
Appendices of:

Mesoscopic modeling of hidden spiking neurons

A Mesoscopic model in the case of LIF neurons

In this section, we present in detail the mesoscopic model of Schwalger et al. [11] in the case of
multiple interacting populations of LIF neurons, as formulated in [13].

Fine-grained SNN of LIF neurons with escape noise. Let us consider a general network of N LIF
neurons (indexed by i = 1, . . . , N) with escape noise [10]. Neurons are modeled as point processes:
the probability for neuron i to emit a spike at time t, given the past network activity y1:t�1, is

p(yit = 1|y1:t�1,⇥) = 1� exp
⇣
��i

t�t
⌘
, with �i

t = exp
⇣
V i(t|t̂i)� #i

⌘
,

where the escape rate (or stochastic intensity) �i
t depends on the momentary difference between the

membrane potential V i(t|t̂i) and the firing threshold #i, via an exponential escape function. The
voltage V i(t|t̂i) of neuron i at time t depends on its last spike time t̂i = t�ai and the inputs received
up to time t, which include the inputs coming from the other neurons and the external input Iext,i1:t .
Between spikes, for all t > t̂i+ tiref (tiref being the absolute refractory period of neuron i), the voltage
dynamics follows

V i(t|t̂i) = V i(t� 1|t̂i) +

U i
r +RIext,it � V i(t� 1|t̂i)

⌧ imem

!
�t+

NX

j=1

J ij
⇣
✏ij ⇤ yj

⌘
(t),

and V i(t|t̂i) = 0, for all t t̂i + tiref (which means that the voltage is reset to 0 after each spike
and is clamped at 0 for an absolute refractory period tiref � 0). The parameters ⌧ imem > 0 and
U i
r > 0 are the membrane time constant and the resting potential respectively. The neuron i is

therefore characterized by the parameters ✓i = {#i, U i
r , ⌧

i
mem, t

i
ref}. While the escape function is

usually parameterized by a rescaled exponential function of the form f(v) = 1
⌧ i
0
exp(�i(v � #̃i))

[10, Sec 9.1], the parameters ⌧ i0,�i and #̃i can be absorbed in #i (up to a rescaling of the resting
potential U i

r). The resistance R = 1⌦ is used here simply for the consistency of physical units. The
postsynaptic current induced by a spike of neuron j on neuron i is defined by the synaptic weight J ij

and the synaptic kernel ✏ij : R+ ! R+. In this work, we consider exponential kernels of the form

✏ij(t) = H(t��ij)

⌧ ij
syn

exp

✓
�

t��ij

⌧ ij
syn

◆
, where ⌧ ijsyn is the synaptic time constant, �ij is the synaptic

delay and H is the Heaviside function. The symbol ⇤ denotes the convolution operator.

Coarse-grained multi-population SNN. Coarse-graining and mean-field approximations consist
in partitioning the N neurons into K homogeneous populations, indexed by ↵ = 1, . . . ,K, where (i)
all the neurons i in population ↵ share the same neuronal parameters ✓i = ✓↵; (ii) for any neuron
j in population � and any neuron i in population ↵, J ij = J↵�/N� (N� being the number of
neurons in population �) and ✏ij = ✏↵� ; (iii) all the neurons i in population ↵ share the same external
input Iext,i = Iext,↵. In such a coarse-grained K-population SNN, we have, for any neuron i in
population ↵,

NX

j=1

J ij
⇣
✏ij ⇤ yj

⌘
(t) =

KX

�=1

J↵�
⇣
✏↵� ⇤ n�

⌘
(t)/N� ,

where n�
t =

P
i2 pop. � y

i
t is the total number of spikes in population � at time t. Hence, the

probability for any neuron i in population ↵ to emit a spike at time t, given its age a and the past

1

population activity n1:t�1 is

pfire,↵t,a = 1� exp (��↵
t �t) , with �↵

t = exp
�
V ↵(t|t� a)� #↵

�
. (5)

For all a > t↵ref , we have the update rule

V ↵(t|t� a) = V ↵(t� 1|t� a) +

U↵
r +RIext,↵t � V ↵(t� 1|t� a)

⌧↵mem

!
�t

+
KX

�=1

J↵�
⇣
✏↵� ⇤ n�

⌘
(t)/N� ,

and V ↵(t|t� a) = 0 for all a t↵ref . This gives the explicit expression for the probability pfiret,a in
Eq. (1). In this work, for simplicity, we will assume that all the synaptic kernels are the same, i.e.
✏↵� = ✏, 8↵,� (see Table S2).

Mesoscopic description. The K-population SNN described above does not by itself constitute a
mesoscopic model because the probability pfire,↵t,a still involves the age a of some neuron. To get a
mesoscopic model (i.e. a model that does not involve the fine-grained modeling of each individual
neuron), Schwalger et al. [11] used the population activity n to approximate the age density of each
population and derived a closed-form system of stochastic integral equations: For all ↵ 2 1, . . . ,K,

n↵
t ⇠ Binomial

�
N↵, n̄↵

t /N
↵
�
, (6a)

n̄↵
t =

"
X

a�1

pfire,↵t,a S↵
t,a n

↵
t�a + ⇤↵

t

✓
N↵

�

X

a�1

S↵
t,a n

↵
t�a

◆#

+

, (6b)

⇤↵
t =

P
a�1 p

fire,↵
t,a (1� S↵

t,a)S
↵
t,a n

↵
t�aP

a�1(1� S↵
t,a)S

↵
t,a n

↵
t�a

, (6c)

where S↵
t,a =

Qa�1
s=0 (1� pfire,↵t�a+s,s) is the survival, i.e. the probability for a neuron in population ↵

to stay silent between time t� a and t� 1. A concise version of the derivation of the mesoscopic
model (6) is presented in [13]. Note that Eq. (6) is not a one-dimensional stochastic dynamical
system: the Markov embedding of the stochastic dynamics (6) is infinite-dimensional [13]. Indeed,
Eq. (6) does not only describes the evolution of the population activity n↵

t but it also describes
the evolution of the whole age (pseudo) density {S↵

t,ant�a}a�1 in the population, also called the
“refractory density” [12].

Formally, the ‘initial condition’ of Eq. (6) is defined by the population activity nt for all t 0
(denoted nt0). Several practical choices of initial conditions have been discussed in [11, 13, 54].
In this work, if not otherwise specified, nt0 is taken to be time-invariant, with stationary activities
estimated from the observed data (see below).

The size of the discrete time steps �t does not need to be the same for the fine-grained SNN and
for the mesoscopic model (6). Indeed, it can be useful to take longer time steps for the mesoscopic
description (time coarse-graining). In the following appendices, when there is an ambiguity, �tmeso

will denote the time step length for the mesoscopic model and neuLVM. The length �tmeso will
always be smaller or equal to the neuronal absolute refractory periods so that a neuron can fire at
most once in each time step.

B neuLVM for multiple interacting populations

Let us assume that we observe, during T time steps, the spike trains of q simultaneously recorded
neurons that are part of a K-population SNN of N neurons, with N > q. For each of the population
↵ = 1, . . . ,K, q↵ > 0 neurons are observed (

PK
↵=1 q

↵ = q) and share the same set of neuronal pa-
rameters ✓↵, input weights {J↵�/N�

}
K
�=1, and output weights {J�↵/N↵

}
K
�=1, where N1, . . . , NK

are the numbers of neurons in each population (
PK

↵=1 N
↵ = N).

2

The likelihood L of the observed spike trains. Following the assumptions described above,
the likelihood L of the observed spike trains yo (a binary q ⇥ T matrix) can be formally writ-
ten as

P
n p(yo,n|⇥), where n (an integer-valued K ⇥ T matrix) is the population activity and

⇥ = {{J↵�
}1↵,�K , {✓↵}K↵=1} are the parameters of the K-population SNN. The probability

p(yo,n|⇥) factorizes in T terms of the form
p(yo

t ,nt|y
o
1:t�1,n1:t�1,⇥) = p(yo

t |y
o
1:t�1,n1:t�1,⇥)

| {z }
part a

p(nt|n1:t�1,⇥)| {z }
part b

.

The probability (part a) of the observed spikes yo
t at time t given the past observed spike activity

yo
1:t�1 and the past population activity n1:t�1 is

p(yo
t |y

o
1:t�1,n1:t�1,⇥) =

KY

↵=1

q↵Y

i=1

p(yo,↵,it |ai,n1:t�1,⇥) =
KY

↵=1

q↵Y

i=1

pfire,↵t,ai ,

where pfire,↵t,ai , given by Eq. (5) in Appendix A, is the probability for the recorded neuron i of
population ↵ to emit a spike at time t.

The probability (part b) of the population activity nt at time t given the past population activity
n1:t�1 is

p(nt|n1:t�1,⇥) =
KY

↵=1

p(n↵
t |n1:t�1,⇥),

where p(n↵
t |n1:t�1,⇥) is approximated by the mesoscopic model (6).

C Fitting algorithm for neuLVM

Baum-Viterbi algorithm. Given the observed spike trains yo, we optimize the likelihood L =P
n p(yo,n|⇥) via an EM-like algorithm – the Baum-Viterbi algorithm [79]. Relying on the

heuristic that the posterior p(n|yo,⇥) should be concentrated around its maximum, we approximate
the posterior p(n|yo,⇥) by a point mass �µ, where µ = argmaxn log p(yo,n|⇥). By doing so, the
alternating estimation (E) and maximization (M) step of the n-th iteration read

E-step. bnn = argmaxn log p(yo,n|b⇥n�1),

M-step. b⇥n = argmax⇥ log p(yo, bnn
|⇥).

Details of the optimization. In the M-step, parameters ⇥ are optimized using the L-BFGS-B
algorithm and the optimization stops when either the maximum number of iterations (maxiterM) is
reached, or the objective function improves by less than ftolM, or the maximum norm of the gradient
is less than gtolM. Hyper-parameters including maxiterM, ftolM and gtolM are given in Table S5. In
the E-step, to carry out gradient ascent, we approximate the discrete Binomial distribution Eq. (6a)
by a Gaussian, i.e. n↵

t ⇠ N (n̄↵
t , n̄

↵
t), where n̄↵

t is given by the mesoscopic model Eq (6) [11].
With this approximation, the latent population activity n is optimized with the Adam algorithm with
learning rate lrE and the optimization stops when either the maximum number of iterations (maxiterE)
is reached, or the objective function stops improving for the last itertolE iterations. Hyper-parameters
including lrE, maxiterE and itertolE are given in Table S5. The estimated parameters b⇥ and the
estimated latent population activity bn are the result of many iterations of E-step and M-step. The
fitting algorithm ends either when it stops improving the objective function or the maximum number
of E-M iterations is reached.

Multiple data-driven initializations. To deal with the fact that the joint probability p(yo,n|⇥)
to optimize is non-convex and high-dimensional (n has dimension K ⇥ T), we perform the Baum-
Viterbi algorithm Ninit times with initial parameters b⇥0 uniformly sampled in a certain range given in
Appendices E and F. Since the sum over the observed neurons from population ↵,

Pq↵

i=1 y
o,i
1:T , already

provides a rough estimate of the latent population activity n↵
1:T , the E-Step of the first iteration (bn1)

is replaced by an empirical estimation of the population activity bnsm
� from the observed spike trains

(see Appendix D).

3

Numerical implementation of the mesoscopic model. To implement the mesoscopic model (6),
we approximate the infinite sums

P
a�1 in Eq. (6) by finite sums

Pamax

a=1 , where amax is chosen to be
large enough such that the probability for a neuron to remain silent for a duration longer than amax is
negligible. In our numerical implementation, the mesoscopic model (6) has therefore a finite memory
amax. Note that a more principled way to implement finite memory can be found in [13], where a
numerical implementation similar to ours is presented in detail. The hyper-parameter amax is given
in Appendices E and F. If not otherwise specified, the initial condition n0 of Eq. (6) are chosen to
be time-invariant, with stationary activities estimated from the first amax time steps of the recorded
spike trains.

D Smoothed empirical population activity

A smoothed empirical estimation of the population activity bnsm
� was obtained from the recorded spike

trains yo by applying a Gaussian smoothing kernel g� with standard deviation �. For population
↵ = 1, . . . ,K,

bnsm,↵
�,t =

0

B@

0

@N↵

q↵

q↵X

i=1

yo,↵,i
1:T

1

A ⇤ g�

1

CA (t).

E Details of the cluster state example

Values of parameters used in this example are given in Table S2, except if mentioned otherwise.

When the network is initialized in the unstable asynchronous state (Figure 2B,C). In this case,
the network is always initialized, at time 0, in the same unstable asynchronous state with a firing rate
of 20 Hz. The spike train power spectra (Figure 2B), for different choices of connectivity parameter
J , were computed using 600 non-overlapping segments of 120 s. To measure the goodness of the
connectivity recovered by newLVM, for each J in {59, 60, 61, 62, 63, 64, 65} mV, we simulated the
ground truth SNN (starting from the same unstable asynchronous state mentioned above) for 1 s and
further generated 10 different datasets with different samples of six observed neurons (1% of the
population).

When the network is initialized in a 4-cluster state (Figure 2D-F). In this case, we simulated a
trial (one second, J = 60.32 mV) with a transition from a metastable 4-cluster state to a 3-cluster
state (Figure 2D,E). To test how well newLVM work in the regime where only a tiny fraction of the
total number of neurons is observed, for each number {1, 2, 5, 10} of observed neurons, we generated
10 different datasets with different samples of observed neurons.

Fitting of the neuLVM. The initial parameter bJ0 was drawn uniformly in [10, 30] [[90, 110]
mV. The latent population activity was initialized as the smoothed empirical population activity
(bn1 = bnsm

�,t, Appendix D) with � = 1.4 ms (Figure 2E). Since the Baum-Viterbi algorithm converged
reliably when only J was unknown, Ninit was set to 1. The hyper-parameter �tmeso was set to 1 ms
and amax was set to 100 (amax�tmeso = 100 ms).

Fitting of René et al. (2020). A naive application of René et al. [54] consists in fitting the model
with bJ = argmax⇥ log p(bn1

|J). The parameter bJ0 and the latent population activity bn1 were set
the same way as for neuLVM, but Ninit was set to 200. The best performing bJs were reported in
Figure 2F. The hyper-parameters �tmeso and amax were the same as for neuLVM.

F Details of the metastable point attractors example

Values of parameters used in this example are given in Table S2, except if mentioned otherwise. In
this example, we simulated a 500 s-long trial and randomly cut out 20 non-overlapping 10 s-segments
to generate the training datasets.

4

Fitting of the neuLVM. The initial parameters b⇥0 (which include the connectivities J ·, membrane
time constants ⌧ ·mem, firing thresholds #· and resting potentials U ·

r) were sampled randomly by
assuming the uniform prior on the range 0.4 to 2 times the ground truth values. In this example,

the connectivity matrix J was parametrized by {J e1J e2 , J i
}J>0: J =

✓
Je1 0 0

0 Je2 0
0 0 J i

◆✓
1 0 1
0 1 1
�1 �1 �1

◆

(see Figure 3A for the network architecture). The latent population activity was initialized as the
smoothed empirical population activity (bn1 = bnsm,↵

�,t , Appendix D) with � = 400ms (Figure S7).
Out of 5 fits (Ninit = 5), the fit with the highest joint likelihood p(yo, bn|b⇥) was selected. The related
hyper-parameter �tmeso was set to 4 ms and amax was set to 250 (amax�tmeso = 1000 ms). When
�tmeso was set to a value that was larger than the �t of the recorded data, the recorded spike trains
were downsampled.

PLDS We used code from https://bitbucket.org/mackelab/pop_spike_dyn/src/
master/. To fit Poisson Linear Dynamical Systems (PLDS) [33] to the three-population exam-
ple, we initialized the parameters with nuclear norm penalized rate estimation [8] and used the
variational EM algorithm of [33]. The dimensionality of the latent states was set to three (the
number of populations). The time resolution of the recorded spike trains was downsampled to 4 ms
(�tPLDS = 4 ms). Other hyper-parameters were set to default.

SLDS We used code from https://github.com/lindermanlab/ssm [39]. To fit Poisson
Switching Linear Dynamical Systems (SLDS) [34–38] to the three-population example, we up-
dated the parameters with stochastic variational inference with the posterior approximated by a
factorized distribution. The dimensionality of the continuous latent states was chosen to be three (the
number of populations) and the dimensionality of the discrete latent states was chosen to be three
(corresponding to the number of metastable states plus one for the transition state). We specified the
‘emissions model’ as ‘Poisson_orthog’ with the exponential escape function. Other hyper-parameters
were set to default. Further, for SLDS to work, the discrete time step had to be large enough. Here
we downsampled datasets to 40 ms (the smallest �tSLDS that worked).

An additional test. We were interested to find out whether neuLVM is robust to within-population
heterogeneity and slightly out-of-distribution data. To answer this question, we performed an
additional test where we introduced within-population heterogeneity in the ground truth winner-take-
all (WTA) network (Section 5.2) by adding noise to the connectivity and neuronal parameters as
specified in the Table S6 (noise in the neuronal parameters is small to conserve metastable WTA
dynamics). Furthermore, we set the N ’s of the neuLVM to 300, 300, 300 (the N ’s of the ground truth
network are 400, 400, 200). We tested neuLVM on eight 10 s-segments cut out from a 100 s-long
trial. The method is only mildly affected by these changes: all fitted neuLVM reproduced metastable
WTA dynamics and the Pearson correlation between bn|yo and n⇤ was 0.76 ± 0.02, which is still
higher than the correlations obtained by PLDS and SLDS (see Table 1).

5

https://bitbucket.org/mackelab/pop_spike_dyn/src/master/
https://bitbucket.org/mackelab/pop_spike_dyn/src/master/
https://github.com/lindermanlab/ssm

Figure S6: Smoothed empirical estimate bnsm,↵
�,t (Appendix D) of the latent population activity for

one example trial (the same as in Figure 3, two excitatory populations). The value r is the Pearson
correlation coefficient between the inferred bn|yo and the ground truth n⇤ population activities.

Figure S7: Spontaneous population activity simulated by the neuLVM before learning. Population
activity of one excitatory population (the blue trace) quickly dies out. No visible metastable dynamics.

Table S2: Values of parameters used in simulations. Boldface is used to indicate fitted parameters.

Name Description Value

Example Section 5.1
Single excit. population

Example Section 5.2
Excitat. (inhib.) populations

�t time step 1 ms 0.2 ms
N number of neurons 600 400 (200)

⇥ J connectivity 60.32 mV 9.984 mV (-19.968 mV)*
firing threshold 49.7 mV 3.7 mV (3.7 mV)
Ur resting potential 26 mV 14.4 mV (14.4 mV)
⌧mem membrane time constant 100 ms 20 ms (20 ms)
tref absolute refractory period 0 ms 4 ms (4 ms)

✏ ⌧syn synaptic time constant 4 ms 3 ms (6 ms)
� synaptic delay 10 ms 0 ms (0 ms)

* i.e. for all population ↵, J↵� = 9.984 mV if � is an excitatory population and J↵� = �19.968
mV if � is the inhibitory population.

6

Table S3: Performance summary (ii) when fitting neuLVMs to the single-population example (Sec-
tion 5.2, Figure 2C) with m-cluster states. For each ground truth J , 10 different datasets were
generated and tested. (6 observed neurons.)

J 59 60 61 62 63 64 65
bJ (mean) 58.18 60.46 61.20 62.05 62.39 63.58 63.66
bJ (std) 0.50 0.71 0.93 0.46 1.11 1.59 1.85

Pearson r 0.81 (p = 2.8e�17)

Table S4: Performance summary (i) when fitting neuLVMs to the single-population example (Sec-
tion 5.2, Figure 2F) with a transition from a metastable 4-cluster state to a 3-cluster state. For each
ground truth J , 10 different datasets were generated and tested. (J = 60.32 mV.)

observed neurons 1 2 5 10 599
bJ (mean) 60.37 60.14 59.33 59.81 59.10
bJ (std) 2.43 1.48 0.91 1.25 1.26

Table S5: Hyper-parameters used when fitting neuLVM.

Name Value

Example Section 5.1
Single excit. population

Example Section 5.2
Excitat. (inhib.) populations

lrE 1e�3 1e�3
maxiterE 200 200
itertolE 3 3
lrM 1e�8 * 1e�8*
maxiterM 200 200
ftolM 2e�9* 2e�9*
gtolM 1e�5* 1e�5*

* Values are default as in scipy.optimize.minimize(method=‘L-BFGS-B’).

Table S6: Within-population heterogeneity introduced in the ground truth winner-take-all (WTA)
network (in the additional experiment of Appendix F).

ground truth within-population heterogeneity µ � (normal distribution)

J e1J e2 , J i 9.98 / 9.98 / 19.97 2.00 / 2.00 / 2.00
3.70 0.07
Ur 14.40 0.29

⌧mem 20.00 0.40

7

G Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Code URL
available upon acceptance or upon request.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of computing and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

References
[11] Tilo Schwalger, Moritz Deger, and Wulfram Gerstner. Towards a theory of cortical columns:

From spiking neurons to interacting neural populations of finite size. PLoS Computational
Biology, 13(4):e1005507, 2017.

[13] Valentin Schmutz, Eva Löcherbach, and Tilo Schwalger. On a finite-size neuronal population
equation. arXiv preprint arXiv:2106.14721, 2021.

[10] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge University Press, 2014.

[12] Tilo Schwalger and Anton V Chizhov. Mind the last spike—firing rate models for mesoscopic
populations of spiking neurons. Current Opinion in Neurobiology, 58:155–166, 2019.

[54] Alexandre René, André Longtin, and Jakob H Macke. Inference of a mesoscopic population
model from population spike trains. Neural Computation, 32(8):1448–1498, 2020.

8

[79] Yariv Ephraim and Neri Merhav. Hidden Markov processes. IEEE Transactions on Information
Theory, 48(6):1518–1569, 2002.

[33] Jakob H Macke, Lars Buesing, John P Cunningham, Byron M Yu, Krishna V Shenoy, and
Maneesh Sahani. Empirical models of spiking in neural populations. Advances in Neural
Information Processing Systems, 24:1350–1358, 2011.

[8] David Pfau, Eftychios A Pnevmatikakis, and Liam Paninski. Robust learning of low-dimensional
dynamics from large neural ensembles. Advances in neural information processing systems, 26,
2013.

[39] Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam
Paninski. Bayesian learning and inference in recurrent switching linear dynamical systems. In
Artificial Intelligence and Statistics, pages 914–922. PMLR, 2017.

[34] Guy Ackerson and K Fu. On state estimation in switching environments. IEEE Transactions on
Automatic Control, 15(1):10–17, 1970.

[35] Zoubin Ghahramani and Geoffrey E Hinton. Variational learning for switching state-space
models. Neural Computation, 12(4):831–864, 2000.

[36] David Barber. Expectation correction for smoothed inference in switching linear dynamical
systems. Journal of Machine Learning Research, 7(11), 2006.

[37] Emily Fox, Erik Sudderth, Michael Jordan, and Alan Willsky. Nonparametric Bayesian learning
of switching linear dynamical systems. Advances in Neural Information Processing Systems,
21:457–464, 2008.

[38] Biljana Petreska, Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen Ryu, Krishna V
Shenoy, and Maneesh Sahani. Dynamical segmentation of single trials from population neural
data. Advances in Neural Information Processing Systems, 24:756–764, 2011.

9

	Introduction
	Relation to prior work
	Background: mesoscopic modeling of the population activity
	Theoretical result: Neuronally-grounded latent variable model
	Experimental results
	Single homogenous population: SNN with metastable cluster states
	Multiple populations: SNN with metastable point attractors
	Latent population activity inference and reproduction of metastable dynamics
	Generalization: towards experimental predictions with neuronally-grounded modeling

	Discussion
	Mesoscopic model in the case of LIF neurons
	neuLVM for multiple interacting populations
	Fitting algorithm for neuLVM
	Smoothed empirical population activity
	Details of the cluster state example
	Details of the metastable point attractors example
	Checklist

