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A Resources Availability and Licensing

This work is open-source under Open Data Commons Open Database License v1.0. For both dataset
generation (mesh generation, OpenFoam simulations) and ML experiments/baselines. The Open
Database License (ODbL) is a license agreement that allows users to freely share, modify, and use a
database while maintaining this same freedom for others. The Permissions include: • Commercial use
• Distribution • Modification • Private use . The limitations are: • Liability • Patent use • Trademark
use • Warranty and finally the conditions are: • Disclose sourceƒ • License and copyright notice
• Same license. This license is the same than the one used in our first version of this work [4].

B Broader impact

This work could be used to:

1. experiment new Geometric Deep Learning (GDL) models in this area,
2. study the capabilities of Deep Learning (DL) to capture physical phenomena relying on our

physics-based evaluation protocol,
3. give insights to establish new research directions for combining numerical simulation and

Machine Learning (ML) following the behaviors that will be observed in our quantitative
and qualitative results w.r.t the targeted physical metrics that we developed in purpose for
this work,

4. extend graph-mesh, and point clouds benchmarking datasets and applications of GNNs to
real-world-like physics problems,

5. build surrogate solvers to help Computational Fluid Dynamics (CFD) engineers optimize
design cycles and iterate as efficiently as needed on their designs,

6. reduce the cost (time and materials) of prototyping new designs of planes while avoiding
dangerous studies in the real world, as well as enabling the test of several configurations,

7. study the generalization/extrapolation abilities of DL to large/unseen domains as the indus-
trial world demands, including wide ranges of initial and boundary conditions.

C Reproducibility statement

We provide a GitHub repository to reproduce all the experiments and a link to download the prepro-
cessed dataset and another one for the raw OpenFOAM data. The experiments have been conducted
with a single NVIDIA RTX 3090 24Go. The repository the preprocessed/raw datasets include: • code
to reproduce the ML experiments • code to generate the figures.

We also provide a GitHub repository to run new simulations and to be able to reproduce the generation
settings of the dataset. The simulations have been done with 16 CPU cores of an AMD Ryzen™
Threadripper™ 3960X. The codes in the repository include: • (extensible) code to generate the
meshes • code to run new simulations and/or build the dataset.

Finally, we provide the AirfRANS Python library with its associated GitHub repository to easily
manipulate simulations from the dataset.

D Description Of Software

In this section, we describe the tools that we have used in this work to build the dataset5, make the
visualizations, and train the models. This work makes use of computational fluid dynamics (CFD)
and ML tools.

OpenFOAM [64] stands for Open-source Field Operation And Manipulation, a C++ software for
developing custom numerical solvers to study continuum mechanics and CFD problems. In this work,
we have used version v2112 of OpenFOAM to make our simulations. OpenFOAM is released as free
and open-source software under the GNU General Public Licence.

5similar to our first version of our dataset [4]
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Table 6: Properties of air at 298.15 K (25 ◦C) and at sea level on
earth.

Name Symbol Value

Kinematic viscosity ν 1.56× 10−5 m2 s−1

Specific mass? ρ 1.184 kg m−3

Thermal diffusivity? α 2.25× 10−5 m s−1

Specific heat? cp 1005 J kg−1 K−1

Atmospheric pressure? p0 1.013× 105 N m−2

Atmospheric temperature? T0 298.15 K
Speed of sound in the fluid? c 346.1 m s−1

? Those values are important only in the compressible case,
they are given for comparison with compressible simulations.
Especially, the absolute pressure is set to 0 N m−2 for the
incompressible case as it only depends on the differential
pressure.

ParaView [3] is an open-source visualization tool designed to explore and visualize efficiently large
data using quantitative and qualitative metrics. ParaView runs on distributed and shared memory
parallel and single processor systems. In this work, we have used it to visualize the following: point
clouds, meshes, the predicted (as well as the ground truth) physical fields. We have used version
5.10.0 of ParaView in this work. ParaView is released as free and open-source software under the
Berkeley Software Distribution License.

PyVista [57] is an open-source tool based on a handy interface for the Visualization ToolKit (VTK).
It is simple to use in interaction with NumPy [28] and other Python libraries. It is mainly used for
mesh analysis. In this work, we use PyVista to build the inputs of our DL models. We have used
version 0.36.1 of PyVista in this work. PyVista is released as free and open-source software under the
MIT License.

PyTorch [46] is an open-source library for DL using GPUs and CPUs. In this work, we use PyTorch
to build our training protocol. In this work, we have used version 1.11.0 of Pytorch along with CUDA
11.3 and Python 3.9.12. PyTorch is released as free and open-source Berkeley Software Distribution
License.

PyTorch Geometric (PyG) [19] is an open-source library for GDL built upon PyTorch which targets
the training of geometric neural networks, including point clouds, graphs and meshes. We use PyG to
design our message passing schemes. In this work, we have used version 2.0.4 of PyG along with
CUDA 11.3. PyG is released as free and open-source software under the MIT License.

E Constant and Dimensionless Quantities

The fluid used in this study is the air at 298.15 K (25 ◦C) and at sea level on earth. In Table 6 we give
the different values of the constant associated with this fluid.

The only dimensionless quantity for the incompressible case is the Reynolds number Re. We add the
Mach number Ma and the Prandtl number Pr in the compressible case. Those quantities are defined
by:

Re =
UL

ν
, Ma =

U

c
, Pr =

ν

α
(4)

where U is the characteristic velocity of the problem, L its characteristic length, c the speed of sound
in the fluid, ν its kinematic viscosity and α its thermal diffusivity. The Reynolds number compares
the order of magnitude of the convective term with respect to the diffusive term in the Navier–Stokes
equations, the Mach number quantifies flow compressibility and the Prandtl number compares the
order of magnitude of the variation of energy via momentum with respect to the variation of energy
via heat transfer in the compressible form of Navier–Stokes equations.
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F Reynolds-Averaged Navier–Stokes Equations

Under certain assumptions, the dynamics of a fluid is governed by the Navier–Stokes equations.
Those equations are composed of a continuity equation, three momentum equations and an energy
equation (see §49 of [34] and §5.3 of [65]):

∂tρ+ ∂i(ρui) = 0 (5)
∂t(ρui) + ∂j(ρujui) = −∂ip+ ∂jσji, i ∈ {1, 2, 3} (6)

∂t

(
ρ

(
ε+

1

2
u2

))
+ ∂j

(
ρuj

(
h+

1

2
u2

))
= ∂j(uiσij)− ∂jqj (7)

where ∂t denotes a partial derivative with respect to time, ∂i a partial derivative with respect to the
ith space coordinate, ρ the fluid specific mass, u the fluid velocity, p the fluid pressure, σ the viscous
stress tensor, ε the fluid specific energy, h the fluid specific enthalpy (h := ε+ p/ρ) and q the heat
flux density due to thermal conduction. Moreover, we used the Einstein summation convention over
repeated indices. Finally, fluid dynamics theory, thermodynamic relations, Fourier law and the perfect
gas law give us:

σij = µ

(
∂iuj + ∂jui −

2

3
∂kukδij

)
, i, j ∈ {1, 2, 3} (8)

ε = cvT (9)
h = cpT (10)
qi = −κ∂iT, i ∈ {1, 2, 3} (11)
p = ρRT (12)

where δij is the kronecker tensor, T the fluid temperature, µ the fluid dynamic viscosity (function of
T ), κ the fluid thermal conductivity (function of T ), R the fluid specific constant, cv and cp the fluid
specific heat coefficient for constant volume and pressure respectively (taken constant here). This
leads to a close set of partial differential equations with 6 unknowns (ρ, p, u, T ) and 6 equations:

∂tρ+ ∂i(ρui) = 0 (13)

∂t(ρui) + ∂j(ρujui) = −∂ip+ ∂j

(
µ

(
∂iuj + ∂jui −

2

3
µ∂kukδij

))
, i ∈ {1, 2, 3}

(14)

∂t

(
ρ

(
cvT +

1

2
u2

))
+ ∂j

(
ρuj

(
cpT +

1

2
u2

))
= ∂j

(
µui

(
∂iuj + ∂jui −

2

3
∂kukδij

))
+ ∂j(κ∂jT )

(15)
together with the state equation 12. We chose the perfect gas law for the state equation as we are
going to treat the case of air but this equation can be replaced by any state equation better suited for
the problem.

In certain cases, we can decently assume that the fluid is incompressible with constant density ρ. We
then need only 4 equations to close the problem. We get rid of the energy and state equations and
find the incompressible Navier–Stokes equations:

∂iui = 0 (16)

∂tui + ∂j(uiuj) = −∂i
(
p

ρ

)
+ ν∂2

jjui, i ∈ {1, 2, 3} (17)

where ν := µ/ρ is the fluid kinematic viscosity, taken constant in this case. In order to explicitly
write an important dimensionless quantity in fluid mechanics, we can rewrite last equations with
dimensionless variables. Let us define, T , U , L and P characteristic time, velocity, length and
pressure of the problem, respectively. We write:

t = T t̂, u = Uû, x = Lx̂, p = P p̂ (18)

where x is the cartesian position, t̂, û, x̂ and p̂ are dimensionless quantities. If we write P = ρU2

and T = L/U , we find for the incompressible case:
∂îûi = 0 (19)

∂t̂ûi + ∂ĵ(ûiûj) = −∂îp̂+
1

Re
∂2
ĵĵ
ûi, i ∈ {1, 2, 3} (20)
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where Re := UL/ν is the Reynolds number. This dimensionless number quantifies the importance
of the convective term with respect to the diffusive term (in order of magnitude):

‖∂j(uiuj)‖
ν‖∂2

jjui‖
≈ UL

ν
= Re (21)

When the Reynolds number tends to 0, diffusion term are dominant, we call it a Stokes flow. When
the Reynolds number tends to∞, the equations get closer to the Euler equations for inviscid fluid.
At high Reynolds, new chaotic patterns can emerge close to walls and the different fields get untidy.
This transition is the transition between what we call laminar (tidy) and turbulent (untidy) flows.
Turbulence is a process that emerges at high Reynolds number and allows more dissipation than
expected with laminar flows via the emergence of eddies of different length scales (see §33 of [34]).
Theoretical resolution of such dynamics is an open problem and direct numerical simulations (DNS)
are highly challenging because of their huge computational costs. Hence, different technologies
have been developed in order to reduce the computational complexity of the task, for example, large
eddy simulations (LES) try to filter in space the pressure and velocity fields and model the smallest
eddies by adding dissipation. Another one, that we will use here, try to model all the scales of
eddies by doing an ensemble average on the velocity and pressure fields. An ensemble average is a
theoretical average over multiple equivalent experiments, this can also be equivalently replaced by a
time averaging on a time scale big compared to turbulent fluctuations rate and small compared to the
macroscopic evolution rate of the fluid. We write:

u = ū+ u′, p = p̄+ p′ (22)
where ·̄ denotes an ensemble averaged quantity and ·′ its fluctuations. If we set those expressions into
the incompressible Navier–Stokes equations and take the ensemble averaging of the equations, we
get:

∂iūi = 0 (23)

∂tūi + ∂j(ūiūj) = −∂i
(
p̄

ρ

)
+ ν∂2

jj ūi −
1

ρ
∂j(σt)ij , i ∈ {1, 2, 3} (24)

where (σt)ij := −ρu′iu′j is called the Reynolds stress tensor. We now have a new unknown in our
equations and the problem is not close anymore. A common assumption known as the Boussinesq
hypothesis is to write the Reynolds stress tensor in the same way as the viscous stress tensor:

(σt)ij = ρνt (∂iūj + ∂j ūi)−
2

3
ρk (25)

k =
1

2
u′iu
′
i (26)

where νt is called the turbulent kinematic viscosity and k the specific kinematic energy of turbulence.
The term −2ρk/3 is set to ensure the null value of the trace of σt. By defining an effective pressure,
abusively denoted by the same symbol, p̄, p̄ := p̄+ 2ρk, we find:

∂iūi = 0 (27)

∂tūi + ∂j(ūiūj) = −∂i
(
p̄

ρ

)
+ ∂j [(ν + νt)∂j ūi] , i ∈ {1, 2, 3} (28)

This set of equations is known as the Reynolds-Averaged Navier–Stokes (RANS) equations. In order
to close our set of equations, we need a last equation for νt. Such equation is called a turbulence
model and plenty of them have been developed in the last decades to recover experimental results
in certain environments. We very briefly present two turbulence models that we are going to use in
our experiments and let the details of those model in the references given. The Spalart-Allmaras
model [56] is a one-equation model designed for aerodynamics problems, it involves a modified
viscosity called ν̃. The k− ω SST model [42] is the blending of two two-equations turbulence model,
namely the k − ε and the k − ω models [35, 66], and it extends the domain of application of both by
switching models where it is more relevant to use one instead of another. It involves two quantities,
the specific kinematic turbulent energy k and the specific turbulence dissipation rate ω.

In the compressible case, a mass-average is applied to the Navier–Stokes equations, for example in
the case of the velocity, we use:

ũ =
1

ρ̄
ρu (29)
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and we can decompose the velocity in a mass-averaged term and a fluctuation term:

u = ũ+ u′′ (30)

By doing this for different quantities such as specific energy, specific enthalpy, temperature etc...
we can write a new set of equations in a similar form as 5 - 7. This is called the Favre-Averaged
Navier–Stokes equations, details can be found in chapter 5 of [65].

Finally, the RANS equations are the equations solved by the simpleFoam solver and the Favre-
Averaged Navier–Stokes equations the ones solved by the rhoSimpleFoam solver in the OpenFOAM
suite. We compare our results with compressible simulations and the results given in the TMR [10]
in Appendix K.

G Force Coefficients

The stress force df acting on a face of area dS and normal n is:

df = −pn+ 2µS · n (31)

We can conclude that for a geometry of surface S , the stress force F acting on it can be computed via:

F =

∮
S
σ · ndS (32)

= −
∮
S
pndS +

∮
S

2µS · ndS (33)

We call the term P := −pn the wall pressure and the term τ := 2µS · n the wall shear stress.
Ultimately, we call drag D and lift L the component of F that are respectively parallel and orthogonal
to the main direction of the flow. If u‖ is the unit direction of the velocity vector and u⊥ its orthogonal
unit direction, we have:

D =

(∮
S
pdS +

∮
S
τdS

)
· u‖ (34)

L =

(∮
S
pdS +

∮
S
τdS

)
· u⊥ (35)

In the case of RANS equations, we add terms that take in account the effect of turbulence over the
geometry. The pressure p is replaced by an effective mean-field pressure p̄ and the wall shear stress is
given by τ = 2(µ+ µt)S · n where µt is the dynamic turbulent viscosity. However, as the turbulent
viscosity is null over the airfoil, we recover τ = 2µS · n.

For incompressible fluids we also often divide those quantities by ρ the density of the fluid and
solvers often express the results in terms of reduced pressure p̄ → p̄/ρ and kinematic (turbulent)
viscosity ν := µ/ρ (νt := µt/ρ). We use this convention in this work.

H Airfoil Generation and Statistics

In this section, we review the construction of the NACA 4 and 5 digits [14]. Both of them are built in
the same manner and rely only on 3 or 4 parameters for the 4 or 5 digits respectively. Each airfoil
is defined via a camber lined and an envelope, the only difference between the 4 and 5 digits is the
definition of the camber line.

NACA 4 digits. Those profiles are defined by the name NACA followed by four digits MPXX
where the first two digits M and P defined the camber line and the last two digits XX defined the
maximum thickness of the profile in percentage of the chord (the total length of the airfoil). More
precisely, M defines the maximum ordinate of the camber line in hundredth of the chord and P the
position of this maximum from the leading edge in tenth of the chord. If we denote the chord c,
the camber line of the NACA 4312 profile will have a maximum ordinate of camber of y = 0.04c,
at x = 0.3c and the profile will have a maximum thickness of 0.12c. Also, the leading edge and
the trailing edge of each airfoil are always taken at the points (0, 0) and (c, 0) in the x − y plane
respectively. From this point, all the abscissas and ordinates will be given in length per chord.
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For the NACA 00XX, a symmetrical profile, the camber line is a straight line from x = 0 to x = 1
and the upper surface is defined by the graph of the function:

yt(x) =
t

0.2

(
0.2969

√
x− 0.126x− 0.3516x2 + 0.2843x3 − 0.1015x4

)
(36)

where t := XX/100 is the thickness defined with the two last digits. This definition involve a trailing
edge with a thickness of 0.002c. If, for example for numerical propose, we want to have a thickness
of 0 at the trailing edge, we can change the coefficient of the fourth order term from −0.1015 to
−0.1036. The lower surface is defined as −yt.
For a generic NACA MPXX, The camber line is defined by the first two digits and follow the graph
of the function:

yc(x) =

{
m x
p2 (2p− x), 0 6 x 6 p

m 1−x
(1−p)2 (1 + x− 2p), p < x 6 1

(37)

where m := 0.01M and p := 0.1P.

Finally, the upper surface of a generic NACA MPXX is given by the set of coordinates (xu, yu)
defined as: 

xu = x− yt(x) sin θ(x)

yu = yc(x) + yt cos θ(x) for x ∈ [0, 1]

θ(x) = arctan y′c(x)

(38)

where y′c is the derivative of yc. The lower surface is given by a similar set of coordinates (xl, yl)
defined as: 

xl = x+ yt(x) sin θ(x)

yu = yc(x)− yt cos θ(x) for x ∈ [0, 1]

θ(x) = arctan y′c(x)

(39)

NACA 5 digits. As we already stated earlier, the only difference between the NACA 4 and 5 digits
is the definition of the camber line. In the case of the 5-digits LPQXX, the 3 first parameters defining
the camber line are less explicit than for the 4 digits case but allow more complex shapes. The last
two are the same as in the 4-digits case (i.e. maximum thickness in hundredth of chord). The first
digit L controls the camber implicitly via an optimal lift coefficient CL, i.e. it will give you the
camber of the airfoil such that CL = 0.15L. The second digit P is almost the same as in the 4-digits
case, i.e. it defines the position of the maximum of camber of the camber line in twentieth of chord.
Lastly, the third digit Q is either 0 or 1 and represent a standard camber (similar to the 4-digits case)
for 0 and a reflex camber for 1. The reflex camber is a double cambered line that makes the profile
more stable (by setting the pitch coefficient to 0).

For a generic NACA LPQXX, the standard camber line is defined via the graph of the function:

yc(x) =

{
K1

(
m2(3−m)x− 3mx2 + x3

)
, 0 6 m

K1m
3(1− x), m < x 6 1

(40)

where m is not the position of the maximum camber p := 0.05P but is related to it via the equation:

p = m

(
1−

√
m

3

)
(41)

and K1 is related to CL via:{
K1 = CL

Q

Q = 3m−7m2+8m3−4m4√
m(1−m)

− 3
2 (1− 2m)

(
π
2 − arcsin(1− 2m)

) (42)

The reflex camber line is defined via the graph of the function:

yc(x) =

{
K1

(
m3(1− x)−K2(1−m)3x+ (x−m)3

)
, 0 6 m

K1

(
m3(1− x)−K2(1−m)3x+K2(x−m)3

)
, m < x 6 1

(43)

where m and K1 are defined as in the standard case and K2 is defined via:

K2 =
3(m− p)2 −m3

(1−m)3
(44)

We use a standard Newton’s method to numerically solve equation 41 in m.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4: Histogram of the different sampled parameters for the airfoils. For each subfigure, the top
line represents the paramters of NACA 4-digits, the middle line, the parameters of the NACA 5-digits
along with the left plot of the bottom line. The last two plots of the bottom lines are the histograms
for the Reynolds number and the angle of attack. Each subfigure represents a different regime: (a)-(b)
Full data regime (c) Scarce data regime (d)-(e) Reynolds extrapolation regime (e)-(f) Angle of attack
extrapolation regime. Trainsets are in blue and testsets in yellow.

Parameter sets. In Table 1 we give the parameter sets for the sampling. Let us underline that
the digits are not necessarily integers. Also, for the values of P in the NACA 4-digits case, we
actually uniformly sample in [0, 7] and set the values of P strictly inferior to 1.5 to 0. This implies
that the NACA 4-digits set is slightly biased towards symmetrical profiles. We assume that this bias
is not of a great importance in the machine learning task. This bias could actually be leveraged
to produce a smaller dataset of only symmetrical profiles where we can test the performance of
invariant/equivariant models with respect to the plane symmetry of axis y = 0. Finally, we set the
chord c to 1 m for all of the airfoils. In Figure 4, we show statistics of the airfoil parameters.
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I Meshing Procedure

The construction of meshes is at the core of CFD tasks. A mesh completely determine the quality of
a simulation and its characteristics. For CFD problems, the local size of cells gives the information of
the resolved scales. For example, in turbulent regime, it would be impossible to simulate eddies of
characteristic length smaller than your typical cell length scale. Unfortunately, it is often impossible
to run direct numerical simulation (DNS) to correctly simulate all the length scale of a fluid dynamics
problem as it implies a prohibitive quantity of cells in the mesh. Another technology, large eddy
simulation (LES), tries to model the smallest length scales via a theoretical local filtering of the
solution in order to reduce the characteristic length scale of the smallest cell needed to correctly
simulate the phenomena studied. However, this can still lead to a prohibitive quantity of cells in the
mesh. Finally, Reynolds-Averaged-Simulation (RAS), use the RANS equations described in section
F to model all the length scales involved in turbulence via a theoretical ensemble averaging. This
allows to recover a mean field solution which requires much less cells in the mesh. In this work, we
chose to run steady-state RAS to recover mean steady-state fields around airfoils.

Another aspect of the construction of a mesh is the choice of a strategy to resolve the boundary layers
close to an obstacle. There are two strategies but each are based on the value of the y+. This quantity
represents a local Reynolds close to the obstacle and is defined as:{

y+ = yuτ
ν

uτ =
√

τw
ρ

(45)

where y is the distance from the wall, τw the magnitude of the wall shear stress, ρ the density of the
fluid and ν the kinematic viscosity of the fluid. In order to compute the y+, experimental values on
thin plates give the order of magnitude of the wall shear stress term [51]. When we take y as the
height of the first cell close to the wall, we can define two strategies:

• Low-Reynolds simulation: resolve entirely the boundary layer, y+ < 1

• High-Reynolds simulation: model the boundary layer via a so-called wall function, y+ ∼ 102

As we are interested in accurate force coefficients at the surface of our airfoils, we chose the first
strategy to avoid modelling close to the wall. This implies that we need the maximum height y of our
first cells close to the wall to be smaller than ν/uτ . In our case, we chose y = 2 µm which set the y+

to be around 1 in the worst case of our design space.

Let us now present the mesh we use for our simulations. This is inspired by the National Aeronautics
and Space Administration (NASA) mesh used in [10] to recover experimental force coefficients on
the NACA 0012 and 4412. We do not pretend to have the same quality of mesh as the NASA but we
still argue that our mesh is well suited for our case. We show it in the next sections by comparing our
results to experimental results. Meshes have been generated with the help of blockMesh, a hexahedral
mesh generator included in the OpenFOAM suite that works by defining blocks. With the help of a
dictionnary (namely the blockMeshDict file), we set the number of cells and the grading we want to
fully determined the meshing inside each block. A scheme of how the domain is divided in multiple
blocks and a result of the meshing procedure on the NACA 0012 with an angle of attack of 10◦ is
given in Figure 5. More precisely, as in the NASA mesh, a C-Grid domain is defined with a radius
and a length of 200 m (which means 200 chords here). This is smaller than the 500 chords length
domain of the NASA but we found it big enough to be insensible to boundary conditions. We now
use the index of the nodes, edges and blocks defined on Figure 5. For the edges 310, 411, 58, 69
and 710, the smallest cell is of height 2 µm as already said above and we set the expansion ratio (the
length ratio between two consecutive cells) to 1.075. For the edges 01 and 12 the smallest cell is
of height 100 µm and the expansion ratio is also set to 1.075. At the upper surface of the airfoil, at
the leading edge, the smallest cell is of width 10 µm (at node 8) and we set the expansion ratio to
1.025 until roughly the maximum of camber of the airfoil (at node 11). From node 11 to node 10,
an automatic expansion ratio is computed to fill the entire segment. Almost the same procedure is
applied at the lower surface of the airfoil, the only difference is that, for consistency, the expansion
ratio between node 9 and 10 is set such that the last cells (at node 10) is of the same width as the one
at the upper surface. Edge 34 or 67 have a fix grading of 1 and edge 45 or 56 have a grading such that
the width of the cell at the junction of blocks 2 and 3 or 4 and 5 are the same (this is only true at node
4 or 6 and a significant width difference can be seen at the center of edges 411 or 69). Finally edges
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Figure 5: Scheme of the mesh template. This is a scheme for the NACA 0012 with an angle of attack
of 10◦. The aerofoil patch is highlighted in red, the freestream patch is highlighted in green and the
internal patch is the union of the blocks 0 to 5 highlighted in blue. The indices of nodes and blocks
are the same as in the blockMeshDict file.

07, 110 and 23 have a smallest cell of the same width as for block 2 or 5 (with the same remark, this
is true only at nodes 3, 7 and 10) and a grading of 1.075 is applied.

In Figure 6 we give the number of cells and nodes in simulations of the dataset. We also give those
quantities for the cropped simulations used for the ML tasks.

J Boundary Conditions

In this section, we explicit the different boundary conditions set on the different patches of the mesh.
The quantities needed for a simulation depend on whether we run incompressible or compressible
physics and on the turbulence model chosen. In Table 7, 8 and 9 we give the different OpenFOAM
settings used for the different fields involved in the simulation, that are:

• U : ensemble averaged velocity in m s−1

• p : ensemble averaged effective pressure in Pa (in the incompressible case the pressure is
divided by the density ρ, p→ p/ρ)

26



Figure 6: Histograms of the number of cells and nodes in simulations of the dataset. (top left) Number
of cells and nodes in internal meshes for CFD simulations (top right) Numbers of cells and nodes in
internal meshes for cropped simulations (bottom left) Number of nodes on airfoils patches (bottom
right) Number of nodes on freestream patches. For the bottom plots, we only give the number of
nodes as they are equal to the number of cells.

• νt : kinematic turbulent viscosity in m2 s−1

• ν̃ ||: Spalart-Allmaras variable in m2 s−1

• k† : turbulent kinetic energy in J

• ω† : specific dissipation rate via turbulence in s−1

• T ‡ : temperature in K

• αt‡ : turbulent thermal diffusivity in m2 s−1

We do not present here the discretization schemes chosen for the simulations, nor the linear solver
and hyperparameters of the SIMPLE algorithm. You can find them in the fvSchemes and fvSolution
dictionnaries respectively. We just mention that we used the SIMPLEC [16] algorithm for the
incompressible case and the classical SIMPLE [8] one for the compressible setup as the SIMPLEC
was not stable in this case.

||Only for the Spalart-Allmaras turbulent model.
†Only for the k − ω SST turbulent model [42].
‡Only in the case of compressible simulations.
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Table 7: Boundary conditions set on the different patches of the mesh for compressible
and incompressible simulations. Values of the constants are given for the air at sea level
and at 298.15 K.

Fields Internal Aerofoil Freestream

U U∞ noSlip freestreamVelocity
p 0? zeroGradient freestreamPressure
νt ν nutLowReWallFunction freestream
ν̃ 4ν fixedValue freestream
k 0.001U2

∞/ReL fixedValue freesteam
ω 5U∞/L omegaWallFunction freestream
T 298.15 K zeroGradient freestream
αt νt/Prt compressible::alphatWallFunction calculated
? This value has to be set to an absolute pressure value, in our case 1.013× 105 Pa, for

the compressible case.

Table 8: Definition of the quantities involved in Table 7 and their values for the air at sea level and at
a temperature of 298.15 K (25 ◦C).

Quantity Definition Value

ρ Density of the fluid 1.184 kg m−3

ν Kinematic viscosity of the fluid 1.56× 10−5 m2 s−1

L Length of the domain 400 m
U∞ Velocity at the inlet -
ReL Reynolds number computed with L U∞L/ν
Prt Turbulent Prandtl number (constant) 0.85

K Simulation Validation

In this section, we test our mesh and boundary conditions on two different problems, with two
turbulence models and in the compressible and incompressible settings, in order to validate the choice
made in this work. To do so, we use the experimental data produced by the NASA and available
on the Turbulence Modeling Resource (TMR) website of the Langley Research Center [10] for the
NACA 0012 and 4412.

NACA 0012 airfoil. We compare our results with experimental data for the force coefficients
done on the NACA 0012 [12, 33]. We restricted our study to the case of a Reynolds of 6 million
for different angle of attacks (see Table XIII [33]). In our simulations, we run an incompressible
solver with the properties of the air at 298.15 K and at sea level (see Table 8) which gives an inlet
velocity U∞ of 93.6 m s−1 with a characteristic length equal to the chord of the airfoil (in our case
1 m). The celerity of sound in this medium is taken to be 346.1 m s−1, which gives a Mach number
(Ma := U∞/c) of roughly 0.27. We often set a limit a 0.3 for the Mach number in order to run
incompressible simulations, and as we are close to this limit, we run incompressible and compressible
simulations for an additional restricted set of angle of attacks of 0◦ and 10◦. The pressure coefficient
at the surface of the airfoil are compared to another set of experimental data (Table II of [12]) done at
Mach 0.3 and Reynolds 6 million for this two angles of attack (more precisely at angle 0.0169◦ and
10.0254◦). Moreover, we tried with the Spalart-Allmaras and k − ω SST models of turbulence.

The pressure coefficient cp at the surface of the airfoil is a dimensionless coefficient defined as:

cp :=
p̄− p̄∞
q∞

, q∞ :=
1

2
U2
∞A (46)

where p̄ is the mean-field reduced pressure, p̄∞ the far field pressure (set to 0 in the incompressible
case), U∞ is the magnitude of the inlet velocity and A is the characteristic area of the problem, we
take here A = 1 m2.
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Table 9: Definition of the boundary conditions involved in Table 7 and values we use when asked by
OpenFOAM. The values given for fixedValue are the values of k and ν̃ at the surface of the airfoil.
The quantity β1 = 0.075 is a constant of the k − ω model [66] and ∆y = 2 µm the height of the first
cells of the boundary layer.

Boundary condition Definition Value

fixedValue Set the quantity to a constant 0 J/0 m2 s−1

calculated Derived from other quantities Internal field value

noSlip Set the velocity to 0 -

Set the field at the
zeroGradient boundary to the value -

of the internal field

Mixed boundary condition
freestream between fixedValue and Internal field value

zeroGradient depending on
the direction of the flux

Same as freestream but
freestreamVelocity switches in accordance with Internal field value

freestreamPressure

Same as freestream but
freestreamPressure switches in accordance with Internal field value

freestreamVelocity

nutLowReWallFunction Set the turbulent viscosity to 0 0 m2 s−1

omegaWallFunction For low Reynolds simulation, 6ν
β1∆y2

equivalent to fixedValue

compressible::alphatWallFunction Equivalent to fixedValue 0 m2 s−1

with a value of νt/Prt

In Figure 7 and 8, the surface pressure coefficient is given and we see no significant difference
between the two models nor between the compressible and incompressible cases. All the simulations
are in good agreement with the experiments.

In Figure 9 are displayed the drag and lift coefficients with respect to angle of attacks and the
drag coefficient with respect to the lift coefficient for the two models and the experiments. In the
compressible case, only 0◦ and 10◦ have been simulated for time and stability reasons, no significant
differences are present with the incompressible simulations. In the incompressible case, a missing
point in the plot means that the simulation was unstable and we did not manage to make it converge
correctly. We can see that both compressible and incompressible solver gives a slightly over estimated
drag with respect to experiments, this is in agreement with the TMR. We also see that the k − ω SST
model is more stable than the Spalart-Allmaras model, we noticed a faster convergence for the first
too. Finally, the k − ω SST model fits better the experiments than the Spalart-Allamaras model. In
total, both model are in good agreement with experimental data but the k − ω SST model looks more
stable, faster to converge and more accurate than the Spalart-Allamaras.

From this point, we only run incompressible simulations as this validation case showed no distinctions
between compressible and incompressible simulations. We now test our setup on another validation
case in order to chose between the two turbulence models.

NACA 4412 airfoil. In this setup, the experimental data [61] are done with a NACA 4412 at an
angle of attack of 13.87◦ and a Reynolds number of 1.52 million. The values of the experimental
data are the one given on the NACA 4412 page of the TMR. The values found on this website are
slightly different from the one found in the original papers, moreover, the normalization factor for
the pressure coefficient is computed with a reference velocity Uref of roughly 0.93U∞ but, as in
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Figure 7: Pressure coefficient at the surface of the airfoil for the NACA 0012 at an angle of attack of
0◦ in the incompressible (left) and compressible (right) cases for the Spalart-Allamaras, k − ω SST
models and the experiments with respect to the abscissas in chord length. The points on the upper
and lower surfaces are given in different colors for the simulations.

Figure 8: Pressure coefficient at the surface of the airfoil for the NACA 0012 at an angle of attack of
10◦ in the incompressible (left) and compressible (right) cases for the Spalart-Allamaras, k − ω SST
models and the experiments with respect to the abscissas in chord length. The points on the upper
and lower surfaces are given in different colors for the simulations.

Figure 9: Drag and lift coefficients with respect to angle of attacks and to each other in the case of
the NACA 0012. The compressible simulations have only be done at 0◦ and 10◦.
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Figure 10: Pressure coefficient at the surface of a NACA 4412 with an angle of attack of 13.87◦

and a Reynolds of 1.52 million. The normalization of the pressure coefficient is computed with the
magnitude of the inlet velocity U∞. Are displayed the experimental data, the Spalart-Allmaras and
k − ω SST models incompressible results.

the NASA simulations, the results better fit when using a normalization factor computed with U∞.
This is underlined on the TMR page and incite us to take this validation case only as a qualitative
validation.

In Figure 10, the pressure coefficient is given with a normalization factor computed with the magnitude
of the inlet velocity U∞. Both turbulence models results are in good agreement with the experiments.

In Figure 11, we look at the boundary layer of the airfoil at different abscissas. Here the x and y
components of the velocity (denoted by u and v respectively) are normalized by Uref and the term
u′v′, corresponding to the shear stress term of the Reynolds stress tensor, is normalized by U2

ref . We
start each plot at a given point at the surface of the airfoil and take the direction of the normal of the
airfoil at this point. Hence, the name (y − y0)/c for the ordinate of the plot has to be understand
as the distance to the airfoil in the normal direction in chord length. Both turbulence models have
difficulties to predict correctly the experimental data, this behaviour has already been pointed out in
the TMR study of the NACA 4412 and our results are in good agreement with theirs. Moreover, the
k − ω SST model seems to give more realistic results than the Spalart-Allmaras one.

In total, our simulations on the NACA 0012 and 4412 are in good (at least qualitatively) agreement
with the experiments. The incompressible k − ω SST model setup seems the best candidate for fast,
stable and high fidelity simulations. In this work, we keep this setup to generate the dataset.

L Models architecture

For all of the tasks, the same architecture is used in addition with the same hyperparameters. Each
model is preceded by an encoder and followed by a decoder both defined as MLP with ReLU
activation function, no batch normalization, and with 7− 64− 64− 8 and 8− 64− 64− 4 neurons
respectively, meaning an dimension of encoding of 8. Those encoder and decoder are trained together
with the chosen model.

31



Figure 11: Boundary layer velocity components and shear Reynolds stress for different point at the
surface of the NACA 4412 at a Reynolds number of 1.52 million. Each quantity is normalized either
by Uref or U2

ref . The ordinate has to be understand as the distance to the given point at the surface
of the airfoil following the normal direction.
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Multi-Layer Perceptron. The first baseline is another MLP with ReLU activation function and
batch normalization before the activation. It has 8− 64− 64− 64− 8 neurons.

GraphSAGE. The GraphSAGE acts on a radius graph of 32000 nodes and radii 5 cm. It is defined
with 3 hidden layers and 64 hidden features per node.

PointNet. The PointNet is copied from the segmentation task of [11]. We chose 8 neurons as a base
number and we did not include any batch normalization nor dropout as it was performing badly with.

Graph U-Net. For the Graph U-Net, we defined it with five scales, downsampling by half at each
scale and multiplying by two the number of features at each scales. The radii of the radius graphs
are 5 cm, 20 cm, 50 cm, 1 m and 10 m. The last radii is chosen such that the graph at the coarsest
scale is fully connected. Each of those radius graphs have a limit of 64 neighbors per node. For the
downsampling, we did not use the gPool method presented in the historical paper [23] and replaced it
by a random downsampling over the remaining nodes, recreating a radius graph afterwards. This
leads to better results. On the upward pass, we chose to aggregate the different informations from the
skip connection and the preceding scale by concatenating the features. Finally, we chose to start with
8 features at the finest scale.

The learning rate for all of those experiments is set with a one-cycle cosine [55] rate of maximum
0.001, simulations are fed one by one to the different models during training (i.e. 32000 nodes with
an associated radius graph when needed) and the number of epochs is chosen such that for each task,
we have the same number of gradient updates:

• Full data regime: 400 epochs

• Scarce data regime: 1600 epochs

• Reynolds extrapolation regime: 635 epochs

• Angle of attack extrapolation regime: 398 epochs

Ultimately, the different models are trained on 90% of the predefined training set of those different
regime, the last 10% have been used as a validation set.

M Additional Results

In this section, we treat the results of the three remaining machine learning tasks. Those tasks are not
less important than the full data regime treated in the main paper, they are actually more important
than the latter. Those regime better represent the challenges of real-life problems as the data is often
lacking and extrapolation is often sought. We first give the missing results in the full data regime and
then present the three other regimes.

Full data regime. In Figure 13 we show the pressure and skin friction coefficients distributions
over the surface of five randomly chose airfoils in the test set. In Figure 12, we present the x and y
components of the velocity distribution in the boundary layer at the upper surface of the same five
airfoils. Those velocity profiles are given at four abscissas: x = 0.2 m, x = 0.4 m, x = 0.6 m and
x = 0.8 m.

As we said in Section 5, the wall shear stress is largely overestimated, this behaviour is understood
via the boundary layer velocity profiles where the first inferred point after the surface is badly
approximated. This leads to high errors on the drag coefficient.

Scarce data regime. In this regime, we test on the same test set as the full data regime but we
trained with only two hundred simulations instead of eight hundreds.

In Table 10, we give the MSE over the volume and at the surface of airfoils for the different regressed
fields. In Table 11 we give the mean relative errors on the force coefficient and the Spearman’s rank
correlation coefficient. In Figure 14 we plot the predicted force coefficients with respect to the true
coefficients. In Figure 15, we plot the velocity and turbulent viscosity profiles in the boundary layer
for randomly chosen test geometries and in Figure 16 the surface coefficients for the same geometries.
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Figure 12: Comparison of the predicted boundary layers profiles on three random test geometries at
different abscissas in the full data regime with respect to the true ones. Each column of plots represent
a different airfoil and each line of plots represent a different abscissas. The x and y component of
the velocity are denoted by u and v respectively and the turbulent viscosity is denoted by νt. Each
quantity is normalized either by u∞ the inlet velocity magnitude or ν the fluid viscosity.
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Figure 13: Comparison of the predicted surface coefficients profiles on three random test geometries
in the full data regime with respect to the true one. (left) Surface coefficient cp (right) Skin friction
coefficient cτ . Each line of plots represents a different airfoil. Skin friction coefficient plots are given
in log scale.

Table 10: Mean squared error on the different normalized fields for an MLP and standard GDL
baselines on the test set in the scarce data regime. Only the reduced pressure is given on the surface
as the other quantities are null via the boundary conditions. Those quantities are directly regressed by
the models.

Model Volume Surface
ūx (×10−2) ūy (×10−2) p̄ (×10−2) νt (×10−2) p̄ (×10−1)

MLP 1.65±0.03 1.45±0.07 3.90±0.57 5.01±0.76 2.19±0.53
GraphSAGE 1.46±0.13 1.45±0.12 4.70±0.80 6.11±0.79 1.95±0.34

PointNet 3.11±0.30 2.78±0.39 3.29±1.05 5.58±2.36 1.83±0.41
Graph U-Net 1.75±0.19 1.83±0.18 3.39±0.84 4.30±1.00 1.47±0.35
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Table 11: Relative errors (Spearman’s rank correlation) for the predicted drag coefficient CD (ρD)
and lift coefficient CL (ρL) in the scarce data regime. We want the Spearman’s correlation to be close
to one. Those quantities are computed as a post processing from the unnormalized regressed fields.

Model Relative error Spearman’s correlation
CD CL ρD ρL

MLP 2.95±0.14 0.66±0.16 -0.24±0.08 0.923±0.026
GraphSAGE 3.50±1.00 0.39±0.10 -0.14±0.18 0.981±0.006

PointNet 8.35±1.39 0.59±0.13 -0.05±0.27 0.949±0.019
Graph U-Net 6.87±1.80 0.42±0.13 -0.10±0.23 0.976±0.009

Figure 14: Predicted drag (left) and lift (right) coefficients with respect to the true ones in the scarce
data regime. The mean (top) and standard deviation (bottom) of each point on the five copy of the
trained models are separated for sake of readability. A linear regression is done for each point cloud in
order to highlight linear trends. On the top plots, the Identity graph is given in black for comparison.

Reynolds extrapolation regime. In this regime, we test on out of distribution Reynolds number.

In Table 12, we give the MSE over the volume and at the surface of airfoils for the different regressed
fields. In Table 13 we give the mean relative errors on the force coefficient and the Spearman’s rank
correlation coefficient. In Figure 17 we plot the predicted force coefficients with respect to the true
coefficients. In Figure 18, we plot the velocity and turbulent viscosity profiles in the boundary layer
for randomly chosen test geometries and in Figure 19 the surface coefficients for the same geometries.

Table 12: Mean squared error on the different normalized fields for an MLP and standard GDL
baselines on the test set in the Reynolds extrapolation regime. Only the reduced pressure is given on
the surface as the other quantities are null via the boundary conditions. Those quantities are directly
regressed by the models.

Model Volume Surface
ūx (×10−2) ūy (×10−2) p̄ (×10−2) νt (×10−1) p̄ (×10−1)

MLP 9.51±1.27 4.92±0.80 4.30±0.19 1.31±0.34 20.9±35.5
GraphSAGE 7.56±1.05 3.50±0.61 3.83±0.25 1.69±0.38 1.80±0.34

PointNet 9.42±1.08 7.13±0.80 4.01±0.74 1.27±0.44 2.01±0.76
Graph U-Net 8.38±1.82 5.25±1.36 4.48±0.40 1.28±0.31 2.06±0.44
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Figure 15: Comparison of the predicted boundary layers profiles on three random test geometries
at different abscissas in the scarce data regime with respect to the true ones. Each column of plots
represent a different airfoil and each line of plots represent a different abscissas. The x and y
component of the velocity are denoted by u and v respectively and the turbulent viscosity is denoted
by νt. Each quantity is normalized either by u∞ the inlet velocity magnitude or ν the fluid viscosity.
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Figure 16: Comparison of the predicted surface coefficients profiles on three random test geometries
in the scarce data regime with respect to the true one. (left) Surface coefficient cp (right) Skin friction
coefficient cτ . Each line of plots represents a different airfoil. Skin friction coefficient plots are given
in log scale.

Table 13: Relative errors (Spearman’s rank correlation) for the predicted drag coefficientCD (ρD) and
lift coefficient CL (ρL) in the Reynolds extrapolation regime. We want the Spearman’s correlation to
be close to one. Those quantities are computed as a post processing from the unnormalized regressed
fields.

Model Relative error Spearman’s correlation
CD CL ρD ρL

MLP 13.4±7.2 3.33±3.29 -0.15±0.15 0.642±0.274
GraphSAGE 8.97±1.28 0.62±0.12 0.01±0.06 0.927±0.027

PointNet 11.6±2.8 0.90±0.33 0.01±0.24 0.898±0.056
Graph U-Net 13.3±1.8 0.87±0.37 0.03±0.12 0.904±0.064
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Figure 17: Predicted drag (left) and lift (right) coefficients with respect to the true ones in the
Reynolds extrapolation regime. The mean (top) and standard deviation (bottom) of each point on the
five copy of the trained models are separated for sake of readability. A linear regression is done for
each point cloud in order to highlight linear trends. On the top plots, the Identity graph is given in
black for comparison.

Table 14: Mean squared error on the different normalized fields for an MLP and standard GDL
baselines on the test set in the angle of attack extrapolation regime. Only the reduced pressure is
given on the surface as the other quantities are null via the boundary conditions. Those quantities are
directly regressed by the models.

Model Volume Surface
ūx (×10−2) ūy (×10−1) p̄ (×10−1) νt (×10−1) p̄ (×10−1)

MLP 6.96±0.54 1.06±0.17 1.17±0.25 5.43±0.24 8.76±1.59
GraphSAGE 4.43±0.33 0.94±0.22 1.09±0.22 5.18±0.37 7.64±0.95

PointNet 8.68±2.34 1.58±0.54 1.62±0.66 4.63±0.40 5.85±0.36
Graph U-Net 5.69±0.71 1.03±0.28 1.49±0.75 5.35±0.59 6.97±2.32

Angle of attack extrapolation regime. In this regime, we test on out of distribution angle of
attacks.

In Table 14, we give the MSE over the volume and at the surface of airfoils for the different regressed
fields. In Table 15 we give the mean relative errors on the force coefficient and the Spearman’s rank
correlation coefficient. In Figure 20 we plot the predicted force coefficients with respect to the true
coefficients. In Figure 21, we plot the velocity and turbulent viscosity profiles in the boundary layer
for randomly chosen test geometries and in Figure 22 the surface coefficients for the same geometries.

Summary. All the three latter regimes are obviously more difficult than the full data one. The
MSE scores on the scarce data regime, the Reynolds and angle of attack extrapolation regimes are
order of magnitude greater than the ones on the full data regime. This can lead to higher relative
errors on force coefficients and lower score on Spearman’s correlation but is not directly linked to
(as in the scarce data regime). In any case, the wall shear stress is never well predict as the velocity
profiles in the boundary layer are not accurate close to the geometries and the pressure coefficient
suffers from out of distribution conditions depending on the models. In total, there is a lot of progress
possible with those four settings and we hope that more recent architectures and technologies will
better perform on the proposed metrics.

In Table 16 we give the MSE scores of all of the models on all of the tasks and in Table 17 their
scores on the force coefficients in a more readable way.
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Figure 18: Comparison of the predicted boundary layers profiles on three random test geometries at
different abscissas in the Reynolds extrapolation regime with respect to the true ones. Each column
of plots represent a different airfoil and each line of plots represent a different abscissas. The x and y
component of the velocity are denoted by u and v respectively and the turbulent viscosity is denoted
by νt. Each quantity is normalized either by u∞ the inlet velocity magnitude or ν the fluid viscosity.
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Figure 19: Comparison of the predicted surface coefficients profiles on three random test geometries
in the Reynolds extrapolation regime with respect to the true one. (left) Surface coefficient cp (right)
Skin friction coefficient cτ . Each line of plots represents a different airfoil. Skin friction coefficient
plots are given in log scale.

Table 15: Relative errors (Spearman’s rank correlation) for the predicted drag coefficient CD (ρD)
and lift coefficient CL (ρL) in the angle of attack extrapolation regime. We want the Spearman’s cor-
relation to be close to one. Those quantities are computed as a post processing from the unnormalized
regressed fields.

Model Relative error Spearman’s correlation
CD CL ρD ρL

MLP 8.00±0.85 1.06±0.29 0.04±0.17 0.861±0.049
GraphSAGE 5.59±1.09 0.82±0.30 0.05±0.17 0.908±0.019

PointNet 8.99±3.44 0.72±0.15 0.12±0.30 0.936±0.022
Graph U-Net 10.2±3.4 0.69±0.14 -0.20±0.13 0.934±0.022
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Figure 20: Predicted drag (left) and lift (right) coefficients with respect to the true ones in the angle
of attack extrapolation regime. The mean (top) and standard deviation (bottom) of each point on the
five copy of the trained models are separated for sake of readability. A linear regression is done for
each point cloud in order to highlight linear trends. On the top plots, the Identity graph is given in
black for comparison.

Table 16: Comparison of the mean squared error on the normalized fields for an MLP and standard
GDL baselines on the different task for the associated test set. Only the reduced pressure is given on
the surface as the other quantities are null via the boundary conditions. Those quantities are directly
regressed by the models. The field denoted by p̄s is the mean field reduced pressure at the surface of
airfoils.

Field Model Task
Full Scarce Reynolds AoA

ūx (×10−2)

MLP 0.949 ± 0.058 1.647 ± 0.032 9.505 ± 1.275 6.965 ± 0.545
GraphSAGE 0.832 ± 0.015 1.457 ± 0.125 7.558 ± 1.046 4.435 ± 0.334

PointNet 3.500 ± 1.044 3.111 ± 0.303 9.422 ± 1.082 8.680 ± 2.337
GUNet 1.517 ± 0.343 1.749 ± 0.190 8.383 ± 1.815 5.689 ± 0.708

ūy (×10−2)

MLP 0.978 ± 0.172 1.451 ± 0.071 4.924 ± 0.800 10.630 ± 1.651
GraphSAGE 0.994 ± 0.052 1.454 ± 0.123 3.498 ± 0.613 9.400 ± 2.167

PointNet 3.645 ± 1.261 2.776 ± 0.395 7.129 ± 0.801 15.796 ± 5.392
GUNet 2.028 ± 0.391 1.825 ± 0.182 5.250 ± 1.362 10.342 ± 2.788

p̄ (×10−2)

MLP 0.737 ± 0.131 3.904 ± 0.570 4.300 ± 0.188 11.711 ± 2.518
GraphSAGE 0.661 ± 0.050 4.696 ± 0.804 3.826 ± 0.248 10.908 ± 2.164

PointNet 1.151 ± 0.230 3.294 ± 1.052 4.011 ± 0.744 16.237 ± 6.601
GUNet 0.657 ± 0.080 3.388 ± 0.844 4.483 ± 0.401 14.887 ± 7.502

νt (×10−1)

MLP 0.190 ± 0.010 0.501 ± 0.076 1.312 ± 0.344 5.433 ± 0.237
GraphSAGE 0.160 ± 0.021 0.611 ± 0.079 1.694 ± 0.383 5.178 ± 0.365

PointNet 0.292 ± 0.048 0.558 ± 0.236 1.273 ± 0.443 4.632 ± 0.398
GUNet 0.146 ± 0.014 0.433 ± 0.100 1.283 ± 0.310 5.348 ± 0.589

p̄s (×10−1)

MLP 1.130 ± 0.141 2.192 ± 0.529 20.898 ± 35.537 8.762 ± 1.589
GraphSAGE 0.662 ± 0.103 1.945 ± 0.336 1.797 ± 0.338 7.638 ± 0.945

PointNet 0.925 ± 0.259 1.827 ± 0.413 2.013 ± 0.758 5.846 ± 0.361
GUNet 0.386 ± 0.071 1.473 ± 0.347 2.059 ± 0.442 6.967 ± 2.317
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Figure 21: Comparison of the predicted boundary layers profiles on three random test geometries
at different abscissas in the angle of attack extrapolation regime with respect to the true ones. Each
column of plots represent a different airfoil and each line of plots represent a different abscissas. The
x and y component of the velocity are denoted by u and v respectively and the turbulent viscosity is
denoted by νt. Each quantity is normalized either by u∞ the inlet velocity magnitude or ν the fluid
viscosity.
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Figure 22: Comparison of the predicted surface coefficients profiles on three random test geometries
in the angle of attack extrapolation regime with respect to the true one. (left) Surface coefficient
cp (right) Skin friction coefficient cτ . Each line of plots represents a different airfoil. Skin friction
coefficient plots are given in log scale.
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Table 17: Comparison of the relative errors (Spearman’s rank correlation) for the predicted drag
coefficient CD (ρD) and lift coefficient CL (ρL) on the four different task for the associated test set.
We want the Spearman’s correlation to be close to one. Those quantities are computed as a post
processing from the unnormalized regressed fields.

Field Model Task
Full Scarce Reynolds AoA

CD

MLP 4.289 ± 0.679 2.950 ± 0.144 13.397 ± 7.154 8.003 ± 0.848
GraphSAGE 4.050 ± 0.704 3.504 ± 0.998 8.971 ± 1.278 5.589 ± 1.090

PointNet 14.637 ± 3.668 8.350 ± 1.387 11.558 ± 2.783 8.991 ± 3.436
GUNet 10.385 ± 1.895 6.871 ± 1.801 13.268 ± 1.818 10.238 ± 3.394

CL

MLP 0.769 ± 0.108 0.662 ± 0.161 3.330 ± 3.287 1.061 ± 0.288
GraphSAGE 0.517 ± 0.162 0.385 ± 0.097 0.616 ± 0.124 0.818 ± 0.300

PointNet 0.742 ± 0.186 0.587 ± 0.135 0.897 ± 0.326 0.716 ± 0.145
GUNet 0.489 ± 0.105 0.418 ± 0.129 0.868 ± 0.369 0.693 ± 0.136

ρD

MLP -0.117 ± 0.256 -0.242 ± 0.078 -0.146 ± 0.153 0.038 ± 0.174
GraphSAGE -0.303 ± 0.124 -0.139 ± 0.175 0.013 ± 0.064 0.055 ± 0.171

PointNet -0.022 ± 0.097 -0.050 ± 0.272 0.006 ± 0.241 0.122 ± 0.300
GUNet -0.138 ± 0.258 -0.095 ± 0.232 0.028 ± 0.116 -0.195 ± 0.134

ρL

MLP 0.913 ± 0.018 0.923 ± 0.026 0.642 ± 0.274 0.861 ± 0.049
GraphSAGE 0.965 ± 0.011 0.981 ± 0.006 0.927 ± 0.027 0.908 ± 0.019

PointNet 0.938 ± 0.023 0.949 ± 0.019 0.898 ± 0.056 0.936 ± 0.022
GUNet 0.967 ± 0.019 0.976 ± 0.009 0.904 ± 0.064 0.934 ± 0.022
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