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1 Improving PACMAC performance

Recall that in Section 4.4 we pointed out that our method PACMAC outperfoms SENTRY [1] without
additional diversity regularizers or entropy maximization losses. We now attempt to add these pieces
to PACMAC: specifically, we replace the target cross-entropy objective on reliable instances with
an entropy minimization loss Lentmin(xT ) =

∑C
c=1−pΘ(y = c|xT ) log pΘ(y = c|xT ), optimize

an additional information entropy loss to encourage diverse predictions across all target instances
Ldiv =

∑C
c=1 pΘ(y=c|xT ) log q(ŷ=c) (q(ŷ) denotes a running average of model predictions, loss

weight= 5× 10−4), and perform additional entropy maximization to reduce model confidence on
unreliable target instances Lentmax(xT ) =

∑C
c=1 +pΘ(y=c|xT ) log pΘ(y=c|xT ) (loss weight=

1.0). We denote this method as PACMAC *.

As shown in Table 1 below, across both MAE [2] and DINO [3] initializations this further improves
performance by 0.5% (MAE) and 0.9% (DINO) on average.

In addition, we compare PACMAC and PACMAC * to a combination of SENTRY [1] and Shen et al. [4]
on OfficeHome shifts starting with DINO initialization. This combination performs initial pre-training
on pooled source and target domains followed by the full SENTRY method. On average, we find
PACMAC * clearly outperforms this combination (+1.0%).

2 PACMAC: Additional analysis

2.1 Per-class accuracy change

In Fig. 1 we present per-class accuracy changes after applying PACMAC to the source model across
MAE and DINO initializations on the OfficeHome Clipart→Product shift. As seen, across both plots
PACMAC maintains or improves accuracy across most categories. However, performance for a few
categories falls, which we analyze in the next experiment.

2.2 Reliability checker: Per-class analysis

In Fig. 2 we evaluate the performance of our consistency or confidence based reliability determination
scheme on a per-class level. We use a model pretrained on the OfficeHome Clipart→Product shift
with DINO, and finetuned on the source domain. We then compute per-class F1 score of the estimated
reliability on the target domain so as to capture both precision (how often is a reliable instance
actually correct?) and recall (what fraction of correct instances are identified by our method?). As
seen, F1 scores are high for a majority of classes. However, performance is noticeably worse on some
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IN1K Init. Method A→ C A→ P A→ R C→ A C→ P C→ R P→ A P→ C P→ R R→ A R→ C R→ P AVG

MAE [5]
source 46.4 57.6 71.0 51.1 60.0 62.6 51.4 46.9 70.5 66.3 52.2 77.2 59.4
SENTRY [1] 54.8 65.6 74.4 56.5 65.8 69.8 57.6 54.9 75.5 68.9 60.0 81.6 65.5
PACMAC (Ours) 58.9 68.2 74.1 60.6 67.1 67.2 57.3 59.2 74.4 68.6 63.9 82.7 66.8
PACMAC (Ours)* 59.5 68.1 74.3 60.2 68.2 70.1 57.6 59.0 74.5 67.9 65.8 82.4 67.3

DINO [6]
source 53.1 65.0 75.2 62.0 66.2 70.4 60.8 50.5 77.0 72.8 53.9 81.2 65.7
SENTRY [1] 59.5 72.0 76.8 66.1 71.1 73.4 63.7 56.2 77.8 72.4 63.0 81.9 69.5
SENTRY [1] + Shen et al. [4] 57.0 77.3 77.0 65.8 73.7 73.8 62.9 55.6 78.3 71.0 60.2 82.8 69.6
PACMAC (Ours) 54.9 74.7 79.3 65.7 74.0 74.5 63.3 55.8 79.2 73.1 58.4 83.9 69.7
PACMAC * (Ours) 56.6 75.2 79.2 65.8 73.3 74.8 65.8 56.8 79.3 73.6 61.9 85.0 70.6

Table 1: Improving PACMAC with SENTRY regularizers (denotes as PACMAC *). Target test set accuracy on
OfficeHome across MAE [5] and DINO [6] pretraining.

(a) MAE [2]

(b) DINO [6]
Figure 1: Per-class accuracy with PACMAC: Target accuracy before and after applying PACMAC on the Office-
Home Clipart→Product shift.

classes (such as TV, bottle, and alarm clock). Unsurprisingly, we find that model accuracy on these
categories also drops after applying PACMAC (Fig. 1b).

2.3 In-domain Pretraining: Per-class accuracy

In Fig. 3 we report per-category cross-domain kNN accuracy on the OfficeHome Cl→Pr shift before
and after in-domain pretraining across MAE and DINO initializations. We find that accuracy improves
on several classes in both cases, particularly so for MAE.

2.4 Reliability checker: Comparison to SENTRY [1]’s selection

Recall that in section 4.5 we compare PACMAC’s selection criterion to SENTRY [1]’s selection
criterion by swapping out the reliability checker while keeping all other components the same. To
compare the quality of target samples being selected for training, we measure reliability precision
(how many of the selected target samples were actually predicted correctly?) and reliability recall
(how many of the correctly predicted samples are selected by the selection criterion?) as training
progresses and compute the F1-score. From Fig. 4, we observe that PACMAC’s selection criterion
achieves higher F1-score across epochs while selecting more target samples for training across epochs.
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Figure 2: Evaluating reliability-checker: Per-class analysis

(a) MAE [2]

(b) DINO [6]
Figure 3: Per-class accuracy: Cross-domain kNN accuracies after additional in-domain pretraining on the
source and target domains

2.5 In-domain Pretraining: OOD calibration

In Fig. 5 we analyze the effect of in-domain pretraining on out-of-distribution confidence calibration
on the target test set after S+T pretraining with the MAE and DINO SSL strategies. We report
expected calibration error (ECE [7]), lower is better. We observe inconsistent trends across shifts,
with additional MAE pretraining improving out-of-distribution confidence calibration on 5/12 shifts
on the OfficeHome benchmark, while DINO improving it only on 4/12.

2.6 Encoder distance plots

In Fig. 6 we visualize histograms of the distance between class token embeddings extracted from the
last transformer encoder layer, for target instances without and with random masks. We visualize
these histograms for models finetuned on the source domains but with different initializations –
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Figure 4: Left. F1 score of our selection strategy (blue) and SENTRY’s selection strategy (yellow). Right.
Percentage of target examples selected for self-training.

SSL initializations with additional S+T pretraining with MAE (Fig. 6a) and DINO (Fig. 6b), and a
supervised ImageNet initialization. Instances that are classifier correctly and incorrectly are shown
separately. As seen, with SSL initializations correct instances tend to on average have more similar
embeddings across masking than supervised initializations (as a result of being trained to learn from
such missing inputs during SSL pretraining), but this is not the case for the supervised initialization.
This explains the efficacy of our masking consistency-based reliability scheme for SSL initializations.

2.7 In-domain pretraining: t-SNE [8] visualization

In Figures 7- 8, we present t-SNE visualizations of class token activations from the encoder, for
the Clipart and Product OfficeHome domains. We separately visualize features before and after
in-domain pretraining with MAE 7 and DINO 8. We note that these features are completely self-
supervised as the model has not seen task labels yet. Regardless, we observe a small degree of
task discriminativeness (examples of the same class are clustered together) and domain invariance
(examples of the same class but different domains are close) before additional pretraining. After
pretraining, we observe it to increase, particularly after DINO pretraining.

2.8 Comparison of total training time

We compare the total time taken to train different methods including all stages: PACMAC, SENTRY [1]
and Shen et al. [4]. We include results on the OfficeHome Product→Real shift that in general results
in slower training due to large number of high resolution images in both domains. We benchmark all
methods on a single NVIDIA A40 GPU. On the OfficeHome Product→Real shift, PACMAC takes 20h
23m to train, SENTRY [1] takes 28h 15m to train while Shen et al. [4] takes 18h 39m to train.

(a) MAE S+T pretraining (b) DINO S+T pretraining
Figure 5: Effect of in-domain pretraining on OOD calibration. Expected calibration on the target test set for
each OfficeHome shifts (lower is better)

4



5 10 15 20 25 30 35 40
dist( (xT), (m(xT)))

0

20

40

60

80

100

Co
un

t

MAE S+T pretraining S FT
Correct (avg=11.74)
Incorrect (avg=16.72)

(a) MAE S+T pretraining
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(b) DINO S+T pretraining
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(c) Supervised ImageNet initialisation
Figure 6: Distribution of distance between the encoded representations of masked and original images. If
these distributions for correctly and incorrectly predicted target samples are well separated, target selection based
on consistency is expected to work better. Numbers in legend denote average distance between embeddings for
original and masked image.

3 Supervised ImageNet initializations

3.1 PACMAC performance

For completeness, we benchmark PACMAC on top of a supervised ImageNet initialization, and find it
to improve average accuracy across 12 OfficeHome shifts from 75.1% to 76.8%. However, we find a
competing method designed for supervised initializations, TVT [9], to obtain an average accuracy
of 80.1%, clearly outperforming our method, despite strongly underperforming PACMAC with MAE
and DINO initializations (Tables 1-3 in the main paper). This illustrates the importance of learning
representations from missing information during pretraining, in the absence of which predictive
consistency across masking proves to be an ineffective reliability measure. In Fig. 6(c) we further
highlight this behavior.

3.2 Most existing DA methods do not truly evaluate domain adaptation

Most existing DA methods are initialized with supervised ImageNet initializations (with ViTs,
mostly on ImageNet-22K), and adapted to standard benchmarks like OfficeHome, DomainNet,
and VisDA. We now measure the degree of label overlap between ImageNet-22K and these 3
benchmarks. Astonishingly, the overlap is near 100%: 61/65 (OfficeHome), 40/40 (DomainNet),
and 12/12 (VisDA) categories from these benchmarks directly correspond to an ImageNet-22k
category. This is particularly problematic when evaluating adaptation to real domains as a target;
by definition DA assumes that the model has never seen labeled images from the target domain,
but we argue that methods initialization with supervised ImageNet pretraining and adapted to real
domains have seen plenty! However, in this paper, all methods are initialized with self-supervised
ImageNet initializations and we thus present a more realistic measure of adaptation performance,
even when the target domain contains real images. Going forward, we urge the community to
rethink DA benchmarking when starting with supervised initializations, and consider self-supervised
initializations as a potentially fairer alternative starting point.
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Before MAE pretraining

After MAE pretraining
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Figure 7: t-SNE visualization of CLS token features of images from Clipart and Product domains of OfficeHome
before and after in-domain pretraining with MAE.
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Before DINO pretraining

After DINO pretraining
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Figure 8: t-SNE visualization of CLS token features of images from Clipart and Product domains of OfficeHome
before and after in-domain pretraining with DINO.
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Self-supervised initializations may also be a superior initialization choice when adapting to domains
very different from ImageNet. For e.g., Kim et al. [10] find that SSL initializations outperform
supervised ones when generalizing to a benchmark like WILDS [11], which contains very distinct
images from ImageNet. Similarly, Azizi et al. [12] find that self-supervised pretraining on ImageNet
followed by domain-specific pretraining strongly outperforms supervised ImageNet pretraining for
medical image classification tasks.

4 Selection criteria matching DINO’s augmentations

DINO [6] performs self-supervised learning by trying to match representations of a local crop (of
scale 0.1-0.4) with the representations of a global crop (of scale 0.4-1.0). Our method uses guidance
from attention and generates disjoint masks that select disconnected portions of images as augmented
versions of the original image (see visualisations in Figure 3). While we don’t explicitly match
the DINO’s augmentations exactly, our method is inspired by the common theme of recent SSL
methods [5, 6, 13] that try to pull closer representations of different portions of the image.

Augmentation Accuracy
RandAug (SENTRY [1]) 71.1
Random masking (MAE [5]) 72.6
attention-seeded masking (ours) 74.0
random local-global cropping (DINO [6]) 72.9
attention-seeded local-global cropping (ours) 74.3

Table 2: Comparison of performance of different augmentations used to form the target selection committee on
OfficeHome’s Clipart→Product shift when starting with a DINO initialisation. We find that attention-seeded
local-global cropping works better than other alternatives.

In this section, we try to exactly match the augmentations DINO uses. We use the predictions from
a committee consisting of crops of original image to determine the reliability of target samples.
Specifically, we use a committee consisting of two crops of sizes: 112x112 (local view) and 196x196
(global view). We start out by selecting the crops randomly and also experiment with a scheme
that uses model’s last layer attention weights to guide the crop selection. For the attention-guided
local-global cropping scheme, we first center the global crop on the most highly attended image patch,
and then select the local crop over the most highly attended image patch that is at least D = 48 pixels
away from the centre of the global crop. We visualize the crops obtained using this attention-guided
strategy in Figure 9

We report results for these attention-seeded local-global cropping augmentations on the OfficeHome’s
Clipart→Product shift and compare them to other augmentations in Table 2. We find that both
random local-global cropping and attention-seeded local-global cropping outperform their masking
counterparts as well as the next best baseline (SENTRY [1]) indicating that both matching DINO’s
augmentations and seeding with attention are beneficial.

We also experiment with other choices for selecting crops by leveraging attention: selecting the crop
with maximum sum of attention, selecting the local crop before global crop, using different crop
sizes and different values for D. We find these to underperform in comparison to the attention-seeded
local-global cropping scheme we described earlier on the OfficeHome Cl→Pr shift.

5 Datasets and implementation details

Data Licenses: Images from the OfficeHome, DomainNet, and VisDA datasets are freely available
for non-commercial and academic use. The creators note that while the datasets contain some
copyrighted material, scientific research is considered a fair use of such material. To the best of
our knowledge, none of the above datasets contain personally identifiable information or offensive
content.

Hyperparameters. Tables 3- 4 include a detailed list of hyperparameters for the in-domain pretraining
and adaptation phases.
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Figure 9: Visualizing attention-seeded local-global cropping. Row 1: Ground truth label. Row 2: Original
image. Row 3: Per-patch attention. Rows 5-6: Masked images. We include model predictions to the left of each
image, color coded as green (correct) and red (incorrect). Row 6: Does the criterion select the target sample as
reliable? (tick and cross denote correct and incorrect assessment).

config value
optimizer AdamW [14]
initial learning rate 4e-4
final learning rate 0
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95
batch size 2048
learning rate schedule cosine decay [15]
warmup epochs [16] 40
augmentation RandomResizedCrop

+ RandAugment(3, 4) [17]
epochs 800 (50 for VisDA)
drop path rate 0.0

(a) MAE pretraining

config value
optimizer AdamW [14]
initial learning rate 5e-5
final learning rate 3.8e-5 (1e-6 when OH Art is target)
initial weight decay 0.04
final weight decay 0.16 (0.4 when OH Art is target)
optimizer momentum β1, β2=0.9, 0.999
batch size 256
learning rate schedule cosine decay [15]
warmup epochs [16] 50 (10 when OH Art is target)
augmentation RandomResizedCrop, ColorJitter

Solarization, GaussianBlur
epochs 200
drop path rate [18] 0.1

(b) DINO pretraining

Table 3: Pretraining hyperparameters

Compute details. For most experiments, we use NVIDIA A40 GPUs (4 for pretraining and 1 for
finetuning/adaptation) on an internal compute cluster.
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