
Quantum Algorithms for Sampling Log-Concave
Distributions and Estimating Normalizing Constants

Andrew M. Childs
Joint Center for Quantum Information and Computer Science,

Department of Computer Science, and
Institute for Advanced Computer Studies

University of Maryland
amchilds@umd.edu

Tongyang Li
Center on Frontiers of Computing Studies and

School of Computer Science
Peking University

tongyangli@pku.edu.cn

Jin-Peng Liu
Simons Institute and

Department of Mathematics
UC Berkeley

jliu1219@terpmail.umd.edu

Chunhao Wang
Department of Computer Science and Engineering

Pennsylvania State University
cwang@psu.edu

Ruizhe Zhang
Department of Computer Science
The University of Texas at Austin

ruizhe@utexas.edu

Abstract

Given a convex function f : Rd → R, the problem of sampling from a distribu-
tion ∝ e−f(x) is called log-concave sampling. This task has wide applications
in machine learning, physics, statistics, etc. In this work, we develop quantum
algorithms for sampling log-concave distributions and for estimating their nor-
malizing constants

∫
Rd e

−f(x)dx. First, we use underdamped Langevin diffusion
to develop quantum algorithms that match the query complexity (in terms of the
condition number κ and dimension d) of analogous classical algorithms that use
gradient (first-order) queries, even though the quantum algorithms use only eval-
uation (zeroth-order) queries. For estimating normalizing constants, these algo-
rithms also achieve quadratic speedup in the multiplicative error ε. Second, we de-
velop quantum Metropolis-adjusted Langevin algorithms with query complexity
Õ(κ1/2d) and Õ(κ1/2d3/2/ε) for log-concave sampling and normalizing constant
estimation, respectively, achieving polynomial speedups in κ, d, ε over the best
known classical algorithms by exploiting quantum analogs of the Monte Carlo
method and quantum walks. We also prove a 1/ε1−o(1) quantum lower bound
for estimating normalizing constants, implying near-optimality of our quantum
algorithms in ε.
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1 Introduction

Sampling from a given distribution is a fundamental computational problem. For example, in statis-
tics, samples can determine confidence intervals or explore posterior distributions. In machine learn-
ing, samples are used for regression and to train supervised learning models. In optimization, sam-
ples from well-chosen distributions can produce points near local or even global optima.

Sampling can be nontrivial even when the distribution is known. Indeed, efficient sampling is often
a challenging computational problem, and bottlenecks the running time in many applications. Many
efforts have been made to develop fast sampling methods. Among those, one of the most successful
tools is Markov Chain Monte Carlo (MCMC), which uses a Markov chain that converges to the
desired distribution to (approximately) sample from it.

Here we focus on the fundamental task of log-concave sampling, i.e., sampling from a distribu-
tion proportional to e−f where f : Rd → R is a convex function. This covers many practical
applications such as multivariate Gaussian distributions and exponential distributions. Provable per-
formance guarantees for log-concave sampling have been widely studied [15]. A closely related
problem is estimating the normalizing constants of log-concave distributions, which also has many
applications [16].

Quantum computing has been applied to speed up many classical algorithms based on Markov pro-
cesses, so it is natural to investigate quantum algorithms for log-concave sampling. If we can prepare
a quantum state whose amplitudes are the square roots of the corresponding probabilities, then mea-
surement yields a random sample from the desired distribution. In this approach, the number of re-
quired qubits is only poly-logarithmic in the size of the sample space. Unfortunately, such a quantum
state probably cannot be efficiently prepared in general, since this would imply SZK ⊆ BQP [1].
Nevertheless, in some cases, quantum algorithms can achieve polynomial speedup over classical
algorithms. Examples include uniform sampling on a 2D lattice [35], estimating partition func-
tions [4, 22, 31, 45, 46], and estimating volumes of convex bodies [6]. However, despite the impor-
tance of sampling log-concave distributions and estimating normalizing constants, we are not aware
of any previous quantum speedups for general instances of these problems.

Formulation In this paper, we consider a d-dimensional convex function f : Rd → R which is
L-smooth and µ-strongly convex, i.e., µ,L > 0 and for any x, y ∈ Rd, x 6= y,

f(y)− f(x)− 〈∇f(x), y − x〉
‖x− y‖22/2

∈ [µ,L]. (1.1)

We denote by κ := L/µ the condition number of f . The corresponding log-concave distribution has
probability density ρf : Rd → R with

ρf (x) :=
e−f(x)

Zf
, (1.2)

where the normalizing constant is

Zf :=

∫
x∈Rd

e−f(x) dx. (1.3)

When there is no ambiguity, we abbreviate ρf and Zf as ρ and Z, respectively. Given an ε ∈ (0, 1),

• the goal of log-concave sampling is to output a random variable with distribution ρ̃ such that
‖ρ̃− ρ‖ ≤ ε, and

• the goal of normalizing constant estimation is to output a value Z̃ such that with probability at
least 2/3, (1− ε)Z ≤ Z̃ ≤ (1 + ε)Z.

Here ‖ · ‖ is a certain norm. We consider the general setting where the function f is specified by
an oracle. In particular, we consider the quantum evaluation oracle Of , a standard model in the
quantum computing literature [3, 6, 7, 50]. The evaluation oracle acts as

Of |x, y〉 = |x, f(x) + y〉 ∀x ∈ Rd, y ∈ R. (1.4)
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(Quantum computing notations are briefly explained in Section 2.) We also consider the quantum
gradient oracle O∇f with

O∇f |x, z〉 = |x,∇f(x) + z〉 ∀x, z ∈ Rd. (1.5)

In other words, we allow superpositions of queries to both function evaluations and gradients. The
essence of quantum speedup is the ability to compute with carefully designed superpositions.

Contributions Our main results are quantum algorithms that speed up log-concave sampling and
normalizing constant estimation.

Theorem 1.1 (Main log-concave sampling result). Let ρ denote the log-concave distribution (1.2).
There exist quantum algorithms that output a random variable distributed according to ρ̃ such that

• W2(ρ̃, ρ) ≤ ε where W2 is the Wasserstein 2-norm (2.4), using Õ(κ7/6d1/6ε−1/3 + κd1/3ε−2/3)
queries to the quantum evaluation oracle (1.4); or

• ‖ρ̃ − ρ‖TV ≤ ε where ‖ · ‖TV is the total variation distance (2.3), using Õ
(
κ1/2d

)
queries to

the quantum gradient oracle (1.5), or Õ
(
κ1/2d1/4

)
queries when the initial distribution is warm

(formally defined in Appendix C.2.1).

In the above results, the query complexity Õ(κ7/6d1/6ε−1/3 +κd1/3ε−2/3) is achieved by our quan-
tum ULD-RMM algorithm. Although the quantum query complexity is the same as the best known
classical result [37], we emphasize that our quantum algorithm uses a zeroth-order oracle while [37]
uses a first-order oracle. The query complexity Õ

(
κ1/2d

)
is achieved by our quantum MALA al-

gorithm that uses a first-order oracle (as in classical algorithms). This is a quadratic speedup in κ
compared with the best known classical algorithm [28]. With a warm start, our quantum speedup is
even more significant: we achieve quadratic speedups in κ and d as compared with the best known
classical algorithm with a warm start [47].

Theorem 1.2 (Main normalizing constant estimation result). There exist quantum algorithms that
estimate the normalizing constant by Z̃ within multiplicative error ε with probability at least 3/4,

• using Õ(κ7/6d7/6ε−1 + κd4/3ε−1) queries to the quantum evaluation oracle (1.4); or
• using Õ(κ1/2d3/2ε−1) queries to the quantum gradient oracle (1.5).

Furthermore, this task has quantum query complexity at least Ω(ε−1+o(1)) (Theorem 5.1).

Our query complexity Õ(κ7/6d7/6ε−1 + κd4/3ε−1) for normalizing constant estimation achieves
a quadratic speedup in precision compared with the best known classical algorithm [16]. More
remarkably, our quantum ULD-RMM algorithm again uses a zeroth-order oracle while the slower
best known classical algorithm uses a first-order oracle [16]. Our quantum algorithm working with
a first-order oracle achieves polynomial speedups in all parameters compared with the best known
classical algorithm [16]. Moreover, the precision-dependence of our quantum algorithms is nearly
optimal, which is quadratically better than the classical lower bound in 1/ε [16].

To the best of our knowledge, these are the first quantum algorithms with quantum speedup for the
fundamental problems of log-concave sampling and estimating normalizing constants. We explore
multiple classical techniques including the underdamped Langevin diffusion (ULD) method [12–
14, 43], the randomized midpoint method for underdamped Langevin diffusion (ULD-RMM) [36,
37], and the Metropolis adjusted Langevin algorithm (MALA) [8, 11, 15, 28, 29, 47], and achieve
quantum speedups. Our main contributions are as follows.

• Log-concave sampling. For this problem, our quantum algorithms based on ULD and ULD-
RMM have the same query complexity as the best known classical algorithms, but our quantum
algorithms only use a zeroth-order (evaluation) oracle, while the classical algorithms use the first-
order (gradient) oracle. For MALA, this improvement on the order of oracles is nontrivial, but
we can use the quantum gradient oracle in our quantum MALA algorithm to achieve a quadratic
speedup in the condition number κ. Furthermore, given a warm-start distribution, our quantum
algorithm achieves a quadratic speedup in all parameters.

• Normalizing constant estimation. For this problem, our quantum algorithms provide larger
speedups. In particular, our quantum algorithms based on ULD and ULD-RMM achieve quadratic
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speedup in the multiplicative precision ε (while using a zeroth-order oracle) compared with the
corresponding best-known classical algorithms (using a first-order oracle). Our quantum algo-
rithm based on MALA achieves polynomial speedups in all parameters. Furthermore, we prove
that our quantum algorithm is nearly optimal in terms of ε.

We summarize our results and compare them to previous classical algorithms in Table 1 and Table 2.
See Appendix A for more detailed comparisons to related classical and quantum work.

Table 1: Summary of the query complexities of classical and quantum algorithms for sampling a d-dimensional
log-concave distribution. Here κ = L/µ in (1.1) and ε is the error in the designated norm.

Method Oracle Complexity Norm

ULD [10] gradient Õ
(
κ2d1/2ε−1

)
W2

ULD-RMM [37] gradient Õ
(
κ7/6d1/6ε−1/3 + κd1/3ε−2/3

)
W2

MALA [28] gradient Õ(κd) TV

MALA with warm start [47] gradient Õ
(
κd1/2

)
TV

Quantum Inexact ULD (Theorem C.1) evaluation Õ
(
κ2d1/2ε−1

)
W2

Quantum Inexact ULD-RMM (Theorem C.2) evaluation Õ
(
κ7/6d1/6ε−1/3 + κd1/3ε−2/3

)
W2

Quantum MALA (Theorem C.7) gradient Õ
(
κ1/2d

)
TV

Quantum MALA (warm start) (Theorem C.6) gradient Õ
(
κ1/2d1/4

)
TV

Table 2: Summary of the query complexities of classical and quantum algorithms for estimating the normalizing
constant of a d-dimensional log-concave distribution. Here κ = L/µ in (1.1) and ε is the multiplicative error.

Method Oracle Complexity

Multilevel ULD [16] gradient Õ
(
κ2d3/2ε−2

)
Multilevel ULD-RMM [16] gradient Õ

(
κ7/6d7/6ε−2 + κd4/3ε−2

)
MALA [16] gradient Õ

(
κd2ε−2 max{1, κ

d
}
)

Multilevel Quantum Inexact ULD (Theorem D.3) evaluation Õ
(
κ2d3/2ε−1

)
Multilevel Quantum Inexact ULD-RMM (Theorem D.4) evaluation Õ

(
κ7/6d7/6ε−1 + κd4/3ε−1

)
Quantum annealing with Quantum MALA (Theorem D.2) gradient Õ

(
κ1/2d3/2ε−1

)

Techniques In this work, we develop a systematic approach for studying the complexity of quan-
tum walk mixing and show that for any reversible classical Markov chain, we can obtain quadratic
speedup for the mixing time as long as the initial distribution is warm. In particular, we apply the
quantum walk and quantum annealing in the context of Langevin dynamics and achieve polynomial
quantum speedups.

The technical ingredients of our quantum algorithms are highlighted below.

• Quantum simulated annealing (Lemma 3.2). Our quantum algorithm for estimating normalizing
constants combines the quantum simulated annealing framework of [45] and the quantum mean
estimation algorithm of [31]. For each type of Langevin dynamics (which are random walks), we
build a corresponding quantum walk. Crucially, the spectral gap of the random walk is quadrat-
ically amplified in the phase gap of the corresponding quantum walk. This allows us to use a
Grover-like procedure to produce the stationary distribution state given a sufficiently good initial
state. In the simulated annealing framework, this initial state is the stationary distribution state of
the previous Markov chain.

• Effective spectral gap (Lemma C.7). We show how to leverage a “warm” initial distribution to
achieve a quantum speedup for sampling. Classically, a warm start leads to faster mixing even if
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the spectral gap is small. Quantumly, we generalize the notion of “effective spectral gap” [6, 27,
34] to our more general sampling problem. We show that with a bounded warmness parameter,
quantum algorithms can achieve a quadratic speedup in the mixing time. By viewing the sampling
problem as a simulated annealing process with only one Markov chain, we prove a quadratic
speedup for quantum MALA by analyzing the effective spectral gap.

• Quantum gradient estimation (Lemma C.1). We adapt Jordan’s quantum gradient algorithm [24]
to the ULD and ULD-RMM algorithms and give rigorous proofs to bound the sampling error due
to gradient estimation errors.

Open questions Our work raises several natural questions for future investigation:

• Can we achieve quantum speedup in d and κ for unadjusted Langevin algorithms such as ULD
and ULD-RMM? The main difficulty is that ULD and ULD-RMM are irreversible, while most
available quantum walk techniques only apply to reversible Markov chains. New techniques might
be required to resolve this question.

• Can we achieve further quantum speedup for estimating normalizing constants with a warm start
distribution? This might require a more refined version of quantum mean estimation.

• Can we give quantum algorithms for estimating normalizing constants with query complexity
sublinear in d? Such a result would give a provable quantum-classical separation due to the
Ω(d1−o(1)/ε2−o(1)) classical lower bound proved in [16].

Limitations and societal impacts Researchers working on theoretical aspects of quantum com-
puting or Monte Carlo methods may benefit from our results. In the long term, once fault-tolerant
quantum computers have been built, our results may find practical applications in MCMC methods
arising in the real world. As far as we are aware, our work does not have negative societal impacts.

2 Preliminaries

Basic definitions of quantum computation Quantum mechanics is formulated in terms of linear
algebra. The computational basis of Cd is {~e0, . . . , ~ed−1}, where ~ei = (0, . . . , 1, . . . , 0)> with the
1 in the (i+ 1)st position. We use Dirac notation, writing |i〉 (called a “ket”) for ~ei and 〈i| (a “bra”)
for ~e>i .

The tensor product of quantum states is their Kronecker product: if |u〉 ∈ Cd1 and |v〉 ∈ Cd2 , then
we have |u〉 ⊗ |v〉 ∈ Cd1 ⊗ Cd2 with

|u〉 ⊗ |v〉 = (u0v0, u0v1, . . . , ud1−1vd2−1)>. (2.1)

The basic element of quantum information is a qubit, a quantum state in C2, which can be written
as a|0〉+ b|1〉 for some a, b ∈ C with |a|2 + |b|2 = 1. An n-qubit tensor product state can be written
as |v1〉 ⊗ · · · ⊗ |vn〉 ∈ C2n , where for any i ∈ [n], |vi〉 is a one-qubit state. Note however that most
states in C2n are not product states. We sometimes abbreviate |u〉 ⊗ |v〉 as |u〉|v〉.
Operations on quantum states are unitary transformations. They are typically stated in the circuit
model, where a k-qubit gate is a unitary matrix in C2k . Two-qubit gates are universal, i.e., every
n-qubit gate can be decomposed into a product of gates that act as the identity on n−2 qubits and as
some two-qubit gate on the other 2 qubits. The gate complexity of an operation refers to the number
of two-qubit gates used in a quantum circuit for realizing it.

Quantum access to a function, referred to as a quantum oracle, must be reversible and allow access
to different values of the function in superposition (i.e., for linear combinations of computational
basis states). For example, consider the unitary evaluation oracle Of defined in (1.4). Given a
probability distribution {pi}ni=1 and a set of points {xi}ni=1, we have

Of

n∑
i=1

√
pi|xi〉|0〉 =

n∑
i=1

√
pi|xi〉|f(xi)〉. (2.2)

Then a measurement would give f(xi) with probability pi. However, a quantum oracle can not only
simulate random sampling, but can enable uniquely quantum behavior through interference. Ex-
amples include amplitude amplification—the main idea behind Grover’s search algorithm [20] and
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the amplitude estimation procedure used in this paper—and many other quantum algorithms relying
on coherent quantum access to a function. Similar arguments apply to the quantum gradient oracle
(1.5). If a classical oracle can be computed by an explicit classical circuit, then the corresponding
quantum oracle can be implemented by a quantum circuit of approximately the same size. There-
fore, these quantum oracles provide a useful framework for understanding the quantum complexity
of log-concave sampling and normalizing constant estimation.

To sample from a distribution π, it suffices to prepare the state |π〉 :=
∑
x

√
πx|x〉 and then measure

it. For a Markov chain specified by a transition matrix P with stationary distribution π, one can
construct a corresponding quantum walk operator W (P ). Intuitively, quantum walks can be viewed
as applying a sequence of quantum unitaries on a quantum state encoding the initial distribution to
rotate it to the subspace of stationary distribution |π〉. The number of rotations needed (i.e., the angle
between the initial distribution and stationary distribution) depends on the spectral gap of P , and a
quantum algorithm can achieve a quadratic speedup via quantum phase estimation and amplification
algorithms. More background on quantum walk is given in Appendix C.2.2.

Notations Throughout the paper, the big-O notations O(·), o(·), Ω(·), and Θ(·) follow common
definitions. The Õ notation omits poly-logarithmic terms, i.e., Õ(f) := O(fpoly(log f)). We say a
function f is L-Lipschitz continuous at x if |f(x)− f(y)| ≤ L‖x− y‖ for all y sufficiently near x.
The total variation distance (TV-distance) between two functions f, g : Rd → R is defined as

‖f − g‖TV :=
1

2

∫
Rd
|f(x)− g(x)|dx. (2.3)

Let B(Rd) denote the Borel σ-field of Rd. Given probability measures µ and ν on (Rd,B(Rd)),
a transference plan ζ between µ and ν is defined as a probability measure on (Rd × Rd,B(Rd) ×
B(Rd)) such that for any A ⊆ Rd, ζ(A × Rd) = µ(A) and ζ(Rd × A) = ν(A). We let Γ(µ, ν)
denote the set of all transference plans. We let

W2(µ, ν) :=

(
inf

ζ∈Γ(µ,ν)

∫
Rd×Rd

‖x− y‖22 dζ(x, y)

) 1
2

(2.4)

denote the Wasserstein 2-norm between µ and ν.

3 Quantum Algorithm for Log-Concave Sampling

In this section, we describe several quantum algorithms for sampling log-concave distributions.

Quantum inexact ULD and ULD-RMM We first show that the gradient oracle in the classical
ULD and ULD-RMM algorithms can be efficiently simulated by the quantum evaluation oracle via
quantum gradient estimation. Suppose we are given access to the evaluation oracle (1.4) for f(x).
Then by Jordan’s algorithm [24] (see Lemma C.1 for details), there is a quantum algorithm that can
compute ∇f(x) with a polynomially small `1-error by querying the evaluation oracle O(1) times.
Using this, we can prove the following theorem (see Appendix C.1 for details).
Theorem 3.1 (Informal version of Theorem C.1 and Theorem C.2). Let ρ ∝ e−f be a d-dimensional
log-concave distribution with f satisfying (1.1). Given a quantum evaluation oracle for f ,

• the quantum inexact ULD algorithm uses Õ(κ2d1/2ε−1) queries, and
• the quantum inexact ULD-RMM algorithm uses Õ(κ7/6d1/6ε−1/3 + κd1/3ε−2/3) queries,

to quantumly sample from a distribution that is ε-close to ρ in W2-distance.

We note that the query complexities of our quantum algorithms using a zeroth-order oracle match the
state-of-the-art classical ULD [10] and ULD-RMM [37] complexities with a first-order oracle. The
main technical difficulty of applying the quantum gradient algorithm is that it produces a stochastic
gradient oracle in which the output of the quantum algorithm g satisfies ‖E[g]−∇f(x)‖1 ≤ d−Ω(1).
In particular, the randomness of the gradient computation is “entangled” with the randomness of the
Markov chain. We use the classical analysis of ULD and ULD-RMM processes [36] to prove that
the stochastic gradient will not significantly slow down the mixing of ULD processes, and that the
error caused by the quantum gradient algorithm can be controlled.
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Quantum MALA We next propose two quantum algorithms with lower query complexity than
classical MALA, one with a Gaussian initial distribution and another with a warm-start distribution.
The main technical tool we use is a quantum walk in continuous space.

The classical MALA (i.e., Metropolized HMC) starts from a Gaussian distributionN (0, L−1Id) and
performs a leapfrog step in each iteration. It is well-known that the initial Gaussian state

|ρ0〉 =

∫
Rd

(
L

2π

)d/4
e−

L
4 ‖z−x

?‖22 |z〉dz (3.1)

can be efficiently prepared. We show that the quantum walk update operator

U :=

∫
Rd

dx

∫
Rd

dy
√
px→y|x〉〈x| ⊗ |y〉〈0| (3.2)

can be efficiently implemented, where px→y := p(x, y) is the transition density from x to y, and the
density p satisfies

∫
Rd p(x, y) dy = 1 for any x ∈ Rd.

Lemma 3.1 (Informal version of Lemma C.6). The continuous-space quantum walk operator cor-
responding to the MALA Markov chain can be implemented with O(1) gradient and evaluation
queries.

In general, it is difficult to quantumly speed up the mixing time of a classical Markov chain,
which is upper bounded by O(δ−1 log

(
ρ−1

min

)
), where δ is the spectral gap. However, [45] shows

that a quadratic speedup is possible when following a sequence of slowly-varying Markov chains.
More specifically, let ρ0, . . . , ρr be the stationary distributions of the reversible Markov chains
M0, . . . ,Mr and let |ρ0〉, . . . , |ρr〉 be the corresponding quantum states. Suppose |〈ρi|ρi+1〉| ≥ p
for all i ∈ {0, . . . , r − 1}, and suppose the spectral gaps of M0, . . . ,Mr are lower-bounded by
δ. Then we can prepare a quantum state |ρ̃r〉 that is ε-close to |ρr〉 using Õ

(
δ−1/2rp−1

)
quan-

tum walk steps. To fulfill the slowly-varying condition, we consider an annealing process that goes
from ρ0 = N (0, L−1Id) to the target distribution ρM+1 = ρ in M = Õ(

√
d) stages. At the ith

stage, the stationary distribution is ρi ∝ e−fi with fi := f + 1
2σ
−2
i ‖x‖2. By properly choosing

σ1 ≤ · · · ≤ σM , we prove that this sequence of Markov chains is slowly varying.
Lemma 3.2 (Informal version of Lemma B.6). If we take σ2

1 = ε
2dL and σ2

i+1 = (1 + 1√
d
)σ2
i , then

for 0 ≤ i ≤M , we have |〈ρi|ρi+1〉| ≥ Ω(1).

Combining Lemma 3.1, Lemma 3.2, and the effective spectral gap of MALA (Lemma C.7), we
have:
Theorem 3.2 (Informal version of Theorem C.7). Let ρ ∝ e−f be a d-dimensional log-concave
distribution with f satisfying (1.1). There is a quantum algorithm (Algorithm 1) that prepares a
state |ρ̃〉 with ‖|ρ̃〉 − |ρ〉‖ ≤ ε using Õ(κ1/2d) gradient and evaluation oracle queries.

Algorithm 1: QUANTUMMALAFORLOG-CONCAVESAMPLING (Informal)
Input: Evaluation oracle Of , gradient oracle O∇f , smoothness parameter L, convexity

parameter µ
Output: Quantum state |ρ̃〉 close to the stationary distribution state

∫
Rd e

−f(x)/2 d|x〉
1 Compute the cooling schedule parameters σ1, . . . , σM

2 Prepare the state |ρ0〉 ∝
∫
Rd e

− 1
4‖x‖

2/σ2
1 d|x〉

3 for i← 1, . . . ,M do
4 Construct Ofi and O∇fi where fi(x) = f(x) + 1

2‖x‖
2/σ2

i

5 Construct quantum walk update unitary U with Ofi and O∇fi
6 Implement the quantum walk operator and the approximate reflection R̃i
7 Prepare |ρi〉 by performing π

3 -amplitude amplification with R̃i on the state |ρi−1〉|0〉
8 return |ρM 〉

For the classical MALA with a Gaussian initial distribution, it was shown by [29] that the mixing
time is at least Ω̃(κd). Theorem 3.2 quadratically reduces the κ dependence.
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Note that Algorithm 1 uses a first-order oracle, instead of the zeroth-order oracle used in the quantum
ULD algorithms. The technical barrier to applying the quantum gradient algorithm (Lemma C.1)
in the quantum MALA is to analyze the classical MALA with a stochastic gradient oracle. We
currently do not know whether the “entangled randomness” dramatically increases the mixing time.

More technical details and proofs are provided in Appendix C.

4 Quantum Algorithm for Estimating Normalizing Constants

In this section, we apply our quantum log-concave sampling algorithms to the normalizing constant
estimation problem. A very natural approach to this problem is via MCMC, which constructs a
multi-stage annealing process and uses a sampler at each stage to solve a mean estimation problem.
We show how to quantumly speed up these annealing processes and improve the query complexity
of estimating normalizing constants.

Quantum speedup for the standard annealing process We first consider the standard annealing
process for log-concave distributions, as already applied in the previous section. Recall that we
pick parameters σ1 < σ2 < · · · < σM and construct a sequence of Markov chains with stationary
distributions ρi ∝ e−fi , where fi = f+ 1

2σ2
i
‖x‖2. Then, at the ith stage, we estimate the expectation

Eρi [gi] where gi = exp

(
1

2
(σ−2
i − σ

−2
i+1)‖x‖2

)
. (4.1)

If we can estimate each expectation with relative error at most O(ε/M), then the product of these
M quantities estimates the normalizing constant Z =

∫
Rd e

−f(x) dx with relative error at most ε.

For the mean estimation problem, [31] showed that when the relative variance Varρi [gi]

Eρi [gi]2
is constant,

there is a quantum algorithm for estimating the expectation Eρi [gi] within relative error at most
ε using Õ(1/ε) quantum samples from the distribution ρi. Our annealing schedule satisfies the
bounded relative variance condition. Therefore, by the quantum mean estimation algorithm, we
improve the sampling complexity of the standard annealing process from Õ(M2ε−2) to Õ(Mε−1).

To further improve the query complexity, we consider using the quantum MALAs developed in the
previous section to generate samples. Observe that Algorithm 1 outputs a quantum state correspond-
ing to some distribution that is close to ρi, instead of an individual sample. If we can estimate the
expectation without destroying the quantum state, then we can reuse the state and evolve it for the
(i + 1)st Markov chain. Fortunately, we can use non-destructive mean estimation to estimate the
expectation and restore the initial states. A detailed error analysis of this algorithm can be found in
[6, 22]. We first prepare Õ(Mε−1) copies of initial states corresponding to the Gaussian distribu-
tion N (0, L−1Id). Then, for each stage, we apply the non-destructive mean estimation algorithm
to estimate the expectation Eρi [gi] and then run quantum MALA to evolve the states |ρi〉 to |ρi+1〉.
This gives our first quantum algorithm for estimating normalizing constants.
Theorem 4.1 (Informal version of Theorem D.2). Let Z be the normalizing constant in (1.3). There
is a quantum algorithm (Algorithm 2) that outputs an estimate Z̃ with relative error at most ε using
Õ
(
d3/2κ1/2ε−1

)
queries to the quantum gradient and evaluation oracles.

Quantum speedup for MLMC Now we consider using multilevel Monte Carlo (MLMC) as the
annealing process and show how to achieve quantum speedup. MLMC was originally developed by
[23] for parametric integration; then [17] applied MLMC to simulate stochastic differential equa-
tions (SDEs). The idea of MLMC is natural: we choose a different number of samples at each stage
based on the cost and variance of that stage.

To estimate normalizing constants, a variant of MLMC was proposed in [16]. Unlike the standard
MLMC for bounding the mean-squared error, they upper bound the bias and the variance separately,
and the analysis is technically difficult. The first quantum algorithm based on MLMC was subse-
quently developed by [2] based on the quantum mean estimation algorithm. Roughly speaking, the
quantum algorithm can quadratically reduce the ε-dependence of the sample complexity compared
with classical MLMC.
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Algorithm 2: QUANTUMMALAFORESTIMATINGNORMALIZINGCONSTANT (Informal)
Input: Evaluation oracle Of , gradient oracle O∇f
Output: Estimate Z̃ of Z with relative error at most ε

1 M ← Õ(
√
d), K ← Õ(ε−1)

2 Compute the cooling schedule parameters σ1, . . . , σM
3 for j ← 1, . . . ,K do
4 Prepare the state |ρ1,j〉 ∝

∫
Rd e

− 1
4‖x‖

2/σ2
1 |x〉dx

5 Z̃ ← (2πσ2
1)d/2

6 for i← 1, . . . ,M do
7 g̃i ← Non-destructive mean estimation for gi using {|ρi,0〉, . . . , |ρi,K〉}
8 Z̃ ← Z̃g̃i
9 for j ← 1, . . . ,K do

10 |ρi+1,j〉 ← QUANTUMMALA(Ofi+1
,O∇,fi+1

, |ρi,j〉)

11 return Z̃

In this work, we apply the quantum accelerated MLMC (QA-MLMC) scheme [2] to simulate under-
damped Langevin dynamics as the SDE. One challenge in using QA-MLMC is that gi in our setting
is not Lipschitz. Fortunately, as suggested by [16], this issue can be resolved by truncating large x

and replacing gi by hi := min
{
gi, exp

( (r+i )2

σ2
i (1+α−1)

)}
, with the choice

α = Õ

(
1√

d log(1/ε)

)
r+
i = Eρi+1

‖x‖+ Θ(σi
√

(1 + α) log(1/ε)) (4.2)

to ensure hi
Eρigi

is O(σ−1
i ) Lipschitz. Furthermore,

∣∣Eρi(hi − gi)∣∣ < ε by Lemmas C.7 and C.8 in
[16]. For simplicity, we regard gi as a Lipschitz continuous function in our main results. We present
QA-MLMC in Algorithm 3, where the sampling algorithm A can be chosen to be quantum inexact
ULD/ULD-RMM or quantum MALA.

Algorithm 3: QA-MLMC (Informal)
Input: Evaluation oracle Of , function g, error ε, a quantum sampler A(x0, f, η) for ρ
Output: An estimate of R̃ = Eρh

1 K ← Õ(ε−1)
2 Compute the initial point x0 and the step size η0

3 Compute the number of samples N1, . . . , NK
4 for j ← 1, . . . ,K do
5 Let ηj = η/2j−1

6 for i← 1, . . . , Nj do
7 Sample Xηj

i by A(f, x0, ηj), and sample Xηj/2
i by A(f, x0, ηj/2)

8 G̃−i ← QMEANEST({g(X
ηj
i )}i∈[Nj ]), and G̃+

i ← QMEANEST({g(X
ηj/2
i )}i∈[Nj ])

9 return R̃ = G̃0 +
∑K
j=0(G̃−i − G̃

+
i )

This QA-MLMC framework reduces the ε-dependence of the sampling complexity for estimating
normalizing constants from ε−2 to ε−1 in both the ULD and ULD-RMM cases, as compared with
the state-of-the-art classical results [16].

Using the quantum inexact ULD and ULD-RMM algorithms (Theorem 3.1) to generate samples,
we obtain our second quantum algorithm for estimating normalizing constants (see Appendix D for
proofs).
Theorem 4.2 (Informal version of Theorem D.3 and Theorem D.4). Let Z be the normalizing con-
stant in (1.3). There exist quantum algorithms for estimating Z with relative error at most ε using

• quantum inexact ULD with Õ(d3/2κ2ε−1) queries to the evaluation oracle, and

9



• quantum inexact ULD-RMM with Õ((d7/6κ7/6 + d4/3κ)ε−1) queries to the evaluation oracle.

5 Quantum Lower Bound

Finally, we lower bound the quantum query complexity of normalizing constant estimation.

Theorem 5.1. For any fixed positive integer k, given query access (1.4) to a function f : Rk → R
that is 1.5-smooth and 0.5-strongly convex, the quantum query complexity of estimating the partition
functionZ =

∫
Rk e

−f(x) dxwithin multiplicative error εwith probability at least 2/3 is Ω(ε−
1

1+4/k ).

The proof of our quantum lower bound is inspired by the construction in Section 5 of [16]. They
consider a log-concave function whose value is negligible outside a hypercube centered at 0. The
interior of the hypercube is decomposed into cells of two types. The function takes different values
on each type, and the normalizing constant estimation problem reduces to determining the number
of cells of each type. Quantumly, we follow the same construction and reduce the cell counting
problem to the Hamming weight problem: given an n-bit Boolean string and two integers ` < `′,
decide whether the Hamming weight (i.e., the number of ones) of this string is `1 or `2. This problem
has a known quantum query lower bound [32], which implies the quantum hardness of estimating
the normalizing constant. The full proof of Theorem 5.1 appears in Appendix E.
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