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In this appendix, we provide additional content to complement the main manuscript:4

• Appendix A: A detailed description of Tab. 7.5

• Appendix B: Comparisons of training strategies for prior representative works and PointNeXt.6

• Appendix C: Qualitative comparisons on S3DIS and ShapeNetPart.7

• Appendix D: The architecture of PointNeXt for classification.8

• Appendix E: Societal impact.9

A Detailed Description for Manuscript Tab. 710

Naive width scaling increases the channel size of PointNet++ from 32 to 256 to match the throughput11

of the baseline model, PointNeXt-XL. Naive depth scaling refers to appending more SA blocks12

(B = (3, 6, 3, 3), the same as PointNext-XL) in PointNet++. Furthermore, naive compound scaling13

doubles the width of naive depth scaled model to the same as PointNeXt-XL (C = 64). Compared to14

the PointNet++ trained with improved training strategies (63.2% mIoU, 186 ins./sec.), naive depth15

scaling (63.4% mIoU, 53 ins. / sec.) and naive width scaling (59.4% mIoU, 43 ins./sec.) only lead to16

a large overhead in throughput with insignificant improvement in accuracy. In contrast, our proposed17

model scaling strategy achieves much higher performance than the naive scaling strategies while18

being much faster. This can be observed by comparing PointNeXt-XL (70.5% mIoU, 45 ins./sec.) to19

the naive compound scaled PointNet++ (62.3% mIoU, 24 ins./sec.).20

B Training Strategies Comparison21

In this section, we summarize the training strategies used in representative point-based methods22

such as DGCNN [8], KPConv [6], PointMLP [4], Point Transformer [10], Stratified Transformer23

[3], PointNet++ [5], and our PointNeXt on S3DIS [1] in Tab. I, on ScanObjectNN [7] in Tab. II, on24

ScanNet [2] in Tab. III, and on ShapeNetPart [9] in Tab. IV, respectively.25

C Qualitative Results26

We provide qualitative results of PointNeXt-XL for S3DIS (Fig. II) and PointNeXt-S (C = 160)27

for ShapeNetPart (Fig. III). The qualitative results of PointNet++ trained with the original training28

strategies are also included in the figures for comparison. On both datasets, PointNeXt produces29

predictions closer to the ground truth compared to PointNet++. More specifically, on S3DIS shown in30

(Fig. II), PointNeXt is able to segment hard classes, including doors (1st, 3rd, and 4th rows), clutter31

(1st and 3rd rows), chairs (2nd row), and the board (4th row), while PointNet++ fails to segment32

properly to some extent. On ShapeNetPart (Fig. III), PointNeXt precisely segments wings of an33

airplane (1st row), microphone of an earphone(2nd row), body of a motorbike(3rd row), fin of a34

rocket(4th row), and bearing of a skateboard (5th row).35

D Classification Architecture36

As illustrated in Fig. I, the classification architecture shares the same encoder as the segmentation37

one. The output features of the encoder are passed to a global pooling layer (i.e. global max-pooling)38

to acquire a global shape representation for classification. Note that the points are only downsampled39

by a factor of 2 in each stage, since the number of input points in classification tasks is usually small,40

e.g. 1024 or 2048 points.41
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Table I: Training strategies used in different methods for S3DIS segmentation.
Method DGCNN KPConv PointTransformer PointNet++ PointNeXt (Ours)
Epochs 101 500 100 32 100
Batch size 12 10 16 16 8
Optimizer Adam SGD SGD Adam AdamW
LR 1× 10−3 1× 10−2 0.5 1× 10−3 0.01
LR decay step step multi step step cosine
Weight decay 0 10−3 10−4 10−4 10−4

Label smoothing ε 7 7 7 7 0.2

Entire scene as input 7 7 3 7 3
Random rotation 7 3 7 3 3
Random scaling 7 [0.8,1.2] [0.9,1.1] 7 [0.9,1.1]
Random translation 7 7 7 7 7
Random jittering 7 0.001 7 7 3
Height appending 7 3 7 7 3
Color drop 7 0.2 7 7 0.2
Color auto-contrast 7 7 3 7 3
Color jittering 7 7 3 7 7

mIoU (%) 56.1 70.6 73.5 54.5 74.9

Table II: Training strategies used in different methods for ScanObecjectNN classification.
Method DGCNN PointMLP PointNet++ PointNeXt (Ours)
Epochs 250 200 250 250
Batch size 32 32 16 32
Optimizer Adam SGD Adam AdamW
LR 1× 10−3 0.01 10−3 2× 10−3

LR decay step cosine step cosine
Weight decay 10−4 10−4 10−4 0.05
Label smoothing ε 0.2 0.2 7 0.3

Point resampling 7 7 7 3
Random rotation 3 7 3 3
Random scaling 7 3 7 3
Random translation 7 3 7 7
Random jittering 3 7 3 7
Height appending 7 7 7 3

OA (%) 78.1 85.7 77.9 87.7

E Societal Impact42

We do not see an immediate negative societal impact from our work. We notice that the way we43

discover the improved training and scaling strategies may consume a little more computing resources44

and affect the environment. Nevertheless, the improved training and scaling strategies will make45

researchers pay more attention to aspects other than architectural changes, which in the long term46

makes research in computer vision more diverse and generally better.47

References48

[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio Savarese.49

3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE/CVF Conference on Computer50

Vision and Pattern Recognition (CVPR), pages 1534–1543, 2016.51

[2] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner.52

ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In Proceedings of the IEEE/CVF53

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.54

[3] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia.55

Stratified transformer for 3d point cloud segmentation. In Proceedings of the IEEE/CVF Conference on56

Computer Vision and Pattern Recognition (CVPR), 2022.57

2



Table III: Training strategies used in different methods for ScanNet segmentation.
Method KPConv PointTransformer Stratified Transformer PointNet++ PointNeXt (Ours)
Epochs 500 100 100 200 100
Batch size 10 16 8 32 2
Optimizer SGD SGD AdamW Adam AdamW
LR 1× 10−2 5× 10−1 6× 10−3 1× 10−3 1× 10−3

LR decay step multi step multi step with warm up step multi step
Weight decay 10−3 10−4 5× 10−2 10−4 10−4

Entire scene as input 7 3 3 7 3
Random rotation 3 7 3 3 3
Random scaling [0.9,1.1] [0.9,1.1] [0.8,1.2] 7 [0.8,1.2]
Random translation 7 7 7 7 7
Random jittering 0.001 7 7 7 7
Height appending 3 7 7 7 3
Color drop 7 7 0.2 7 0.2
Color auto-contrast 7 3 7 7 3
Color jittering 7 3 7 7 7

Test mIoU (%) 68.6 - 73.7 55.7 71.2

Table IV: Training strategies used in different methods for ShapeNetPart segmentation.
Method DGCNN KPConv PointNet++ PointNeXt (Ours)
Epochs 201 500 201 300
Batch size 16 16 32 8
Optimizer Adam SGD Adam AdamW
LR 3× 10−3 1× 10−2 1× 10−3 0.001
LR decay step step step multi step
Weight decay 0.0 10−3 0.0 10−4

Label smoothing ε 7 7 7 7

Random rotation 7 7 7 3
Random scaling 7 [0.9,1.1] 7 [0.8,1.2]
Random translation 7 7 7 7
Random jittering 7 0.001 3 0.001
Normal Drop 7 7 7 3
Height appending 7 3 7 3

mIoU (%) 85.2 86.4 85.1 87.0

[4] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local geometry in58

point cloud: A simple residual MLP framework. In International Conference on Learning Representations59

(ICLR), 2022.60

[5] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature61

learning on point sets in a metric space. In Advances in Neural Information Processing Systems (NeurIPS),62

2017.63

[6] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and64

Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the65

IEEE/CVF International Conference on Computer Vision (ICCV), 2019.66

[7] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit Yeung. Revisit-67

ing point cloud classification: A new benchmark dataset and classification model on real-world data. In68

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.69

[8] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon.70

Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 2019.71

[9] Li Yi, Vladimir G Kim, Duygu Ceylan, I Shen, Mengyan Yan, Hao Su, ARCewu Lu, Qixing Huang, Alla72

Sheffer, Leonidas Guibas, et al. A scalable active framework for region annotation in 3d shape collections.73

ACM Transactions on Graphics (TOG), 35(6):210, 2016.74

[10] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In75

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 16259–16268,76

2021.77

3



Set A
bstraction

Set A
bstraction

Set A
bstraction

Set A
bstraction

InvR
esM

LP

InvR
esM

LP

InvR
esM

LP

InvR
esM

LP

M
LP

[N,32] [N/2,64] [N/4,128] [N/8,256] [N/16,512]

G
lobal Pooling

Figure I: PointNeXt architecture for classification. The classification architecture shares the same
encoder as the segmentation architecture.
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PointNet++ PointNeXt Ground TruthInput

ceiling wall beam bookcasefloor column window door table chair sofa board clutter

Figure II: Qualitative comparisons of PointNet++ (2nd column), PointNeXt (3rd column), and
Ground Truth (4th column) on S3DIS semantic segmentation. The input point cloud is visual-
ized with original colors in the 1st column. Differences between PointNet++ and PointNeXt are
highlighted with red dash circles. Zoom-in for details.
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PointNet++ PointNeXt Ground Truth
Figure III: Qualitative comparisons of PointNet++ (left), PointNeXt (middle), and Ground
Truth (right) on ShapeNetPart part segmentation.
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