
Supplementary Material
A Main Proofs

Recall that we define 𝑤𝐷𝑡 to be the 𝑡-th iterate when applying GD over the population risk as depicted
in Eq. (12).

A.1 Proof of Lemma 5.1

Observe that,
∥𝑤𝑆𝑡+1 − 𝑤

𝐷
𝑡+1∥

2 = ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 − η(∇𝐹𝑆 (𝑤𝑆𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 ))∥2

= ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 − 2η(∇𝐹𝑆 (𝑤𝑆𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 ) + η2∥∇𝐹𝑆 (𝑤𝑆𝑡 ) − ∇𝐹𝐷 (𝑢𝑡 )∥2

≤ ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 − 2η(∇𝐹𝑆 (𝑤𝑆𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 ) + 4η2𝐿2 (𝐿-Lipschitz)
= ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 − 2η(∇𝐹𝑆 (𝑤𝑆𝑡 ) − ∇𝐹𝑆 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 )

+ 2η(∇𝐹𝐷 (𝑤𝐷𝑡 ) − ∇𝐹𝑆 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 ) + 4η2𝐿2

≤ ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + 2η(∇𝐹𝐷 (𝑤𝐷𝑡 ) − ∇𝐹𝑆 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 ) + 4η2𝐿2,

where in the last inequality we use monotinicity of convex functions: (∇𝐹𝑆 (𝑤) − ∇𝐹𝑆 (𝑢)) (𝑤 − 𝑢) ≥
0 for any 𝑤, 𝑢. Next, applying Cauchy-Schwarz inequality we get,

∥𝑤𝑆𝑡+1 − 𝑤
𝐷
𝑡+1∥

2 ≤ ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + 2η(∇𝐹𝐷 (𝑤𝐷𝑡 ) − ∇𝐹𝑆 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 ) + 4η2𝐿2

≤ ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + 2η∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥ + 4η2𝐿2 (C.S.)

≤ ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + η2𝑡∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥2 + 1
𝑡
∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + 4η2𝐿2

=

(
1 + 1

𝑐

)
∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + η2𝑐∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥2 + 4η2𝐿2.

The last inequality follows from the observation that 2𝑎𝑏 ≤ 𝑐𝑎2 + 𝑏2/𝑐 for any 𝑐 > 0 and 𝑎, 𝑏 ≥ 0,
specifically for 𝑎 = η∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥, and 𝑏 = ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥.
Applying the formula recursively, and noting that 𝑤0 = 𝑢0:

∥𝑤𝑆𝑡+1 − 𝑤
𝐷
𝑡+1∥

2 ≤
𝑡∑︁
𝑡′=0

(
1 + 1

𝑐

) 𝑡−𝑡′ (
η2𝑐∥∇𝐹𝑆 (𝑤𝐷𝑡′ ) − ∇𝐹𝐷 (𝑤𝐷𝑡′ )∥2 + 4η2𝐿2

)
≤

𝑡∑︁
𝑡′=0

(
𝑒η2𝑡∥∇𝐹𝑆 (𝑤𝐷𝑡′ ) − ∇𝐹𝐷 (𝑤𝐷𝑡′ )∥2 + 4𝑒η2𝐿2

)
,

where in the last inequality we chose 𝑐 = 𝑡 + 1 and used the known bound of (1 + 1/𝑡)𝑡 ≤ 𝑒. Taking
the square root and using the inequality of

√
𝑎 + 𝑏 ≤

√
𝑎 +

√
𝑏 we conclude

∥𝑤𝑆𝑡+1 − 𝑤
𝐷
𝑡+1∥ ≤

√√√
𝑒η2 (𝑡 + 1)

𝑡∑︁
𝑡′=0

∥∇𝐹𝑆 (𝑤𝐷𝑡′ ) − ∇𝐹𝐷 (𝑤𝐷𝑡′ )∥
2 + 2

√
𝑒η𝐿

√
𝑡 + 1.

We are interested in bounding 𝔼𝑆∼𝐷𝑛
[
∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥2

]
. By the definition of the empirical

risk

𝔼
𝑆∼𝐷𝑛

[
∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥2

]
=

1
𝑛2 𝔼

𝑆∼𝐷𝑛

[ 𝑛∑︁
𝑖=1

[
∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧𝑖) − 𝔼

𝑧∼𝐷
[∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧)]

]2
]

Note that by Lipschitzness ∥∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧𝑖) − 𝔼[∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧)] ∥ ≤ 2𝐿, and that{
∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧𝑖) − 𝔼[∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧)]

}
𝑖∈[𝑛] are independent zero-mean random vectors (as 𝑤𝐷𝑡 is

independent of 𝑧𝑖). Thus, we get

𝔼
𝑆∼𝐷𝑛

[
∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥2

]
=

1
𝑛2

𝑛∑︁
𝑖=1

[
𝔼

𝑆∼𝐷𝑛

[∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧𝑖) − 𝔼
𝑧∼𝐷

[∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧)]
2

] ]
≤ 4𝐿2

𝑛
.
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Consequently, taking the expectation over the sample 𝑆 and using Jensen’s inequality

𝔼
𝑆∼𝐷𝑛

[
∥𝑤𝑆𝑡+1 − 𝑤

𝐷
𝑡+1∥

]
≤ 4η𝐿 (𝑡 + 1)

√
𝑛

+ 4η𝐿
√
𝑡 + 1.

A.2 Proof of Theorem 3.1

Starting with Lemma 2.1 we obtain for any domain W𝐾
𝑢 ,

𝔼
𝑆∼𝐷𝑛

[
sup

𝑤∈W𝐾
𝑢

{𝐹𝐷 (𝑤) − 𝐹𝑆 (𝑤)}
]
≤ 2𝐿𝐾

√
𝑛
. (13)

From Theorem 3.2, there exists a sequence 𝑢1, . . . , 𝑢𝑇 such that with probability at least 1 − δ,�̄�𝑆 − 1
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡

 ≤ 7η𝐿𝑇
√
𝑛

√︁
log(𝑇/δ) + 4η𝐿

√
𝑇. (14)

Setting 𝑢 = 1
𝑇

∑𝑇
𝑡=1 𝑢𝑡 and 𝐾 to be the RHS in Eq. (14) we obtain:

𝔼
𝑆∼𝐷𝑛

[
𝐹𝐷 (�̄�𝑆) − 𝐹𝑆 (�̄�𝑆)

]
≤ 𝔼
𝑆∼𝐷𝑛

[
sup

𝑤∈W𝐾
𝑢

{𝐹𝐷 (𝑤) − 𝐹𝑆 (𝑤)}
���̄�𝑆 ∈ W𝐾

𝑢

]
𝑃(�̄�𝑆 ∈ W𝐾

𝑢 )

+ 𝑃(�̄�𝑆 ∉ W𝐾
𝑢 ) sup

𝑆∼𝐷𝑛
|𝐹𝐷 (�̄�𝑆) − 𝐹𝑆 (�̄�𝑆) |

= 𝔼
𝑆∼𝐷𝑛

[
sup

𝑤∈W𝐾
𝑢

{𝐹𝐷 (𝑤) − 𝐹𝑆 (𝑤)}
]
− 𝔼
𝑆∼𝐷𝑛

[
sup

𝑤∈W𝐾
𝑢

{𝐹𝐷 (𝑤) − 𝐹𝑆 (𝑤)}
���̄�𝑆 ∉ W𝐾

𝑢

]
𝑃(�̄�𝑆 ∉ W𝐾

𝑢 )

+ 𝑃(�̄�𝑆 ∉ W𝐾
𝑢 ) sup

𝑆∼𝐷𝑛
|𝐹𝐷 (�̄�𝑆) − 𝐹𝑆 (�̄�𝑆) |

≤ 𝔼
𝑆∼𝐷𝑛

[
sup

𝑤∈W𝐾
𝑢

{𝐹𝐷 (𝑤) − 𝐹𝑆 (𝑤)}
]
+ 𝑃(�̄�𝑆 ∉ W𝐾

𝑢 ) sup
𝑆∼𝐷𝑛

sup
𝑤∈W𝐾

𝑢

|𝐹𝐷 (𝑤) − 𝐹𝑆 (𝑤) |

+ 𝑃(�̄�𝑆 ∉ W𝐾
𝑢 ) sup

𝑆∼𝐷𝑛
|𝐹𝐷 (�̄�𝑆) − 𝐹𝑆 (�̄�𝑆) |

≤ 14η𝐿2𝑇

𝑛

√︁
log(𝑇/δ) + 8η𝐿2√𝑇

√
𝑛

+ 𝑃(�̄�𝑆 ∉ W𝐾
𝑢 ) sup

𝑆∼𝐷𝑛
sup

𝑤∈W𝐾
𝑢

|𝐹𝐷 (𝑤) − 𝐹𝑆 (𝑤) |

+ 𝑃(�̄�𝑆 ∉ W𝐾
𝑢 ) sup

𝑆∼𝐷𝑛
|𝐹𝐷 (�̄�𝑆) − 𝐹𝑆 (�̄�𝑆) | (Eqs. (13) and (14))

≤ 14η𝐿2𝑇

𝑛

√︁
log(𝑇/δ) + 8η𝐿2√𝑇

√
𝑛

+𝑂
(
δη𝐿2𝑇

√︁
log(𝑇/δ)

)
,

where we used Eq. (7) and the fact that ∥�̄�𝑆 ∥ ≤ η𝐿𝑇 and ∥𝑢∥+𝐾 ≤ 𝑂
(
η𝐿𝑇 + η𝐿𝑇

√︁
log(𝑇/δ)/

√
𝑛

)
≤

𝑂
(
η𝐿𝑇

√︁
log(𝑇/δ)

)
to bound the second and third terms. Hence:

|𝐹𝐷 (�̄�𝑆) − 𝐹𝑆 (�̄�𝑆) | ≤ |𝐹𝐷 (�̄�𝑆) | + |𝐹𝑆 (�̄�𝑆) | ≤ 𝑂
(
η𝐿2𝑇

)
,

and
sup

𝑤∈W𝐾
𝑢

|𝐹𝐷 (𝑤) − 𝐹𝑆 (𝑤) | ≤ sup
𝑤∈W𝐾

𝑢

|𝐹𝐷 (𝑤) | + sup
𝑤∈W𝐾

𝑢

|𝐹𝑆 (𝑤) | ≤ 𝑂
(
η𝐿2𝑇

√︁
log(𝑇/δ)

)
.

Next, setting δ = 𝑂 (1/
√
𝑛𝑇) we get that:

𝔼
𝑆∼𝐷𝑛

[
𝐹𝐷 (�̄�𝑆) − 𝐹𝑆 (�̄�𝑆)

]
≤ 𝑂

(
η𝐿2𝑇

𝑛

√︁
log(𝑛𝑇) + η𝐿2√𝑇

√
𝑛

√︁
log(𝑛𝑇)

)
. (15)

Finally, combining Eqs. (4) and (15) we obtain that for every 𝑤★ ∈ W𝐵:
𝔼

𝑆∼𝐷𝑛

[
𝐹𝐷 (�̄�𝑆)

]
− 𝐹𝐷 (𝑤★) = 𝔼

𝑆∼𝐷𝑛

[
𝐹𝐷 (�̄�𝑆) − 𝐹𝑆 (�̄�𝑆)

]
+ 𝔼
𝑆∼𝐷𝑛

[
𝐹𝑆 (�̄�𝑆)

]
− 𝐹𝐷 (𝑤★)

= 𝔼
𝑆∼𝐷𝑛

[
𝐹𝐷 (�̄�𝑆) − 𝐹𝑆 (�̄�𝑆)

]
+ 𝔼
𝑆∼𝐷𝑛

[
𝐹𝑆 (�̄�𝑆) − 𝐹𝑆 (𝑤★)

]
≤ 𝑂

(
η𝐿2𝑇

𝑛

√︁
log(𝑛𝑇) + η𝐿2√𝑇

√
𝑛

√︁
log(𝑛𝑇) + η𝐿2 + 𝐵2

η𝑇

)
.

14



A.3 Proof of Theorem 3.2

The proof is similar to that of Lemma 5.1 with the exception that here we employ specific concentra-
tion inequalities of random variables with bounded difference. The reference sequence we consider
is the GD iterates over the population risk, namely, 𝑤𝐷𝑡 as described in Eq. (12). Observe that

∥𝑤𝑆𝑡+1 − 𝑤
𝐷
𝑡+1∥

2 = ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 − η(∇𝐹𝑆 (𝑤𝑆𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 ))∥2

= ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 − 2η(∇𝐹𝑆 (𝑤𝑆𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 ) + η2∥∇𝐹𝑆 (𝑤𝑆𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥2

≤ ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 − 2η(∇𝐹𝑆 (𝑤𝑆𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 ) + 4η2𝐿2 (𝐿-Lipschitz)
= ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 − 2η(∇𝐹𝑆 (𝑤𝑆𝑡 ) − ∇𝐹𝑆 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 )

+ 2η(∇𝐹𝐷 (𝑤𝐷𝑡 ) − ∇𝐹𝑆 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 ) + 4η2𝐿2.

From convexity of 𝐹𝑆 we know that (∇𝐹𝑆 (𝑤) − ∇𝐹𝑆 (𝑢)) (𝑤 − 𝑢) ≥ 0 for any 𝑤, 𝑢. Therefore,
applying Cauchy-Schwarz inequality we get,

∥𝑤𝑆𝑡+1 − 𝑤
𝐷
𝑡+1∥

2 ≤ ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + 2η(∇𝐹𝐷 (𝑤𝐷𝑡 ) − ∇𝐹𝑆 (𝑤𝐷𝑡 )) (𝑤𝑆𝑡 − 𝑤𝐷𝑡 ) + 4η2𝐿2 (convexity)
≤ ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + 2η∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥ + 4η2𝐿2 (C.S.)

≤ ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + η2𝑡∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥2 + 1
𝑡
∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + 4η2𝐿2

=

(
1 + 1

𝑐

)
∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + η2𝑐∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥2 + 4η2𝐿2. (16)

The last inequality follows from the observation that 2𝑎𝑏 ≤ 𝑐𝑎2 + 𝑏2/𝑐 for any 𝑐 > 0 and 𝑎, 𝑏 ≥ 0,
specifically for 𝑎 = η∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥, and 𝑏 = ∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥.

We are interested in bounding ∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥. For that matter we consider the following
concentration inequality which is a direct result of the bounded difference inequality by McDiarmid.

Theorem (Boucheron, Lugosi, and Massart [7, Example 6.3]). Let 𝑋1, . . . , 𝑋𝑛 be independent
zero-mean R.V’s such that ∥𝑋𝑖 ∥ ≤ 𝑐𝑖/2 and denote 𝑣 = 1

4
∑𝑛
𝑖=1 𝑐

2
𝑖
. Then, for all 𝑡 ≥

√
𝑣,

ℙ

{ 𝑛∑︁
𝑖=1

𝑋𝑖

 > 𝑡} ≤ 𝑒−(𝑡−
√
𝑣)2/(2𝑣) .

Note that by Lipschitzness ∥∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧𝑖) − 𝔼[∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧)] ∥ ≤ 2𝐿, and that{
∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧𝑖) − 𝔼[∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧)]

}
𝑖∈[𝑛] are independent zero-mean random variables (as 𝑤𝐷𝑡 is

independent of 𝑧𝑖). Thus, for ∆ ≥ 2 𝐿√
𝑛
:

ℙ

{1
𝑛

𝑛∑︁
𝑖=1

∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧𝑖) − 𝔼[∇ 𝑓 (𝑤𝐷𝑡 ; 𝑧)]
 > ∆}

≤ 𝑒−(∆
√
𝑛−2𝐿)2/(4𝐿2) ,

This implies that with probability 1 − δ we get,

∥∇𝐹𝑆 (𝑤𝐷𝑡 ) − ∇𝐹𝐷 (𝑤𝐷𝑡 )∥ ≤ 4𝐿
√
𝑛

√︁
log(1/δ).

Plugging it back to Eq. (16) we obtain w.p. 1 − δ

∥𝑤𝑆𝑡+1 − 𝑤
𝐷
𝑡+1∥

2 ≤
(
1 + 1

𝑐

)
∥𝑤𝑆𝑡 − 𝑤𝐷𝑡 ∥2 + 16η2𝐿2𝑐 log(1/δ)

𝑛
+ 4η2𝐿2

Applying the formula recursively, and noting that 𝑤𝑆0 = 𝑤𝐷0 :

∥𝑤𝑆𝑡+1 − 𝑤
𝐷
𝑡+1∥

2 ≤
𝑡∑︁
𝑡′=0

(
1 + 1

𝑐

) 𝑡′ (16η2𝐿2𝑐 log(1/δ)
𝑛

+ 4η2𝐿2
)

≤ 16𝑒η2𝐿2 (𝑡 + 1)2 log(1/δ)
𝑛

+ 4𝑒η2𝐿2 (𝑡 + 1),
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where in the last inequality we chose 𝑐 = 𝑡 + 1 and used the known bound of (1 + 1/𝑡)𝑡 ≤ 𝑒. Taking
the square root and using the inequality of

√
𝑎 + 𝑏 ≤

√
𝑎 +

√
𝑏 we have

∥𝑤𝑆𝑡+1 − 𝑤
𝐷
𝑡+1∥ ≤ 7

√︂
η2𝐿2 (𝑡 + 1)2 log(1/δ)

𝑛
+ 4η𝐿

√
𝑡 + 1.

By taking the union bound over all 𝑡 ∈ [𝑇] we conclude the proof.

A.4 Proof of Theorem 3.4

Similarly to the proof in the supplementary material, let us consider the domain W𝐾
𝑢 =

{𝑤 : ∥𝑤 − 𝑢∥ ≤ 𝐾}, where we set 𝑢 = 1
𝑇

∑𝑇
𝑡=1 𝑢𝑡 , the average of the deterministic sequence in Theo-

rem 3.2. From the assumption in Eq. (9) it follows that for any𝑤 we have that |ℓ
(
𝑔
(
𝑤 · φ(𝑥)

)
, 𝑦

)
| ≤ 𝑐.

We also, can use Lemma 2.1 (applying it to ℓ ◦ 𝑔 → ℓ) to obtain that

𝔼
𝑆∼𝐷𝑛

[
sup

𝑤∈W𝐾
𝑢

{
𝐹𝐷 (𝑔 ◦ 𝑤) − 𝐹𝑆 (𝑔 ◦ 𝑤)

}]
≤ 2𝐿𝐾

√
𝑛
, (17)

where we denote

𝐹𝑆 (𝑔 ◦ 𝑤) =
1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑔(𝑤 · φ(𝑥𝑖), 𝑦𝑖)), 𝐹𝐷 (𝑔 ◦ 𝑤) = 𝔼
(𝑥,𝑦)∼𝐷

[ℓ(𝑔(𝑤 · φ(𝑥), 𝑦))] .

Next, we define
𝐺 (𝑆) = sup

𝑤∈W𝑘
𝑢

{
𝐹𝐷 (𝑔 ◦ 𝑤) − 𝐹𝑆 (𝑔 ◦ 𝑤)

}
,

and note that for two samples, 𝑆, 𝑆′ that differ on a single example we have that

|𝐺 (𝑆) − 𝐺 (𝑆′) | ≤ 2𝑐
𝑛
.

Using then the bounded difference inequality by McDiarmid [see 33, Lemma 26.4]. We have that
with probability at least 1 − δ,

𝐺 (𝑆) = sup
𝑤∈W𝐾

𝑢

{
𝔼

(𝑥,𝑦)∼𝐷
[ℓ

(
𝑔
(
𝑤 · φ(𝑥)

)
, 𝑦

)
] − 1

𝑛

𝑛∑︁
𝑖=1

ℓ
(
𝑔
(
𝑤 · φ(𝑥𝑖)

)
, 𝑦𝑖

)}
≤ 𝔼
𝑆∼𝐷𝑛

[𝐺 (𝑆)] + 𝑐
√︂

2 log(2/δ)
𝑛

(McDiarmid)

≤ 2𝐿𝐾
√
𝑛

+ 𝑐
√︂

2 log(2/δ)
𝑛

.

From Theorem 3.2 we have that with probability at least 1 − δ,

∥�̄�𝑆 − 𝑢∥ ≤ 6η𝐿𝑇
√
𝑛

√︁
log(𝑇/δ) + 4η𝐿

√
𝑇 (18)

Taken together, and applying union bound, we have that with probability at least 1 − δ:

𝔼
(𝑥,𝑦)∼𝐷

[
ℓ
(
𝑔
(
�̄�𝑆 · φ(𝑥)

)
, 𝑦

) ]
≤ 1
𝑛

𝑛∑︁
𝑖=1

ℓ
(
𝑔
(
�̄�𝑆 · φ(𝑥𝑖)

)
, 𝑦𝑖

)
+ 12η𝐿2𝑇

𝑛

√︁
log(2𝑇/δ) + 8η𝐿2√𝑇

√
𝑛

+ 𝑐
√︂

2 log(4/δ)
𝑛

.

(19)
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Next, using Eqs. (4) and (9) and the fact that the optimization bound Eq. (4) holds for any 𝐵 > 0:

1
𝑛

𝑛∑︁
𝑖=1

ℓ
(
𝑔
(
�̄�𝑆 · φ(𝑥𝑖)

)
, 𝑦𝑖

)
≤ 1
𝑛

𝑛∑︁
𝑖=1

ℓ(�̄�𝑆 · φ(𝑥𝑖), 𝑦𝑖) (Eq. (9))

≤ inf
𝐵∈ℝ+

{
min
𝑤∈W𝐵

{1
𝑛

𝑛∑︁
𝑖=1

ℓ
(
𝑤 · φ(𝑥𝑖), 𝑦𝑖

)}
+ η𝐿2 + 𝐵2

η𝑇

}
(Eq. (4))

≤ inf
𝑤∈ℝ𝑑

{
1
𝑛

𝑛∑︁
𝑖=1

ℓ
(
𝑤 · φ(𝑥𝑖), 𝑦𝑖

)
+ η𝐿2 + ∥𝑤∥2

η𝑇

}
, (20)

Now, set 𝑤★ such that

𝔼
(𝑥,𝑦)∼𝐷

[
ℓ
(
𝑤★ · φ(𝑥), 𝑦

) ]
+ ∥𝑤★∥2

η𝑇
+ ∥𝑤★∥𝐿

√︂
2 log(1/δ)

𝑛

≤ inf
𝑤∈ℝ𝑑

{
𝔼

(𝑥,𝑦)∼𝐷

[
ℓ
(
𝑤 · φ(𝑥), 𝑦

) ]
+ ∥𝑤∥2

η𝑇
+ ∥𝑤∥𝐿

√︂
2 log(1/δ)

𝑛

}
+ η𝐿2.

(21)

By independence of {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 and the bound on |ℓ(0, 𝑦) | ≤ 𝑐 we obtain by Lipschitzness
|ℓ(𝑤★ · φ(𝑥), 𝑦) | ≤ ∥𝑤★∥𝐿 + 𝑐. It follows from the Hoeffding’s inequality that with probability
at least 1 − δ

1
𝑛

𝑛∑︁
𝑖=1

ℓ
(
𝑤★ · φ(𝑥𝑖), 𝑦𝑖

)
− 𝔼

(𝑥,𝑦)∼𝐷

[
ℓ
(
𝑤★ · φ(𝑥), 𝑦

) ]
≤ (∥𝑤★∥𝐿 + 𝑐)

√︂
2 log(1/δ)

𝑛
. (22)

Thus, we have that w.p. 1 − δ:

1
𝑛

𝑛∑︁
𝑖=1

ℓ
(
𝑔
(
�̄�𝑆 · φ(𝑥𝑖)

)
, 𝑦𝑖

)
≤ inf
𝑤∈ℝ𝑑

{
1
𝑛

𝑛∑︁
𝑖=1

ℓ
(
𝑤 · φ(𝑥𝑖), 𝑦𝑖

)
+ η𝐿2 + ∥𝑤∥2

η𝑇

}
≤ 1
𝑛

𝑛∑︁
𝑖=1

ℓ
(
𝑤★ · φ(𝑥𝑖), 𝑦𝑖

)
+ η𝐿2 + ∥𝑤★∥2

η𝑇

≤ 𝔼
(𝑥,𝑦)∼𝐷

[
ℓ
(
𝑤★ · φ(𝑥), 𝑦

) ]
+ ∥𝑤★∥2

η𝑇
+ (∥𝑤★∥𝐿 + 𝑐)

√︂
2 log(1/δ)

𝑛
+ η𝐿2

(Eq. (22))

≤ inf
𝑤∈ℝ𝑑

{
𝔼

(𝑥,𝑦)∼𝐷

[
ℓ
(
𝑤 · φ(𝑥), 𝑦

) ]
+ ∥𝑤∥2

η𝑇
+ (∥𝑤∥𝐿 + 𝑐)

√︂
2 log(1/δ)

𝑛

}
+ 2η𝐿2,

(23)
where the last inequality follows from Eq. (21). Combining Eqs. (19) and (23) and applying union
bound we obtain the result.

B Proof of Lemma 2.1

Using the standard bound of the generalization error, via the Rademacher complexity of the class
(see e.g. [33]), we have that:

𝔼
𝑆∼𝐷𝑛

[
sup

𝑤∈W𝐾
𝑢

{
𝐹𝐷 (𝑤) − 𝐹𝑆 (𝑤)

}]
≤ 2 𝔼

𝑆∼𝐷𝑛
[R𝑆 ( 𝑓 ◦W𝐾

𝑢 )],

Where we notate the function class:
𝑓 ◦W𝐾

𝑢 = {𝑧 → ℓ(𝑤 · 𝑥, 𝑦) : 𝑤 ∈ W𝐾
𝑢 }.

and R𝑆 ( 𝑓 ◦W𝐾
𝑢 ) is the Rademacher complexity of the class 𝑓 ◦W𝐾

𝑢 . Namely:

R𝑆 ( 𝑓 ◦W𝐾
𝑢 ) := 𝔼

σ

 sup
ℎ∈ 𝑓 ◦𝑊𝐾

𝑢

1
𝑛

∑︁
𝑧𝑖 ∈𝑆

σ𝑖ℎ(𝑧𝑖)
 , (24)
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and σ1, . . . ,σ𝑛 are i.i.d. Rademacher random variables.
We next show that:

R𝑆 ( 𝑓 ◦W𝐾
𝑢 ) ≤

𝐿𝐾
√
𝑛
. (25)

To show Eq. (25), we use the following well known property of the Rademacher complexity of a
class:
Lemma B.1 (contraction lemma, see [33]). For each 𝑖 ∈ [𝑛], let ρ𝑖 : ℝ → ℝ be convex 𝐿-
lipschitz function in their first argument. Let 𝐴 ⊆ ℝ𝑛 and denote 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴. Then, if
σ = σ1, . . . ,σ𝑛, are i.i.d. Rademacher random variables

𝔼
σ

[
sup
𝑎∈𝐴

𝑛∑︁
𝑖=1

σ𝑖ρ𝑖 (𝑎𝑖)
]
≤ 𝐿 · 𝔼

σ

[
sup
𝑎∈𝐴

𝑛∑︁
𝑖=1

σ𝑖𝑎𝑖

]
.

As well as the Rademacher complexity of the class of linear predictors against a sample 𝑆 =

{φ(𝑥1), . . . ,φ(𝑥𝑛)} of ℓ2 1-bounded vectors:
R𝑆 ( 𝑓 ◦W𝐾

0 ) = 𝐾/
√
𝑛. (26)

Next, given a sample 𝑆 = {𝑧1, . . . , 𝑧𝑛} we define ρ𝑖 (α) := ℓ(α + 𝑢 · φ(𝑥𝑖), 𝑦𝑖) and we set
𝐴 := {(𝑣 · φ(𝑥1), . . . , 𝑣 · φ(𝑥𝑛)) : 𝑣 ∈ W𝑘

0 }.
Then:

𝑛R𝑆 ( 𝑓 ◦W𝐾
𝑢 ) = 𝔼

σ

[
sup
𝑤∈W𝑘

𝑢

𝑛∑︁
𝑖=1

σ𝑖ℓ(𝑤 · φ(𝑥𝑖), 𝑦𝑖)
]

= 𝔼
σ

[
sup
𝑤∈W𝑘

𝑢

𝑛∑︁
𝑖=1

σ𝑖ℓ((𝑤 − 𝑢) · φ(𝑥𝑖) + 𝑢 · φ(𝑥𝑖), 𝑦𝑖)
]

= 𝔼
σ

[
sup
𝑣∈W𝑘

0

𝑛∑︁
𝑖=1

σ𝑖ℓ(𝑣 · φ(𝑥𝑖) + 𝑢 · φ(𝑥𝑖), 𝑦𝑖)
]

≤ 𝐿 · 𝔼
σ

[
sup
𝑣∈W𝑘

0

𝑛∑︁
𝑖=1

σ𝑖𝑣 · φ(𝑥𝑖)
]

(Lemma B.1)

≤ 𝐿𝐾
√
𝑛 (Eq. (26))

Dividing by 𝑛 yields the proof.

C Proof of Theorem 3.3

Our construction is comprised of two separate instances. We first provide lower bounds, Lemmas C.1
and C.2, for the distance between the GD iterates 𝑤𝑆𝑡 , 𝑤𝑆

′
𝑡 defined over two separate i.i.d. samples

𝑆 = (𝑧1, . . . , 𝑧𝑛) and 𝑆′ = (𝑧′1, . . . , 𝑧
′
𝑛), respectively.

Lemma C.1. Fix η, 𝐿, 𝑇 and 𝑛. Suppose 𝑆 and 𝑆′ are i.i.d. samples drawn from 𝐷𝑛. There exists a
convex and 𝐿-Lipschitz function 𝑓 : W × Z → ℝ and a distribution 𝐷 over Z, such that, if 𝑤𝑆𝑡 and
𝑤𝑆

′
𝑡 are defined as in Eq. (2), then with probability at least 1/10:

∀𝑡 ∈ [𝑇] : ∥𝑤𝑆𝑡 − 𝑤𝑆
′
𝑡 ∥ ≥ Ω

(
η𝐿𝑡
√
𝑛

)
.

Lemma C.2. Fix η, 𝐿, 𝑇 and 𝑛. Suppose 𝑆 and 𝑆′ are i.i.d. samples drawn from 𝐷𝑛. There exists a
convex and 𝐿-Lipschitz function 𝑓 : W × Z → ℝ and a distribution 𝐷 over Z, such that, if 𝑤𝑆𝑡 and
𝑤𝑆

′
𝑡 are defined as in Eq. (2), then with probability at least 1/10:

∀𝑡 ∈ [𝑇] : ∥𝑤𝑆𝑡 − 𝑤𝑆
′
𝑡 ∥ ≥ Ω

(
η𝐿

√
𝑡

)
.
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One can then pick the dominant term between the bounds, and obtain that with probability at least
1/10:

∥𝑤𝑆𝑡 − 𝑤𝑆
′
𝑡 ∥ ≥ Ω

(
η𝐿𝑡
√
𝑛

+ η𝐿
√
𝑡

)
. (27)

Suppose some 𝑢𝑡 , independent on the samples 𝑆 and 𝑆′. Then by the triangle inequality we have
that,

ℙ
(
∥𝑤𝑆𝑡 − 𝑤𝑆

′
𝑡 ∥ ≥ 𝑎

)
≤ ℙ

(
∥𝑤𝑆𝑡 − 𝑢𝑡 ∥ + ∥𝑤𝑆′𝑡 − 𝑢𝑡 ∥ ≥ 𝑎

)
≤ ℙ

(
∥𝑤𝑆𝑡 − 𝑢𝑡 ∥ ≥ 𝑎/2

)
+ ℙ

(
∥𝑤𝑆′𝑡 − 𝑢𝑡 ∥ ≥ 𝑎/2

)
= 2ℙ

(
∥𝑤𝑆𝑡 − 𝑢𝑡 ∥ ≥ 𝑎/2

)
. (𝑆 and 𝑆′ are i.i.d.)

Dividing by 2 and using Eq. (27) we conclude the proof.

C.1 Proof of Lemma C.1

Suppose 𝑓 : W ×Z → ℝ takes following form:

𝑓 (𝑤; 𝑧) = 𝐿𝑤 · 𝑧,

where W ⊆ ℝ and 𝑧 = ±1 with probability 1/2. Define a sample 𝑆 = {𝑧1, . . . , 𝑧𝑛} and 𝑆′ =

{𝑧′1, . . . , 𝑧
′
𝑛}, then by the update rule in Eq. (2) we obtain,

𝑤𝑆𝑡+1 = −η𝐿𝑡 · 1
𝑛

𝑛∑︁
𝑖=1

𝑧𝑖 , 𝑤𝑆
′

𝑡+1 = −η𝐿𝑡 · 1
𝑛

𝑛∑︁
𝑖=1

𝑧′𝑖 .

This implies that |𝑤𝑆
𝑡+1 − 𝑤

𝑆′

𝑡+1 | = η𝐿𝑡 · | 1
𝑛

∑𝑛
𝑖=1 (𝑧𝑖 − 𝑧′𝑖) |. Note that,

𝑧𝑖 − 𝑧′𝑖 =


2 𝑤.𝑝. 1/4,
0 𝑤.𝑝. 1/2,
−2 𝑤.𝑝. 1/4.

Using Berry-Esseen inequality one can show that with probability at least 1/10:���1
𝑛

𝑛∑︁
𝑖=1

(𝑧𝑖 − 𝑧′𝑖)
��� ≥ 1

√
𝑛
.

In turn we conclude that w.p. at least 1/10,

|𝑤𝑆𝑡+1 − 𝑤
𝑆′

𝑡+1 | ≥
η𝐿𝑡
√
𝑛
.

We remark that 𝑓 (𝑤; 𝑧) can be embedded to any large dimension, thus implying our lower bound
holds for any arbitrary dimension.

C.2 Proof of Lemma C.2

This proof relies on the same construction of [5]. The difference is that we show a lower bound
between iterates over two i.i.d. samples while their result holds for two samples that differ only on
a single example. The main observation here is that with some constant probability, the problem is
reduced to that of [5]. Consider the following 𝑓 : W ×Z → ℝ:

𝑓 (𝑤; 𝑧) = −γ𝐿
2
𝑧𝑤 + 𝐿

2
max
𝑖∈[𝑑 ]

{
𝑤𝑖 − ε𝑖 , 0

}
,

where W ⊆ ℝ𝑑 and

𝑧 =

{
1 𝑤.𝑝. 1/(𝑛 + 1),
0 𝑤.𝑝. 1 − 1/(𝑛 + 1).
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We also choose ε𝑖 such that 0 < ε1 < . . . < ε𝑑 < γη𝐿/(2𝑛) and a sufficiently small γ = 1/(4
√
𝑑𝑇),

and 𝑑 > 𝑇 . Observe that for a given sample 𝑆 = {𝑧1, . . . , 𝑧𝑛} the empirical risk is then,

𝐹𝑆 (𝑤) = −γ𝐿
2𝑛

𝑛∑︁
𝑖=1

𝑧𝑖𝑤 + 𝐿
2

max
𝑖∈[𝑑 ]

{
𝑤𝑖 − ε𝑖 , 0

}
.

We now claim that with probability (1 − 1
𝑛+1 )

𝑛 over 𝑆′, the empirical risk is given by,

𝐹𝑆′ (𝑤) =
𝐿

2
max
𝑖∈[𝑑 ]

{
𝑤𝑖 − ε𝑖 , 0

}
.

Conditioned on this event, we get that ∇𝐹𝑆′ (0) = 0 and therefore 𝑤𝑆′𝑡 = 0 for any 𝑡 ∈ [𝑇]. In addition,
we know that the complementary event, namely, 𝑧𝑖 = 1 for at least a single 𝑖 ∈ [𝑛], is given with
probability 1 − (1 − 1

𝑛
)𝑛. Since,(

1 − 1
𝑛 + 1

)𝑛 ≤ (1 − 1
2𝑛

)𝑛 ≤ 𝑒−1/2, and
(
1 − 1

𝑛 + 1
)𝑛 ≥ 1/2,

we have that with probability at least 0.5 · (1 − 𝑒−1/2) ≥ 0.19 both events occur. Note that ∇𝐹𝑆 (𝑤) =
−γ𝐿

2𝑛
∑𝑛
𝑖=1 𝑧𝑖1 + 𝐿

2 ∇max𝑖∈[𝑑 ]
{
𝑤𝑖 − ε𝑖 , 0

}
where 1 is the one vector. Then applying the update rule

in Eq. (2) and the fact that 𝑤𝑆0 = 0 we get,

𝑤𝑆1 =
γη𝐿

2𝑛

𝑛∑︁
𝑖=1

𝑧𝑖1.

Recall, that under the aforementioned event we have that 1
𝑛

∑𝑛
𝑖=1 𝑧𝑖 ≥ 1

𝑛
. This implies that 𝑤𝑆1 (𝑖) ≥

γη𝐿

2𝑛 > ε𝑖 for any 𝑖 ∈ [𝑑]. Therefore,

𝑤𝑆2 = 𝑤𝑆1 − η∇𝐹𝑆 (𝑤𝑆1 ) =
2γη𝐿

2𝑛

𝑛∑︁
𝑖=1

𝑧𝑖1 − η𝐿

2
𝑒1,

where 𝑒𝑖 is the standard basis vector of index 𝑖. Since γ ≤ 1/(4𝑇) we have that𝑤𝑆2 (1) ≤
η𝐿

4𝑇 −
η𝐿

2 < 0.
Developing this dynamic recursively we obtain,

𝑤𝑆𝑡+1 =
γη𝐿𝑡

2𝑛

𝑛∑︁
𝑖=1

𝑧𝑖1 − η𝐿

2

∑︁
𝑠∈[𝑡 ]

𝑒𝑠 .

Using the reverse triangle inequality we have,𝑤𝑆𝑡 − 𝑤𝑆′𝑡  = 𝑤𝑆𝑡  (𝑤𝑆′𝑡 = 0)

≥ η𝐿

2

∑︁
𝑠∈[𝑡 ]

𝑒𝑠

 − γη𝐿𝑡

2𝑛

��� 𝑛∑︁
𝑖=1

𝑧𝑖

���∥1∥ (reverse triangle inequality)

≥ η𝐿
√
𝑡

2
− γη𝐿𝑡

2
√
𝑑 (∥1∥ =

√
𝑑 and

���∑𝑛
𝑖=1 𝑧𝑖

��� ≤ 𝑛)
≥ 3

8
η𝐿

√
𝑡. (γ ≤ 1/(4

√
𝑑𝑡)
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