
Appendix1

A Implementation details2

We conduct experiments using Python and PyTorch1 [1] with a single NVIDIA TITAN RTX for point3

clouds and NVIDIA RTX 3090 for 2D image classification. Following the original configuration4

in [2, 3, 4], we use the Adam [5] optimizer with an initial learning rate of 10−3 for PointNet2 [2]5

and PointNet++2 [3] and SGD with an initial learning rate of 10−1 for DGCNN3 [4]. We train6

models with a batch size of 32 for 500 epochs. For a fair comparison with previous works [6, 7],7

we also adopt conventional data augmentations with our framework (i.e., scaling and shifting for8

MN40 [8] and rotation and jittering for ScanObjectNN 4[9]). When the performance of a baseline on9

ScanObjectNN is unavailable in the original paper of PointMixup [6] and RSMix5 [7], we reproduce10

the results based on their official code. For hyperparameters of SageMix, we opt θ = 0.2 in entire11

experiments. Regarding the bandwidth for RBF kernel, we opt σ = 2.0 for PointNet and σ = 0.3 for12

PointNet++ and DGCNN.13

B Additional Experiments14

B.1 Error bars15

Performance oscillation is an important issue in point cloud benchmarks. However, for a fair16

comparison with the numbers reported in PointMixup [6] and RSMix [7], we followed the prevalent17

evaluation metric in point clouds, which reports the best validation accuracy. Apart from this, we18

here provide the additional results with five runs on OBJ_ONLY. The mean and standard deviation19

are presented in Table 1.20

Table 1: Mean and standard deviation measures on OBJ_ONLY.

Method
Model

PointNet [2] PointNet++ [3] DGCNN [4]

Base 78.56±0.51 86.14±0.39 85.72±0.44
+ PointMixup [6] 78.88±0.28 87.50±0.26 86.26±0.34
+ RSMix [7] 77.60±0.56 87.30±0.65 85.88±0.59
+ SageMix 79.14±0.30 88.42±0.26 87.32±0.53

B.2 Manifold mixup21

We train DGCNN [4] to validate the SageMix in a feature space. Following manifold Mixup [10], we22

apply SageMix in a randomly selected layer. The results are summarized in Table 2. We observe the23

competitiveness of SageMix in feature space with the performance improvements by 0.6%, 1.5%,24

3.3% in MN40, OBJ_ONLY, and PB_T50_RS, respectively.25

B.3 Uncertainty calibration26

In this section, we measure the Expected Calibration Error (ECE) [11] of the model on three datasets.27

As shown in Table 3, our model consistently has the lowest calibration error on every dataset.28

Specifically, SageMix lowers ECE by 16.1%, 14.7%, and 15.6% compared to vanilla DGCNN in29

MN40, OBJ_ONLY, and PB_T50_RS, respectively.30
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Table 2: SageMix in input and feature space.

Method MN40 OBJ_ONLY PB_T50_RS

DGCNN [4] 92.9 86.2 79.9
+ SageMix (Input Space) 93.6 88.0 83.6
+ SageMix (Feature Space) 93.5 87.7 83.2

Table 3: Expected calibration error with DGCNN.

Dataset Vanilla PointMixup [6] RSMix [7] SageMix

MN40 18.3 2.4 24.2 2.2
OBJ_ONLY 19.8 6.8 18.9 5.1
PB_T50_RS 18.9 4.2 16.7 3.3

B.4 Detailed results of 2D classification31

We largely follow the setting in Co-Mixup6 [12] except for the learning rate. We trained 300 epochs32

with the batch size of 128. We adopt SGD as an optimizer with an initial learning rate of 0.1. We set33

the weight decay and the momentum as 10−4 and 0.9, respectively. We consider the column number34

and the row number as the coordinates of each pixel. For SageMix, we use θ = 0.3 and σ = 8.35

In Table 4, we report the accuracy and latency for each method. The second row of the table shows36

the running time per epoch. Our method is ×6.05 faster than Co-Mixup [12]. It is worth noting that37

our framework achieves state-of-the-art performance with a tolerable computational cost considering38

the improvements.39

Table 4: 2D classification with PreActResNet18 [13] on CIFAR-100.

Vanilla Mixup Manifold CutMix SaliencyMix Puzzle Mix Co-Mixup Ours

ACC. (%) 76.41 77.57 78.36 78.71 79.06 79.38 80.13 80.16
Time.(sec) 13.1 20.4 20.8 23.4 21.1 34.9 147.0 24.3

C Qualitative results40

C.1 Visualization41

In this section, we provide the qualitative results of SageMix. As in Figure 1 and Figure 2, given42

original samples (left and right), SageMix generate the augmented samples (middle). Also, we43

qualitatively compare SageMix with other baselines in Figure 3.44

D Negative societal impacts and limitations45

D.1 Negative Societal Impacts46

SageMix is designed for alleviating the problems of overfitting and data scarcity. To the best of47

our understanding, SageMix has no direct negative societal impact. However, similar to previous48

augmentation methods, our framework can be misused for malicious application. Especially, point49

clouds are widely used in various domains such as autonomous self-driving cars. In the real world,50

we cannot guarantee that virtual samples generated by data augmentation are always helpful for51

models to recognize objects. To mitigate this potential problem, we need additional verification for52

data augmentation methods.53
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D.2 Limitations54

Since SageMix calculates point-wise weights using the RBF kernel, an additional hyperparameter55

σ is required. Despite the consistent improvements, we empirically observed that the performance56

slightly varies according to the bandwidth. Although we demonstrated that our framework improves57

dense representation, as shown in part segmentation experiments, other localization tasks such as58

object detection have not been studied with our method. We believe that our method can be extended59

to diverse tasks including scene segmentation and object detection on indoor and outdoor scene point60

cloud datasets. These are left for future work.61
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Figure 1: Visualization of augmented samples by SageMix. Given two samples (left and right),
SageMix generates a sample (middle) based on query points.
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Figure 2: Visualization of augmented samples by SageMix. Given two samples (left and right),
SageMix generates a sample (middle) based on query points.
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Source PointMixup RSMix SageMix

Figure 3: Qualitative results with SageMix and baselines. Given two source samples(left),
PointMixup does not preserve the salient structure and RSMix loses the continuity. SageMix
generates a continuous mixture preserving the local structure of original shapes(right).
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