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Abstract

Visual domain adaptation (DA) seeks to transfer trained models to unseen, unla-
beled domains across distribution shift, but approaches typically focus on adapting
convolutional neural network architectures initialized with supervised ImageNet
representations. In this work, we shift focus to adapting modern architectures for
object recognition – the increasingly popular Vision Transformer (ViT) – initialized
with modern pretraining based on self-supervised learning (SSL). Inspired by the
design of recent SSL approaches based on learning from partial image inputs gen-
erated via masking or cropping – either by learning to predict the missing pixels, or
learning representational invariances to such augmentations – we propose PACMAC,
a two-stage adaptation algorithm for self-supervised ViTs. PACMAC first performs
in-domain SSL on pooled source and target data to learn task-discriminative fea-
tures, and then probes the model’s predictive consistency across a set of partial
target inputs generated via a novel attention-conditioned masking strategy, to iden-
tify reliable candidates for self-training. Our simple approach leads to consistent
performance gains over competing methods that use ViTs and self-supervised
initializations on standard object recognition benchmarks. Our code is available at
https://github.com/virajprabhu/PACMAC.

1 Introduction

Deep models struggle to generalize to visual domains that deviate from the ones on which they were
trained [1]. Unsupervised domain adaptation [2, 3, 4, 5, 6, 7, 8, 9] seeks to adapt models trained on
labeled source domains to unseen and unlabeled target domains, but most existing approaches focus on
adapting convolutional neural network (CNN) architectures initialized with supervised representations,
typically from ImageNet [10]. In this work, we seek to “modernize” domain adaptation by focusing
on adapting state-of-the-art architectures for object recognition – Vision Transformers (ViTs) [11]
– initialized with modern pretraining strategies based on self-supervised learning (SSL).

Vision Transformer (ViT) [11] architectures have recently gained traction as an effective alternative
to CNNs for computer vision tasks [12], achieving impressive performance despite fewer inductive
biases. With their in-built self-attention mechanisms and improved calibration under distribution shift
over their CNN counterparts [13], ViTs may be particularly well-suited to domain adaptation [14, 15].

Similarly, self-supervised representation learning (SSL) is rapidly replacing supervised learning
as the de-facto pretraining strategy for deep networks, due to improved scalability (unlabeled
data is easier to collect) and generality (domain-specific SSL is often preferable to one-fits-all
ImageNet pretraining [16, 17]). Many successful methods that optimize proxy objectives based on
pretext tasks [18, 19, 20], instance discrimination [21, 22, 23, 24], self-distillation [25], and image
reconstruction [26], have been proposed.
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Despite the increasing popularity of ViTs and SSL, to our knowledge no prior work has focused
on adapting self-supervised ViTs. Recent work has proposed additional self-supervised contrastive
learning on the pooled source and target domain as a strong initialization for DA methods [27, 28],
but focuses on adapting CNNs. We follow these works to perform additional in-domain pretraining,
finding that it leads to learning task-discriminative features with ViTs as well. Interestingly, Shen et
al. [28] find that such contrastive pretraining learns features that disentangle domain and class
information and can generalize to the target without being domain invariant, subverting traditional
wisdom in UDA. We experimentally find that this causes several off-the-shelf DA methods (e.g.
based on domain adversarial learning) to sometimes fail at adapting ViTs initialized with SSL
representations, suggesting the need for specialized solutions. Our work attempts to fill this gap.

Concurrent work has also studied the problem of adapting ViTs [14, 15], but focuses on supervised
rather than self-supervised initializations. Crucially, none of these prior works propose an adaptation
strategy specifically designed for adapting self-supervised initializations, whereas we explicitly
incorporate components of the SSL pretraining in our adaptation algorithm for better transfer.

Concretely, we observe that several recent state-of-the-art SSL methods for ViTs focus on learning
from partial inputs [22, 23, 26, 24, 25] generated via masking or cropping strategies. In the context
of vision transformers, such methods learn to either reconstruct the missing information [26, 29] or to
be invariant to such cropping [25]. We find that the predictive consistency of a model initialized with
such representations across partial inputs generated via masking acts as an effective self-supervised
reliability measure on the unlabeled target domain. Further, rather than masking inputs randomly,
we leverage the ViT attention mechanism to perform attention-conditioned masking: we generate a
set of disjoint masks that only keep highly attended patches from the input image. We then probe
the reliability of a given target instance by measuring the model’s predictive consistency across such
masked images and the original image, and mark target instances with high consistency as reliable.
We call our selection strategy Probing Attention-Conditioned Masking Consistency (PACMAC).

We further mark instances with high confidence as reliable, and then selectively self-train the model
against the current prediction on target instances identified as reliable via either scheme. This leads
to an easy to implement selective self-training adaptation algorithm that outperforms competing
methods on standard benchmarks. We make the following contributions:

• We propose an algorithm to adapt self-supervised ViTs to unseen domains that i) performs
in-domain SSL on the pooled source and target data, and ii) self-trains the model on target
instances identified to be reliable by probing the model’s predictive consistency across a set
of attention-conditioned masks applied to the target image, in combination with confidence.

• Our approach outperforms more complex DA methods from prior work at adapting self-
supervised ViTs on the OfficeHome [30], DomainNet [31], and VisDA [32] adaptation
benchmarks for object recognition.

2 Related work

Unsupervised domain adaptation (UDA). UDA seeks to transfer a model trained on a labeled source
domain to an unlabeled target domain across distribution shift. A variety of successful approaches
based on aligning feature spaces via optimizing domain divergence measures [4, 3] and distribution
matching via domain adversarial learning [6, 5, 7] (often incorporating additional pixel-level matching
constraints), have been proposed. Recently, selective self-training [33, 9] on the model’s predictions
on target data has emerged as a simple and effective UDA technique.

With the upsurge in adoption of Vision Transformer (ViT [11]) architectures for object recognition,
some recent works specifically focus on adapting ViTs [14, 15]. These methods leverage the ViT
attention mechanism for incorporating patch-level transferability [14] and category-level feature
alignment [15]. However, these works focus on adapting models initialized with supervised ImageNet
weights. In this work, we propose an adaptation algorithm designed for self-supervised ViTs.

Self-supervised learning. Self-supervised learning (SSL) leverages unlabeled data to learn rep-
resentations that can be transferred efficiently to downstream tasks. Several approaches based on
pretext tasks [18, 19, 20], masked-image modeling [26, 34], context prediction [35] and instance
discrimination [22, 23], have been proposed to learn strong semantic representations in the absence of
labeled data. Some of the state-of-the-art SSL methods are designed for ViTs: DINO [25] performs
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self-distillation by training a student network that is given a strongly augmented image as input to
match the output of a teacher network that sees a global view of the image. MAE [26] is a masked
image modeling (MIM) approach that learns to predict a complete image given only a fraction of the
image patches as input. Recently, ADIOS [36] improves MIM methods by learning an adversarial
masking function to obscure salient regions of the image. A concurrent work, MSN [29] improves
upon DINO by passing in a masked version of an augmented image to the student network. We derive
inspiration from the local-to-global self-supervisory signal used by these methods in designing our
adaptation algorithm, but instead of learning reconstruction or invariance to missing information,
measure the model’s predictive confidence under targeted missing information as a self-supervised
probe to determine reliability.

Self-supervised learning for domain adaptation. While most UDA methods focus on adapting
models initialized with supervised initializations, typically from ImageNet, a few recent works have
studied self-supervised domain adaptation [29, 27]. Kim et al. [27] propose CDS, a pretraining
strategy for domain adaptation that makes use of in-domain contrastive learning in conjunction with
cross-domain matching as a superior initialization alternative to ImageNet pretraining. Shen et al. [28]
study the transferability of representations learned via additional in-domain contrastive learning on
the source and target domain, finding that such pretrained features can be transferred effectively to
the target by simply finetuning on the source, despite not being domain invariant. However, these
methods restrict their experiments to ResNet [37] architectures while we work focus on adapting
ViTs. Crucially, neither of these works propose a DA algorithm catered to the model’s self-supervised
initialization, whereas we do so explicitly.

3 Approach
3.1 Notation
Let X and Y denote input and output spaces. In unsupervised domain adaptation (UDA) we are
given access to labeled source instances (xS , yS) ∼ PS(X ,Y), and unlabeled target instances
xT ∼ PT (X ), where S and T correspond to source and target domains. The goal is to learn a model
f = h(φ(.)) (φ denotes the encoder and h denotes classifier), parameterized by Θ with minimum
error on the target dataset. In our experiments, Θ is parameterized as a Vision Transformer or
ViT [11]), which takes as input a linear embedding of of N image patches in addition to a class token
embedding. These N+1 embeddings are then appended with positional encodings and passed through
several transformer layers, each of which comprises of a sequence of multi-headed self-attention
(with M attention heads), multilayer perceptron, and layernorm modules. Features from the final
encoder layer are typically fed to a classifier layer and used to predict the output. We consider
adapting models trained for C-way image classification: the inputs x are images, and labels y are
categorical variables y ∈ {1, 2, .., C}. Let pΘ(y|x) denote the final probabilistic output from the
model. For a target instance xT ∼ PT (X ), we compute a “pseudolabel” as ŷ = argmax pΘ(y|xT ).

3.2 Preliminaries

Self-supervised learning (SSL) for ViTs. We consider SSL methods for ViTs that learn from partial
inputs, under two popular formulations: i) Masked Image Modeling, wherein the model is given a
partial image and trained to predict the missing content (at a pixel or token level) via learning a masked
or denoising autoencoder [26, 38, 39, 34]. ii) Joint-embedding networks, which learn a model that
produces similar features for different views of a given image, across strong cropping and additional
augmentation [25, 29]. Let m(xT ) denote the partial image generated from target image xT under
transformation m(.) which could correspond to either a masking or augmentation strategy. Broadly
speaking, SSL corresponds to minimizing an objective of the form LSSL(φ(m(xT )), φ(xT )), which
could correspond to a reconstruction or invariance based objective operating on encoded features. We
now instantiate LSSL in the context of the the two SSL strategies we use in this paper: MAE [37]
and DINO [25].

MAE [37]. MAE learns a visual transformer autoencoder to reconstruct images xT given only
a random subset of patches from the original image m(xT ). Let d denote a decoder learned for
image reconstruction. The MAE objective minimizes the mean square error between the original and
reconstructed image in pixel space:

LSSL(xT ) = ||xT − d(φ(m(xT )))||2 (1)
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Figure 1: Overview of PACMAC. Left. First, the model’s attention over a given target image is used to generate
a set of disjoint masks that only keep highly attended patches of the input image via a greedy assignment
strategy. Right. Next, the model’s predictive consistency across the original and masked images is used as a
self-supervised reliability measure to select target instances for self-training.

DINO [25]. For a target image xT , DINO passes two transformed versions of each target image
m1(xT ) and m2(xT ) to a student network φs and teacher network φt respectively, and trains the
student network to predict the output of the teacher by minimizing the cross-entropy H between the
two output distributions:

LSSL(xT ) = H(φt(m1(xT )), φs(m2(xT ))) (2)

Self-training for unsupervised DA. Self-training for UDA typically involves training the model
on its predictions on unlabeled target data (“pseudolabels”), optimizing either a conditional entropy
minimization [40] or cross-entropy objective. However, under a domain shift many of the model’s
predictions may initially be incorrect [41, 42, 9] (especially under severe distribution shift), and
unconstrained self-training may lead to amplifying model errors.

To combat this, a few recent works have proposed selective self-training on predictions that have a
high likelihood of being correct. Recent works propose to identify such reliable predictions either
based on model confidence [33, 43], predictive consistency under data augmentation [9, 44], or
combinations of the two [45]. Let r(xT ) denote a binary reliability value for target instance xT . We
optimize the following selective self-training objective on target data LSST :

LSST = E(xT ,ŷT )∼PT [r(xT )LCE(f(xT ), ŷT )] (3)

In this work, we propose an alternative selection criterion designed for self-supervised representations
based on predictive consistency under attention-conditioned masking, which we now introduce.

3.3 PACMAC: Probing Attention-conditioned Masking Consistency for UDA

Following prior work [28, 27], we first learn task-discriminative features by optimizing the following
in-domain self-supervised pretraining objective LIDP on pooled source and target data:

LIDP = ExS∼PS [LSSL(φ(m(xS)), φ(xS))] + ExT ∼PT [LSSL(φ(m(xT )), φ(xT ))] (4)

We then finetune the learned representations end-to-end on labeled source data:

LCE = E(xS ,yS)∼PS [LCE(f(xS), yS)] (5)

Finally, we perform selective self-training. For a target instance xT ∼ PT , we generate a committee
of k masked versions. However, applying random masks may lead to capturing irrelevant background
features; instead, we propose attention-conditioned masking (see Algo. 1). We first obtain the model’s
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Algorithm 1 Attention-conditioned Masking
1: Input: xT , per-patch attention âT , masking ratio mr, committee size k
2: L← (1−mr)× len(âT )
3: ŜT ← argsort(âT ) . Sort patch-wise attention in ascending order
4: for i← 1 to k do Mi ← zeros_like(â) . Initialize masks, 0 is hide, 1 is keep
5: i← 0
6: while i < L do
7: i← i+ 1
8: for j ← 1 to k do
9: p← ŜT .pop_last() . Pop next-most attended patch index

10: Mp
j ← 1 . Greedy round-robin assignment

11: for j ← 1 to k do mj(xT ) = Mj � xT
12: Return {m1(xT ), . . . ,mk(xT )}

Algorithm 2 PACMAC Optimization
1: Input: SrcLoader, TgtLoader, model parameters Θ, masking ratio mr, committee size k, confi-

dence threshold T , loss weight α
2: for epoch← 1 to MAX_EPOCH do
3: for xS , yS in SrcLoader and xT in TgtLoader do
4: p̂T , ŷT ← max pΘ(y|xT ) . Get top-1 confidence and prediction on original image
5: âT ← att(pΘ(y|xT )) . Get per-patch attention
6: {m1(xT ), . . . ,mk(xT )} ← AttentionConditionedMasking(xT , âT , mr, k)
7: C← {mi(xT )|ŷT = argmax pΘ(y|mi(xT ))}ki=1
8: LSST = 0
9: if len(C) = k OR p̂T > T then . Consistent or Confident

10: LSST ← LCE(pΘ(y|mk(xT )), ŷT )

11: Minimize LCE(xS , yS) + αLSST

per-patch attention score âT over the original image (in practice, we obtain the patchwise self-
attention from the last encoder layer of the class token with respect to all image patches for each
attention head, and average across the M heads). We then initialize all k masks with zeros (hide
all patches). Next, we sort patches in descending order of attention scores and perform a greedy
round-robin assignment to the k masks to only unhide highly attended patches, until the desired
masking ratio is satisfied. We then apply these masks to the original image to generate masked images
{m1(xT ),m2(xT ), ...,mk(xT )}.
We make predictions for each of these k masked versions (following prior work [37] we only feed in
unmasked patches), and measure consistency between the model’s prediction for the original image
and for each of the k masked versions. If the model’s prediction for all masked versions matches its
prediction on the original image, we consider the instance as “reliable”, and as “unreliable” if not.
Further, we also consider instances as reliable if the model’s predictive confidence on the original
image is higher than a threshold T . Let 1[.] denote an indicator function. Formally, we assign target
instance reliability r(xT ) as:

r(xT ) = 1[

consistent︷ ︸︸ ︷
argmax pΘ(y|mi(xT )) == argmax pΘ(y|xT )∀i = 1..k or

confident︷ ︸︸ ︷
max pΘ(y|xT ) > T ] (6)

Algorithm 2 lists the steps involved in computing the PACMAC objective. Without loss of generality,
we minimize the cross-entropy between the model’s prediction on the last consistent masked image
mk(xT ) and its consistent pseudolabel. We empirically find this to act as an effective data augmenta-
tion strategy and provide a stronger learning signal than when using the model’s prediction on the
original unmasked image (see Sec. 4.5). We additionally optimize a cross-entropy loss over labeled
source examples. For loss weight α, the full LPACMAC objective is:

LPACMAC = E(xS ,yS)∼PS [LCE(f(xS), yS)] + αE(xT ,ŷT )∼PT [r(xT )LCE(f(mk(xT )), ŷT )] (7)
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Table 1: Target test set accuracy on OfficeHome across MAE [26] and DINO [25] pretraining. (* = Variation of
original method, see Sec. 4.3)

IN1K Init. Method A→ C A→ P A→ R C→ A C→ P C→ R P→ A P→ C P→ R R→ A R→ C R→ P AVG

MAE [26]

source 46.4 57.6 71.0 51.1 60.0 62.6 51.4 46.9 70.5 66.3 52.2 77.2 59.4
CDAN [7] 45.3 58.8 69.1 51.6 60.7 61.5 53.4 45.5 72.4 67.7 49.9 78.0 59.5
MCC [49] 43.9 61.2 70.7 52.8 59.9 62.8 51.1 40.3 70.9 66.2 48.3 76.3 58.7
Shen et al.* [28] 57.1 63.6 71.9 57.9 65.6 67.1 55.5 56.7 71.2 69.0 62.6 79.4 64.8
SENTRY [9] 54.8 65.6 74.4 56.5 65.8 69.8 57.6 54.9 75.5 68.9 60.0 81.6 65.5
PACMAC (Ours) 58.9 68.2 74.1 60.6 67.1 67.2 57.3 59.2 74.4 68.6 63.9 82.7 66.8

DINO [25]

source 53.1 65.0 75.2 62.0 66.2 70.4 60.8 50.5 77.0 72.8 53.9 81.2 65.7
CDAN [7] 49.0 70.0 76.4 60.0 67.3 71.2 64.7 47.0 79.9 75.1 56.4 81.8 66.5
MCC [49] 44.4 74.2 79.6 61.9 67.6 72.4 63.0 40.1 79.2 73.3 47.1 82.8 65.5
TVT [14] 48.3 65.7 73.6 60.6 68.8 64.6 57.1 44.1 75.4 71.0 53.7 77.2 63.3
Shen et al.* [28] 53.1 69.4 76.7 62.6 68.9 71.4 62.2 51.8 76.0 73.5 56.3 81.8 67.0
SENTRY [9] 59.5 72.0 76.8 66.1 71.1 73.4 63.7 56.2 77.8 72.4 63.0 81.9 69.5
PACMAC (Ours) 54.9 74.7 79.3 65.7 74.0 74.5 63.3 55.8 79.2 73.1 58.4 83.9 69.7

4 Experiments

We first describe our datasets and metrics (Sec. 4.1), implementation details (Sec. 4.2), and baselines
(Sec. 4.3). Next, we present results (Sec. 4.4), method ablations (Sec. 4.5), and analysis (Sec. 4.6).

4.1 Datasets and metrics

We evaluate PACMAC on three classification benchmarks for domain adaptation: i) OfficeHome [30]
is a classification-based benchmark comprising of 12 shifts spanning 65 categories of objects found
in home and office environments. It consists of 4 domains: Real-world (Rw), Clipart (Cl), Product
(Pr), and Art (Ar). ii) DomainNet [31] is a large benchmark for adapting object recognition models.
Matching prior work [28, 9], we use the subset of DomainNet proposed in Tan et al. [33] for our
experiments, which reports performance over 12 shifts comprising 40 common classes from 4
domains: Real (R), Clipart (C), Painting (P), and Sketch (S). iii) VisDA2017 [32]is a large image
classification benchmark for synthetic→real adaptation with >200k images from 12 classes.

Metric. Matching prior work we report standard accuracy on the target test set as our metric.

4.2 Implementation details

We use a ViT-base [11] architecture with 16x16 image patches. We use official codebases for
MAE [26] and DINO [25] and initialize with checkpoints pretrained on ImageNet1K [10]. We
pretrain on the combined source and target domain for 800 epochs (MAE) and 200 epochs (DINO).
For pretraining, we linearly scale the learning rate to 4×10−4 (MAE) and 5×10−5 (DINO) during a 40
epoch warmup phase followed by a cosine decay. We use the AdamW [46] optimizer. For PACMAC, we
use k = 2,mr= 0.75, T = 50%, and α = 0.1. We use RandAugment [47] withN = 3 andM = 4.0
during pretraining andN = 1 andM = 2.0 during DA. On OfficeHome and DomainNet, we finetune
on the source and adapt for 100 epochs each, and perform 10 epochs of each phase on VisDA. We
use a learning rate of 2× 10−4 and weight decay of 0.05. All experiments use PyTorch [48].

4.3 Baselines and SSL strategies

DA baselines: Lacking baselines designed for adapting self-supervised ViTs, we compare against
diverse DA methods proposed for CNNs with supervised initializations: based on domain adversarial
learning (CDAN [7]), minimizing classifier confusion (MCC [49]), self-training (SENTRY [45]), and
contrastive learning (Shen et al. [28]). We also benchmark a concurrent method for adapting ViTs
(TVT [14]) with supervised initializations. 1) CDAN [7]: CDAN improves upon domain adversarial
learning with multilinear conditioning, by capturing cross-covariance between feature representations
and classifier predictions to improve discriminability. Recent work [50] finds CDAN to outperform
more recent DA methods when combined with new architectures like ViTs. 2) MCC [49]: Minimum
Classifier Confusion is a non-adversarial DA method that aligns domains by minimizing pairwise
class confusion on the target domain estimated from model predictions. 3) SENTRY [9]: SENTRY
measures model predictive consistency across randomly augmented versions of each target image
and selectively minimizes entropy to increase predictive confidence on highly consistent instances,
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Table 3: Target test set accuracy on DomainNet across MAE [26] and DINO [25] pretraining. (* = Variation of
original method, see Sec. 4.3)

IN1K Init. Method R→ C R→ P R→ S C→ R C→ P C→ S P→ R P→ C P→ S S→ R S→ C S→ P AVG

MAE [26]

source 71.0 77.6 62.9 73.7 61.5 63.3 82.4 63.1 66.1 76.6 71.9 69.6 70.1
CDAN [7] 72.2 74.5 59.3 80.6 57.3 59.2 78.5 57.4 61.2 81.4 73.2 69.4 68.7
Shen et al.* [28] 83.0 80.2 77.7 84.2 74.6 74.7 85.0 77.5 76.5 83.7 80.7 76.2 79.5
SENTRY [9] 84.2 82.8 76.4 86.9 77.1 74.1 86.9 76.2 73.3 88.8 81.6 77.6 80.5
PACMAC (Ours) 86.0 81.9 78.8 86.0 74.8 76.3 87.4 84.0 77.5 85.2 83.1 78.3 81.6

DINO [25]

source 75.7 82.8 68.2 81.9 73.9 71.1 82.6 70.6 69.5 80.8 76.9 78.1 76.0
CDAN [7] 81.1 84.2 77.2 84.8 76.2 72.5 84.6 69.0 69.1 84.9 79.8 80.1 78.6
TVT [14] 70.4 79.7 64.2 80.2 68.1 65.2 81.6 61.9 65.6 80.3 71.4 74.1 71.9
Shen et al.* [28] 76.6 81.9 76.8 82.1 74.9 74.3 84.7 69.7 74.3 83.0 77.9 80.1 78.0
SENTRY [9] 81.8 80.9 73.4 89.1 79.4 75.8 86.5 75.6 71.6 88.3 81.9 82.4 80.6
PACMAC (Ours) 80.7 82.9 82.0 85.7 78.8 78.3 87.3 75.5 75.2 84.7 79.6 82.0 81.0

while maximizing it to decrease confidence on highly inconsistent ones. 4) Shen et al. [28]: Proposes
contrastive learning on the pooled source and target domain followed by finetuning on source labels.
We adapt their approach by using SSL strategies designed for ViTs (described below), and by starting
from ImageNet SSL weights rather than from scratch. 5) TVT [14]: Transferable Vision Transformer
(TVT) injects a learned transferability measure into the transformer attention blocks, in addition to
performing global domain-adversarial alignment and discriminative clustering.

SSL Strategies: As discussed in Sec. 3, PACMAC is designed as an adaptation strategy for self-
supervised representations. We report benchmark performance on top of two popular SSL strategies
for ViTs (see supp. for more details): 1) MAE [26]: Masked Autoencoding (MAE) is a self-
supervised learning strategy that learns a visual transformer autoencoder to reconstruct images
given only a random subset of patches from the original image. By masking out large portions of
images (∼75%), the MAE encoder is shown to learn strong representations that can be effectively
finetuned to downstream tasks. 2) DINO [25]: Self-Distillation with No Labels is a visual self-
supervised learning strategy that passes two transformed versions of each image to a student and
teacher network respectively, and trains the student network to predict the output of the teacher. In
supp. for completeness we also benchmark PACMAC on top of a supervised ImageNet initialization.

4.4 Results

Table 2: VisDA. Target accu-
racy with an MAE [25] init.

Method Acc.

source 63.5
CDAN [7] 72.4
TVT [14] 62.3
Shen et al.* [28] 79.3
SENTRY [9] 76.0
PACMAC (Ours) 81.0

Tables1, 2, and 3, present results. We observe:

. Several existing DA methods underperform on top of SSL repre-
sentations. On both OfficeHome and DomainNet, we observe existing
DA methods (CDAN [7], MCC [49], TVT [14]) to frequently underper-
form even the source model on average, despite hyperparameter tuning.
The fact that many existing DA methods struggle with such initializa-
tions suggests the need for specialized solutions, particularly as SSL
pretraining becomes more common. SENTRY [45], Shen et al. [28],
and PACMAC however offer consistent improvements.

. PACMAC outperforms prior work across benchmarks and initializations. On OfficeHome (12
shift average), PACMAC improves over the next-best method by 1.3% (MAE init.) and 0.2% (DINO).
On DomainNet, we observe gains of 1.1% (MAE) and 0.4% (DINO), and 1.7% (MAE) on VisDA.

We note here that PACMAC and SENTRY [9] both make use of selective self-training on reliable
instances identified via predictive consistency, but differ in important ways: i) PACMAC roughly
matches the design of its SSL pretraining and measures consistency across partial masked inputs rather
than random augmented images, ii) PACMAC incorporates model knowledge in its selection strategy
by using attention-conditioning to focus on salient image regions, rather than random augmentations
sampled from a manually pre-defined set. These differences lead to its improved performance, despite
being considerably simpler (2 losses, Eq. 7, and no diversity regularizers or entropy maximization).

4.5 Ablating PACMAC

In Tables 4- 5 we ablate PACMAC with a DINO initialization on OfficeHome Cl→Pr. We observe:
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Table 4: OfficeHome Cl→Pr. Gray is ours: a) Ablating pretraining. Cross-domain kNN and finetuning
(FT) accuracies for MAE and DINO strategies (S=Source, T=Target, PT=Pretrain, dom.=domain). b) Varying
PACMAC init. Transfer accuracy with & without S+T pretraining. c) Ablating selection strategy with DINO init.

(a) Pretraining ablations

Pretraining
domains

MAE DINO
kNN FT kNN FT

IN1K PT 29.6 60.0 57.9 66.2
+ S+T PT 41.4 66.2 56.5 68.9

+ dom. decoders 19.7 57.7 N/A N/A

(b) Vary initialization

MAE DINO
source 60.0 66.2
PACMAC 67.1 74.0

no S+T PT 64.7 71.3

(c) Ablating selection strategy

select on target Acc.
all 59.8
confident 71.3
consistent 73.7
consistent AND confident 72.2
consistent OR confident 74.0

correct (oracle) 94.0

. In-domain pretraining helps.(4a) We report two metrics: cross-domain k-Nearest Neighbor (k=7)
accuracy on the target domain using source domain embeddings from the trained encoder (kNN
column), and target accuracy after finetuning on the source (FT column). Across MAE and DINO
initializations, we observe additional in-domain pretraining on the pooled source and target domain to
improve finetuning performance (Row 2 v/s 1, +6.2% FT acc. with MAE, +2.7% with DINO). With
MAE, we additionally try pretraining only on source or target domains and find them to underperform
S+T pretraining (not in table). We also try S+T pretraining with MAE by learning separate decoders
to reconstruct source and target images, and find that to underperform no pretraining (Row 3 v/s 1,
-2.3%). Interestingly, we find pretraining to improve kNN accuracy in all cases except Row 3 with
MAE, indicating better domain alignment in encoder feature space. With DINO, we observe higher
kNN accuracies than MAE, but see a slight drop after in-domain pretraining.

. PACMAC benefits from S+T pretraining (4b) We apply PACMAC to ImageNet SSL features without
S+T pretraining and observe worse accuracy (Row 3 v/s 2, -2.4% with MAE, -2.7% with DINO).

. Combining masking consistency and confidence is an effective selection measure. In Table 4c,
we first self-train on all (Row 1) or only confident (model confidence > 50%, Row 2) target examples.
We find both to underperform selection based on our proposed attention-conditioned masking con-
sistency scheme (Row 3, +11.5% and +13.5%). We further combine our consistency measure with
confidence and find selecting instances marked as reliable by atleast one measure to perform best
(Row 5). In Row 6, as we report upper-bound performance of an oracle method which only self-trains
on correct pseudolabels, and find it to achieve a high accuracy of 94%. We also try self-training on
the original rather than masked image (not in table) and find it to underperform by 3.2%. However,
self-training on the masked image without using it for selection does significantly worse (-9.7%):
clearly, the primarly benefit of masking is due to better selection rather than regularization.

. Matching selection strategy to DINO [25]. So far, for simplicity we match MAE’s [26] design
for PACMAC’s selection and measure consistency across masked images. To demonstrate generality,
we now match DINO’s design and instead measure predictive consistency across local-and-global
image crops (both random and with attention-seeding). We find that for a DINO initialization this
further improves accuracy (74.3% on Cl→Pr), suggesting that closely matching the design of the
selection criterion to the SSL pretraining is beneficial (details and visualization in supp.).

. Comparing selection strategy to SENTRY [9]. We swap out PACMAC’s attention-conditioned
masking consistency scheme with the committee consistency across augmentation scheme used by the
next best performing method, SENTRY [9]. We match original hyperparameters and use a committee
size of 3, RandAugment [47] parameters of N=3 and M=2.0, and majority voting. Averaged over 12
OfficeHome shifts, we find this to obtain a transfer accuracy of 66.1% (MAE) and 67.4% (DINO),
while PACMAC obtains 66.8% (MAE) and 69.6% (DINO). This clearly establishes that PACMAC’s
gains over SENTRY are due to improved selection rather than a stronger initialization.

. Attention-conditioning helps, as does committee consistency. In Table 5a, we vary the com-
mittee size k and masking strategy (random v/s attention-conditioned masking). As seen, attention
conditioning consistently improves upon random masking across k (+0.5 to 1.8%).

. Ablating masking ratio and confidence threshold. In Tables 5b and 5c, we vary the masking
ratio mr and confidence threshold T , and find mr=75% and T=50% to work best.
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Table 5: Ablating the consistency checker on OH Cl→Pr: a) Varying committee size (k), masking strategy
(rnd.=random, att.=attention, U=unanimous, M=majority voting). b) Varying masking ratio c) Varying confidence
threshold for selection. Gray is our method.

(a) Ablating consistency checker

k=1 k=2 k=3 (U/M)
rnd. mask 68.1 72.6 71.3/72.0
att. mask 68.6 74.0 73.1/72.8

(b) Vary masking ratio

Masking ratio Acc.
50% 72.3
75% 74.0
90% 71.0

(c) Vary confidence threshold

conf. thresh. Acc.
25% 73.7
50% 74.0
75% 72.9
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Figure 2: Left. Precision of our selection strategy with
DINO (blue) and MAE (yellow) initializations. Right.
Percentage of target examples selected for self-training
across epochs.

Classifier Error (%)
PT same C diff. C diff. C DA
strat. diff. D diff D same D diff. D score

MAE 8.1 10.6 6.6 3.3 3.8
DINO 10.4 8.5 2.6 1.0 5.9

Sup. 14.2 11.9 3.2 1.6 8.5

Table 6: Understanding SSL initialization. Error
of linear classifier trained to distinguish features for:
C2. Domains. C3. Same class, different domains.
C3. Different class, same domains. C4. Different
class, different domains. C5. Domain alignment score.
baged across OfficeHome shifts.

4.6 Analyzing PACMAC

Evaluating reliability estimation. In Fig. 2, we evaluate our proposed reliability estimation scheme
across MAE and DINO initializations. We observe a high precision (70-80% across both) across
epochs, indicating that our method correctly identifies reliable instances with a low false-positive
rate (per-class analysis in supp.). We also find that the percentage of target instances selected for
self-training increases over time, and is particularly high with DINO pretraining.

Variance across runs. To measure the performance variance of our method PACMAC, we run it across
5 random seeds on the OfficeHome Clipart→Product shift and observe a target accuracy mean of
73.1% with a standard deviation of 0.59%.

Understanding SSL initialization In Tab. 6, we contrast self-supervised (MAE and DINO) and
supervised ImageNet initialization, by reporting the error of linear classifiers [28] (averaged over all
OfficeHome shifts) trained to distinguish different sets of class token features, such as: C2. Different
domains. We observe higher error for the supervised init, indicating better domain alignment. C3.
Same class but different domains. Low error with DINO indicates less per-class domain alignment.
C4. Different classes but same domain. High error with MAE indicates more inter-class confusion.
C5. Different domains and classes. C6. We define a domain alignment (DA) score = C3-max(C4, C5)
– higher means that cross-domain examples from a different domain but same class are on average
closer than examples from different classes and either the same or different domains. Intuitively,
a high DA score will translate to better performance for CDAN, which aligns logits-conditioned
source and target features2. We find that SSL inits indeed have lower DA scores, possibly explaining
why methods like CDAN struggle.

Visualizing attention-conditioned masking consistency. In Fig. 3, we visualize our proposed
attention-conditioned masking consistency scheme for random target images from OfficeHome. As
seen, attention-conditioning ensures that the masked images focus on disjoint, highly attended regions
of the target image (Row 2). Columns 1-5 illustrate examples for which our selection strategy is
correctly able to identify reliable (Cols 1-2) and unreliable instances (Cols 3-5). Cols 6-7 denote

2To validate this, we measure Pearson correlation between DA score and transfer accuracy with CDAN on
all OH shifts, and observe high correlation: 0.9 (MAE), 0.85 (DINO), and 0.75 (supervised).
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Figure 3: Visualizing PACMAC. Row 1: Ground truth label. Row 2: Original image. Row 3: Per-patch attention.
Rows 5-6: Masked images. We include model predictions to the left of each image, color coded as green (correct)
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failure cases, with the first showing a false negative (correctly classified instance being misidentified
as unreliable) and the second denoting a false positive.

Effect of in-domain pretraining on per-class kNN accuracy. In supplementary, we report per-class
cross-domain kNN accuracy on the OfficeHome Cl→Pr shift before and after in-domain pretraining
across MAE and DINO initializations. We find that accuracy improves on several classes in both
cases, particularly with MAE. While prior work has observed benefits from additional in-domain
pretraining for CNNs [28, 27], we corroborate this finding with self-supervised ViTs.

In the appendix, we analyze the effect of in-domain pretraining on out-of-distribution confidence
calibration (trends vary across shifts) , and include t-SNE [51] visualizations of the feature space
learned by encoders before and after in-domain pretraining.

5 Limitations

PACMAC requires additional i) in-domain pretraining and ii) forward passes over masked target images
(but no additional backpropagation), which makes it slower. Further, PACMAC’s effectiveness at
identifying reliable instances varies across categories (see supp.). In our paper we only experiment
with ViTs trained for image classification, and the generality of our approach across architectures
and tasks is not established. Finally, the performance of DA methods with SSL initializations still
lags behind supervised initializations on standard benchmarks like OfficeHome and DomainNet
(comparison in supp.). We hypothesize that this may be due to strong category overlap between
ImageNet and these benchmarks and may not translate to other datasets, but this requires further study.

6 Conclusion

We focus on adapting modern vision architectures (ViTs) initialized with state-of-the-art pretraining
(self-supervised learning or SSL). Our method PACMAC first performs SSL on source and target data,
and then uses predictive consistency across partial versions of target images generated via an attention-
conditioned masking strategy to judge reliability for selective self-training. Despite its simplicity,
PACMAC outperforms prior work at adapting self-supervised ViTs trained for object recognition.

Acknowledgements. This work was supported in part by funding from the DARPA LwLL project
and ARL.
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