}+\left\|G_{\#} \nu-(G \circ F)_{\#} \mu\right\|_{1},
$$

where

$$
\begin{aligned}
\left\|G_{\#} \nu-(G \circ F)_{\#} \mu\right\|_{1}=\left\|G_{\#} \nu-G_{\#}\left(F_{\#} \mu\right)\right\|_{1} & =2 \sup _{\omega \subseteq \sigma(\mathcal{X})}\left|G_{\#} \nu(\omega)-G_{\#}\left(F_{\#} \mu\right)(\omega)\right| \\
& =2 \sup _{\omega \subseteq \sigma(\mathcal{X})}\left|\nu\left(G^{-1}(\omega)\right)-F_{\#} \mu\left(G^{-1}(\omega)\right)\right| \\
& \leq 2 \sup _{\omega^{\prime} \subseteq \sigma(\mathcal{Y})}\left|\nu\left(\omega^{\prime}\right)-F_{\#} \mu\left(\omega^{\prime}\right)\right|=\left\|\nu-F_{\#} \mu\right\|_{1} .
\end{aligned}
$$

The inequality holds by taking supremum over all measurable sets belonging to the Borel σ-algebra on \mathcal{Y} instead of the particular path directed by G^{-1}. As such

$$
\left\|\mu-(G \circ F)_{\#} \mu\right\|_{1} \leq\left\|\mu-G_{\#} \nu\right\|_{1}+\left\|\nu-F_{\#} \mu\right\|_{1} .
$$

Similarly, $\left\|\nu-(F \circ G)_{\#} \nu\right\|_{1} \leq\left\|\nu-F_{\#} \mu\right\|_{1}+\left\|\mu-G_{\#} \nu\right\|_{1}$. Hence the proof.

Proof of Theorem (3). Given a measurable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, let us define its convolution with the kernel $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ as the following:

$$
K_{h}(f)=\int_{\mathbb{R}^{d}} K_{h}(., y) f(y) d y=\frac{1}{h^{d}} \int_{\mathbb{R}^{d}} K\left(\dot{h}, \frac{y}{h}\right) f(y) d y
$$

where $\frac{y}{h}=\left(\frac{y_{1}}{h}, \ldots, \frac{y_{d}}{h}\right)^{\prime}, h>0$. We begin by taking K to be regularly invariant. Now,

$$
\begin{align*}
\left\|p_{\mu}-p_{\phi_{\#} \nu}\right\|_{1} & \leq\left\|p_{\mu}-K_{h}\left(p_{\mu}\right)\right\|_{1}+\left\|K_{h}\left(p_{\mu}\right)-K_{h}\left(p_{\phi_{\#} \nu}\right)\right\|_{1}+\left\|K_{h}\left(p_{\phi_{\#} \nu}\right)-p_{\phi_{\#} \nu}\right\|_{1} \\
& \leq J\left\|p_{\mu}-K_{h}\left(p_{\mu}\right)\right\|_{p}+\left\|K_{h}\left(p_{\mu}\right)-K_{h}\left(p_{\phi_{\#} \nu}\right)\right\|_{1}+J\left\|K_{h}\left(p_{\phi_{\#} \nu}\right)-p_{\phi_{\#} \nu}\right\|_{p^{\prime}}, \tag{9}
\end{align*}
$$

where $J>0$. The existence of such a constant, and hence the inequality (9), is ensured by the fact $\|f\|_{1} \leq J\|f\|_{p}, p \geq 1$ since we have $\lambda\left(\Omega_{x}\right)<\infty$. Also, there exists a constant l depending upon m_{x} and K, such that $\left\|K_{h}\left(p_{\mu}\right)-p_{\mu}\right\|_{p} \leq l\left\|D^{m_{x}} p_{\mu}\right\|_{p} h^{m_{x}}$ [Proposition 4.3.33 in [12|]. As such, we get hold of a constant $J^{*}=J l$ for which

$$
\left\|p_{\mu}-p_{\phi_{\#} \nu}\right\|_{1} \leq J^{*}\left\{\left\|D^{m_{x}} p_{\mu}\right\|_{p}+\left\|D^{m_{x}} p_{\phi_{\#} \nu}\right\|_{p^{\prime}}\right\} h^{m_{x}}+\left\|K_{h}\left(p_{\mu}\right)-K_{h}\left(p_{\phi_{\#} \nu}\right)\right\|_{1}
$$

(by Assumption 2). Observe that,

$$
K_{h}\left(p_{\mu}\right)(x)-K_{h}\left(p_{\phi_{\# \nu}}\right)(x)=\frac{1}{h^{d}} \int\left\{K\left(\frac{x}{h}, \frac{y}{h}\right)-K\left(\frac{x}{h}, \frac{z}{h}\right)\right\} d \kappa(y, z)
$$

where κ is a coupling between μ and $\phi_{\#} \nu$. Hence,

$$
\begin{align*}
\left\|K_{h}\left(p_{\mu}\right)-K_{h}\left(p_{\phi_{\#} \nu}\right)\right\|_{1} & \leq \int\left\{\frac{1}{h^{d}} \int\left|K\left(\frac{x}{h}, \frac{y}{h}\right)-K\left(\frac{x}{h}, \frac{z}{h}\right)\right| d x\right\} d \kappa(y, z) \tag{10}\\
& =\int\left\{\frac{\int\left|K\left(x^{\prime}, \frac{y}{h}\right)-K\left(x^{\prime}, \frac{z}{h}\right)\right| d x^{\prime}}{|y-z|}\right\}|y-z| d \kappa(y, z) \\
& \leq \frac{M^{*}}{h} \int|y-z| d \kappa(y, z) \tag{11}
\end{align*}
$$

where M^{*} is a positive constant. The step (10) is due to Jensen's inequality, whereas (11) exploits the invariance of K. Since the inequality holds for all possible measure couples κ, we conclude

$$
\left\|K_{h}\left(p_{\mu}\right)-K_{h}\left(p_{\phi_{\#} \nu}\right)\right\|_{1} \leq \frac{M^{*}}{h} W_{c}^{1}\left(\mu, \phi_{\#} \nu\right)
$$

given that $c \equiv L^{1}$. A similar inference can be drawn for a general class of metrics c by altering the specification of the same in the definition of invariance. Now, choose

$$
h=\left\{\frac{W_{c}^{1}\left(\mu, \phi_{\#} \nu\right)}{\left\|D^{m_{x}} p_{\mu}\right\|_{p}+\left\|D^{m_{x}} p_{\phi_{\#} \nu}\right\|_{p^{\prime}}}\right\}^{\frac{1}{m_{x}+1}}
$$

Finally, we obtain

$$
\left\|p_{\mu}-p_{\phi_{\#} \nu}\right\|_{1} \leq M\left[\left\|D^{m_{x}} p_{\mu}\right\|_{p}+\left\|D^{m_{x}} p_{\phi_{\#} \nu}\right\|_{p^{\prime}}\right]^{\frac{1}{m_{x}+1}}\left[W_{c}^{1}\left(\mu, \phi_{\#} \nu\right)\right]^{\frac{m_{x}}{m_{x}+1}}
$$

where $M=2\left(J^{*} \vee M^{*}\right)$.
Proof of Proposition (2). Using Lemma (5),

$$
\begin{aligned}
\mathcal{L}_{c y c}\left(\hat{\mu}_{n_{1}}, \hat{\nu}_{n_{2}}, F, G\right) & =\left\|\hat{\mu}_{n_{1}}-(G \circ F)_{\#} \hat{\mu}_{n_{1}}\right\|_{1}+\left\|\hat{\nu}_{n_{2}}-(F \circ G)_{\#} \hat{\nu}_{n_{2}}\right\|_{1} \\
& \leq 4\left\{\left\|\hat{\mu}_{n_{1}}-G \# \hat{\nu}_{n_{2}}\right\|_{T V}+\left\|\hat{\nu}_{n_{2}}-F_{\#} \hat{\mu}_{n_{1}}\right\|_{T V}\right\} .
\end{aligned}
$$

Now, a similar decomposition of the translation errors under the TV metric, as in the proof of Lemma (4), results in the following:

$$
\begin{aligned}
\left\|\hat{\mu}_{n_{1}}-G_{\#} \hat{\nu}_{n_{2}}\right\|_{T V} & \leq\left\|\hat{\mu}_{n_{1}}-\Gamma_{n_{1}}\right\|_{T V}+\left\|\Gamma_{n_{1}}-\widehat{\left(G_{\#} \nu\right)_{n_{2}}}\right\|_{T V}+\left\|\widehat{\left(G_{\#} \nu\right)_{n_{2}}}-G_{\#} \hat{\nu}_{n_{2}}\right\|_{T V} \\
& \leq\left\|\hat{\mu}_{n_{1}}-\mu\right\|_{T V}+\frac{\Lambda_{\left(n_{1}, n_{2}\right)}}{B_{x}}+\left\|\widehat{\left(G_{\#} \nu\right)_{n_{2}}}-G_{\#} \hat{\nu}_{n_{2}}\right\|_{T V}
\end{aligned}
$$

Similarly, given that $\Gamma_{n_{2}}^{\prime}=\operatorname{argmin}_{\tau \in \mathscr{P}(\mathcal{Y})}\left\|\tau-\hat{\nu}_{n_{2}}\right\|_{T V}$

$$
\left\|\hat{\nu}_{n_{2}}-F_{\#} \hat{\mu}_{n_{1}}\right\|_{T V} \leq\left\|\hat{\nu}_{n_{2}}-\nu\right\|_{T V}+\frac{\Lambda_{\left(n_{1}, n_{2}\right)}^{\prime}}{B_{y}}+\|\left({\widehat{\left(F_{\#} \mu\right)}}_{n_{1}}-F_{\#} \hat{\mu}_{n_{1}} \|_{T V}\right.
$$

Proof of Theorem (4). Let $\phi \in \Phi(W, L)_{k}^{d}$, as specified in Theorem (1). Also, let $\psi \in \Phi\left(W^{\prime}, L^{\prime}\right)_{d}^{k}$ be a forward translator that achieves consistency. Observe that

$$
\begin{align*}
\hat{\mathcal{L}}_{c y c}\left(\tilde{\mu}_{n_{1}}, \tilde{\nu}_{n_{2}}, \psi, \phi\right) & \leq\left\|\tilde{\mu}_{n_{1}}-\mu\right\|_{1}+\left\|\tilde{\nu}_{n_{2}}-\nu\right\|_{1}+\mathcal{L}_{c y c}(\mu, \nu, \psi, \phi) \\
& \leq\left\|\tilde{\mu}_{n_{1}}-\mu\right\|_{1}+\left\|\tilde{\nu}_{n_{2}}-\nu\right\|_{1}+2\left\{\left\|\mu-\phi_{\#} \nu\right\|_{1}+\left\|\nu-\psi_{\#} \mu\right\|_{1}\right\} \tag{12}
\end{align*}
$$

For $1 \leq p, q<\infty$, we know that

$$
\mathbb{E}\left[\left\|\hat{p}_{\mu, n_{1}}-p_{\mu}\right\|_{p}\right] \precsim n_{1}^{-\frac{m_{x}}{2 m_{x}+d}}
$$

[Theorem 6.1 in [13|]. Similarly, for the estimation error in $\mathcal{Y}, \mathbb{E}\left[\left\|\hat{p}_{\nu, n_{2}}-p_{\nu}\right\|_{q}\right] \precsim n_{2}{ }^{-\frac{m_{y}}{2 m_{y}+k}}$. Moreover, Theorem (3) implies that

$$
\begin{equation*}
\left\{\left\|p_{\mu}-p_{\phi_{\#} \nu}\right\|_{1}\right\}^{\frac{m_{x}+1}{m_{x}}} \leq R d_{\mathscr{L}_{c}^{1}}\left(\mu, \phi_{\#} \nu\right) \leq R\left\{d_{\mathscr{L}_{c}^{1}}\left(\mu, \hat{\mu}_{n_{1}}\right)+d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \nu\right)\right\}, \tag{13}
\end{equation*}
$$

where $R=M^{\frac{m_{x}+1}{m_{x}}}\left[\left\|D^{m_{x}} p_{\mu}\right\|_{p}+\left\|D^{m_{x}} p_{\phi_{\#}}\right\|_{p^{\prime}}\right]^{\frac{1}{m_{x}}}$, and $\hat{\mu}_{n_{1}}$ is an usual empirical measure corresponding to μ. The term $d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n_{1}}, \phi_{\#} \nu\right)$ can be made arbitrarily small due to the construction of $\phi[\operatorname{Lemma}(1)]$. Also, we have already seen that $\mathbb{E}\left[d_{\mathscr{L}_{c}^{1}}\left(\mu, \hat{\mu}_{n_{1}}\right)\right] \precsim n_{1}{ }^{-\frac{1}{d}}$.
As such,

$$
\mathbb{E}\left[\left\|\tilde{\mu}_{n_{1}}-\mu\right\|_{1}+2\left\|\mu-\phi_{\#} \nu\right\|_{1}\right] \leq \mathcal{O}\left(n_{1}-\frac{m_{x}}{(d \vee 2) m_{x}+d}\right)
$$

by applying Jensen's inequality to (13). This bound, together with a similar result corresponding to its forward counterpart, will imply

$$
\mathbb{E}\left[\hat{\mathcal{L}}_{c y c}\left(\tilde{\mu}_{n_{1}}, \tilde{\nu}_{n_{2}}, \psi, \phi\right)\right] \precsim \max \left\{n_{1}^{-\frac{m_{x}}{(d \vee 2) m_{x}+d}}, n_{2}^{-\frac{m_{y}}{(k \vee 2) m_{y}+k}}\right\} .
$$

Proof of Corollary (2). We point out that, $K(x, y)$ can be taken in particular as $\tilde{K}(|x-y|)$, where $\tilde{K}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ identically follows the traits of K. Under such a kernel function,

$$
\left\|\mathbb{E}\left[\hat{p}_{\mu, n_{1}}\right]-p_{\mu}\right\|_{1} \leq l^{*} h^{m_{x}},
$$

for some constant $l^{*}>0$ [12]. Now, given an $\epsilon \leq \frac{2}{3}$, concentration inequalities on kernel density estimates tell us: there exists constants $E_{1}, E_{2}>0$ such that

$$
\mathbb{P}\left(\left\|\hat{p}_{\mu, n_{1}}-\mathbb{E}\left[\hat{p}_{\mu, n_{1}}\right]\right\|_{\infty}>\epsilon\right) \leq E_{1}\left(\frac{\sqrt{d} B_{x}}{h^{d+1} \epsilon}\right)^{d} \exp \left(-E_{2} n_{1} \epsilon^{2} h^{d}\right)
$$

The exact value of $E_{2}=\frac{3}{28 \tilde{K}(0)}$ can be obtained based on the convention that $\tilde{K}($.$) achieves its$ modal value at 0 . Such a centering can always be done. Hence,

$$
\begin{equation*}
\mathbb{P}\left(\left\|\hat{p}_{\mu, n_{1}}-p_{\mu}\right\|_{1}>\epsilon+l^{*} h^{m_{x}}\right) \leq E_{1}\left(\frac{\sqrt{d} B_{x}}{h^{d+1} \epsilon}\right)^{d} \exp \left(-E_{2} n_{1} \epsilon^{2} h^{d}\right) \tag{14}
\end{equation*}
$$

By applying Borel-Cantelli lemma one can show that $\left\|\hat{p}_{\mu, n_{1}}-p_{\mu}\right\|_{1} \longrightarrow 0$ almost surely, under suitable choice of $h \equiv h\left(n_{1}, m_{x}, d\right)$. 14 inspires a similar concentration for the estimate $\hat{p}_{\nu, n_{2}}$ around p_{ν}, under L^{1}. As such, by taking the corresponding bandwidth $h^{\prime} \equiv h^{\prime}\left(n_{2}, m_{y}, k\right)$, it can also be said that $\left\|\hat{p}_{\nu, n_{2}}-p_{\nu}\right\|_{1} \longrightarrow 0$ almost surely. To unify the two processes, one may assess the convergence based on $n=\min \left\{n_{1}, n_{2}\right\}$. Putting these results back in 12 , along with 13 , we conclude

$$
\hat{\mathcal{L}}_{c y c}\left(\tilde{\mu}_{n_{1}}, \tilde{\nu}_{n_{2}}, \psi, \phi\right) \longrightarrow 0, \text { almost surely. }
$$

In other words, $(\phi \circ \psi)_{\#} \tilde{\mu}_{n_{1}} \rightarrow \mu$ and $(\psi \circ \phi)_{\#} \tilde{\nu}_{n_{2}} \rightarrow \nu$, both in total variation.

Identity loss

Let us first rewrite the identity loss in terms of the underlying measures. Based on the notations in our framework,

$$
\mathcal{L}_{i d}(\mu, \nu, F, G)=\left\|\mu-F_{\#} \mu\right\|_{1}+\left\|\nu-G_{\#} \nu\right\|_{1} .
$$

Observe that the distributions must be equivariate to conform to this loss. Moreover,

$$
\begin{equation*}
\|\mu-\nu\|_{1}-\left\|F_{\#} \mu-\nu\right\|_{1} \leq\left\|\mu-F_{\#} \mu\right\|_{1} . \tag{15}
\end{equation*}
$$

If the forward translated law $F_{\#} \mu$ is Sobolev-smooth of order m_{y} (Assumption 2), Theorem (3) asserts the existence of a constant $R^{\prime}>0$ such that $\left\|p_{\nu}-p_{F_{\#} \mu}\right\|_{1} \leq R^{\prime}\left[d_{\mathscr{L}^{\frac{1}{\prime}}}\left(\nu, F_{\#} \mu\right)\right]^{\frac{m_{y}}{m_{y}+1}}$. In case F is also translation consistent, the second term on the left-hand side of (15) vanishes. A similar conclusion can be drawn for the quantity $\left\|\nu-G_{\#} \nu\right\|_{1}$ as well. As such, the cumulative identity loss from both domains cannot be minimized beyond the intrinsic discrepancy between the input distributions.

References

[1] Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. Bernoulli, 25(4A):2620-2648, 2019.
[2] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahramani. Gaussian process behaviour in wide deep neural networks. In International Conference on Learning Representations, 2018.
[3] Cédric Villani. Optimal transport : old and new. Grundlehren der mathematischen Wissenschaften. Springer, 2009.
[4] Nicolas Schreuder. Bounding the expectation of the supremum of empirical processes indexed by hölder classes, 2020, arXiv preprint arXiv:2003.13530.
[5] Nicolas Schreuder, Victor-Emmanuel Brunel, and Arnak Dalalyan. Statistical guarantees for generative models without domination. In Proceedings of the 32nd International Conference on Algorithmic Learning Theory, pages 1051-1071, 2021.
[6] Jian Huang, Yuling Jiao, Zhen Li, Shiao Liu, Yang Wang, and Yunfei Yang. An error analysis of generative adversarial networks for learning distributions, 2021, arXiv preprint arXiv:2105.13010.
[7] Hassan Ashtiani and Abbas Mehrabian. Some techniques in density estimation, 2018, arXiv preprint arXiv:1801.04003.
[8] Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics. International Statistical Review, 70(3):419-435, 2002.
[9] Anish Chakrabarty and Swagatam Das. Statistical regeneration guarantees of the wasserstein autoencoder with latent space consistency. In Advances in Neural Information Processing Systems, 2021.
[10] Luc Devroye and Gábor Lugosi. Combinatorial methods in density estimation. Springer series in statistics, 2001.
[11] Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert R. G. Lanckriet. On the empirical estimation of integral probability metrics. Electronic Journal of Statistics, 6:1550-1599, 2012.
[12] Evarist Giné and Richard Nickl. Mathematical Foundations of Infinite-Dimensional Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2015.
[13] Galatia Cleanthous, Athanasios G. Georgiadis, and Emilio Porcu. Minimax density estimation on sobolev spaces with dominating mixed smoothness, 2019, arXiv preprint arXiv:1906.06835.

