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Abstract

Machine learning models often generalize poorly to out-of-distribution (OOD)
data as a result of relying on features that are spuriously correlated with the label
during training. Recently, the technique of Invariant Risk Minimization (IRM)
was proposed to learn predictors that only use invariant features by conserving the
feature-conditioned label expectation Ee[y|f(x)] across environments. However,
more recent studies have demonstrated that IRM-v1, a practical version of IRM,
can fail in various settings. Here, we identify a fundamental design flaw of IRM
formulation that causes the failure. We then introduce a complementary notion of
invariance, MRI, based on conserving the label-conditioned feature expectation
Ee[f(x)|y], which is free of this flaw. Further, we introduce a simplified, practical
version of the MRI formulation called MRI-v1. We prove that for general linear
problems, MRI-v1 guarantees invariant predictors given sufficient number of en-
vironments. We also empirically demonstrate that MRI-v1 strongly out-performs
IRM-v1 and consistently achieves near-optimal OOD generalization in image-based
nonlinear problems.

1 Introduction

Deep learning models have shown tremendous success over the past decade. These models show
great generalization properties when tested on the same distribution as the training dataset (in-
distribution generalization). However, these models often show catastrophic failure when tested on
out-of-distribution dataset, revealing that they learned features that are spuriously correlated to the
label in the given training domains but do not generalize to the testing domains. For example, deep
networks trained on pictures of cow with only grassy backgrounds in the training domain will use the
background color as the predictive feature which is easier to learn and generalize poorly to pictures
of cow with a dessert background.

Recently, there has been a growing interest in developing models that generalize well across multiple
domains. In particular, there has been a recent body of works that focus on developing algorithms
that attempt to learn invariant predictors (Arjovsky et al., 2019; Ahuja et al., 2021; Peters et al.,
2016; Rojas-Carulla et al., 2018; Heinze-Deml et al., 2018). Invariant Risk Minimization (IRM) and
its practical version, IRM-v1, have garnered significant attention as one of the initial methods that
are compatible with deep learning techniques. However, several follow-up studies have empirically
demonstrated that IRM-v1 is unreliable at learning invariant representations (Kamath et al., 2021;
Rosenfeld et al., 2020; Gulrajani and Lopez-Paz, 2020; Ahuja et al., 2020, 2021). Here, we identify a
fundamental flaw of IRM formulation that causes this limitation and propose a new method that is
free of this flaw.

⇤Equal contribution
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Related Works There has been considerable work in the field of learning invariant representations.
They vary from learning domain-invariant feature representations conserving P (f(x)) using kernel
methods (Muandet et al., 2013; Ghifary et al., 2016; Hu et al., 2020), variational autoencoder (Ilse
et al., 2020), and adversarial networks Ganin et al. (2016); Long et al. (2018); Akuzawa et al.
(2019); Albuquerque et al. (2019) to learning invariant class-conditional features P (f(x)|y) (Gong
et al., 2016; Li et al., 2018b) in the context of domain adaptation, which assumes access to the test
distribution for adaptation. There is also a large body of work to learn invariant representations in
the field of domain generalization that doesn’t assume access to test distributions. This includes
imposing invariance of Ee[y|f(x)] (Arjovsky et al., 2019) with information bottleneck constraint
(Ahuja et al. (2021)), imposing object-invariant condition (Mahajan et al. (2021)), using domain
inference (Creager et al., 2021), model calibration (Wald et al., 2021), and others (Krueger et al.,
2021; Li et al., 2018a; Shankar et al., 2018).

Our Contributions We introduce a variational formulation of IRM, and show that it can be
modified to yield a new complementary notion of invariance, called MRI. We show that IRM has a
fundamental flaw due to the indirect way of imposing invariance which leads to the failure of IRM-v1.
In constrast, MRI is shown to be free of this flaw. We prove that MRI-v1 can guarantee invariant
predictors in general linear problem settings given sufficient environments. We also show empirical
demonstrations that MRI strongly out-performs IRM and consistently achieves near-optimal OOD
generalization in nonlinear image-based problems.2

2 Problem Formulation

Consider a set of environments E = {e}, each of which defines a distribution Pe(x, y) over inputs
and labels, from which the dataset of the environment is drawn De ⌘ {(xe

j
2 Rd, ye

j
2 R)}. The

distribution Pe(x, y) is assumed to be generated according to the causal graph in Fig 1 (Rosenfeld
et al., 2020), which includes latent features that are invariantly zi or spuriously zs correlated with the
label, from which the observation x is generated.3

Y
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E

Figure 1: Causal graph depicting the
data generating process. Shading indi-
cates the variable is observed.

The risk of a predictor f : X ! O in environment e is
defined as the population average

Le(f) ⌘ EPe(x,y)[l(f(x), y)] (1)
= EPe(o)[EPe(y|o)[l(o, y)]] (2)
= EP (y)[EPe(o|y)[l(o, y)]] (3)

where o = f(x) is the predictor’s output. Here, we con-
sider standard convex loss functions l : O ⇥ Y ! R�0,
including the square loss lsq(o, y) =

1
2 (o� y)2 for regres-

sion (O, Y ✓ R) and the binary-cross-entropy (BCE) loss
llog(o, y) = �(1 + y) log(⌘(o)) � (1 � y) log(1 � ⌘(o))
for binary classification (O ✓ R, Y ✓ [�1, 1]), where
⌘(o) ⌘ 1/(1 + e�o) is the sigmoid function.

3 IRM vs MRI Invariance

3.1 IRM Paradigm

3.1.1 Original formulation

Definition 3.1. (Arjovsky et al., 2019) The feature representation f : X ! Z elicits an IRM invariant

predictor  � f : X ! O over a set of environments E , if there exists  : Z ! O such that  is
simultaneously optimal for all environments in E , i.e.

8e 2 E ,  2 argmin
 ̄

Le( ̄ � f) (4)

2Code available at https://github.com/IBM/MRI.
3While Fig 1 only shows the causal direction Y ! Zi, the other direction Zi ! Y is also consistent with

our analysis here as long as P (y) is independent from the environment index e.
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where  is assumed to be unrestricted in the space of all measurable functions.
Lemma 3.2. (Kamath et al., 2021) For standard loss functions

4
, Definition 3.1 is equivalent to

9 , 8e 2 E , Ee[y|f(x)] = �( � f(x)). (5)

where Ee[y|f(x)] ⌘ EPe(y|f(x))[y] is the feature-conditioned label expectation, and � is a monotonic

function that depends on the loss function.

3.1.2 Variational formulation

The original formulation above is overly complex due to the composite predictor  � f and the
optimality condition on  . For further analysis, we introduce the following variational formulation.
Definition 3.3. A predictor f : X ! O is IRM invariant over a set of environments E , if the risk
Le(f) remains stationary under arbitrary infinitesimal perturbations on the predictor output o = f(x)
for all environments in E , i.e.

8e 2 E , �Le(f) = lim
✏!0

EPe(o,y)[l(o+ ✏� (o), y)� l(o, y)]/✏

= EPe(o)[EPe(y|o)[@ol(o, y)] · � (o)] = 0 (6)

where � : O ! O is an arbitrary perturbation that is unrestricted in the space of all measurable
functions, and �Le(f) denotes the resulting change in risk.
Lemma 3.4. For standard loss functions

4
, Definition 3.3 is equivalent to

8e 2 E , Ee[y|o] = �(o), (7)

which is equivalent to Lemma 3.2 with the composite predictor  � f replaced by f .

Proof. Eq (6) is satisfied if and only if EPe(y|o)[@ol(o, y)] = 0. For standard loss functions, the loss
derivative has the form @ol(o, y) = �y+�(o), which yields Ee[@ol(o, y)|o] = �Ee[y|o]+�(o) = 0.

Note that even though Definition 3.3 describes only the first-order condition for the predictor to be
simultaneously optimal over all environments, this is indeed the necessary and sufficient condition
for optimality, since the loss function l is convex. This yields a simpler formulation of IRM without
requiring a composite form for the predictor  � f .

3.1.3 Conservation law of IRM

As noted in Arjovsky et al. (2019); Kamath et al. (2021), the essence of IRM’s invariance is the
conservation of the feature-conditioned label expectation, i.e.

8e1, e2 2 E , Ee1 [y|f(x)] = Ee2 [y|f(x)]. (8)

This result can be easily seen from eq (5),(7), since their RHS term �(o) is constant with respect to
the environment index e.

Remark Notice an intriguing discrepancy in the number of constraints: IRM (eq (4),(5),(7))
imposes one constraint per environment, total of |E| constraints, whereas the conservation law
describes |E|� 1 equality relationships that Ee[y|o] should share the same value across environments.
The missing constraint is that IRM additionally requires the shared value of Ee[y|o] to also be equal
to �(o). This discrepancy emphasizes the fact that the equality relationships in eq (8) are not direct
constraints imposed to hold between environments, but rather a byproduct — an indirect consequence
of separate individual constraints all sharing a common intermediate term, �(o). Furthermore, it
shows that the invariance guarantee of IRM singularly depends on the constancy of this shared term
across environments, which proves to be a single point of failure for IRM.

4 Square loss and BCE loss are considered: �(o) = o for square loss, and �(o) = tanh(o/2) for BCE loss.

3



3.1.4 IRM-v1

Due to the impracticality of considering the unrestricted function space of  , Arjovsky et al. (2019)
suggested restricting  to the space of linear functions. In the variational formulation, this corresponds
to restricting the output perturbations � to the space of linear functions, which, for scalar outputs, is
equivalent to the identity function, � (o) = o. This reduces eq (6) to

8e 2 E , �Le(f) = Ee[ @ol(o, y) · o ] = 0. (9)

The reduced constraints in eq (9) are identical to IRM-s in Kamath et al. (2021).5 In Arjovsky et al.
(2019), this reduced formulation is termed IRM-v1 when the constraints are imposed in a soft manner,
i.e. as squared penalty terms (See eq (16)). In the literature, the term IRM-v1 is widely used for the
reduced formulation regardless of whether hard or soft constraints are used, which we adopt here.

However, IRM-v1 has been empirically found to behave quite differently from IRM and fail even in
simple problems (Kamath et al., 2021). This failure mechanism can be analytically understood here:
Since @ol(o, y) · o = o(�(o)� y) for standard loss functions4, eq (9) is equivalent to

8e 2 E , Ee[oy] = Ee[o�(o)]. (10)

Note that the RHS of eq (10) originates from the RHS of eq (7). Unlike �(o) of eq (7), however,
Ee[o�(o)] is not constant, since it involves expectation that depends on the environment, and therefore
it fails to mediate any meaningful invariance relationship. In Supplementary Materials, we generalize
this result to the wider class of perturbations that are mixtures of nonlinear basis functions (See
Supplementary Materials B).

Fundamental flaw of IRM The above analysis shows that IRM’s indirect mechanism for attaining
invariance through a shared intermediate term is in fact quite fragile, which easily breaks when the
function space of � (or  ) gets restricted. We identify this as the fundamental design flaw of IRM.

3.2 MRI Paradigm

We now introduce a complementary notion of invariance by considering infinitesimal perturbations
on label, which we call the Mirror Reflected IRM, or MRI.
Definition 3.5. A predictor f : X ! O is MRI invariant over a set of environments E , if the change
in risk due to arbitrary infinitesimal label perturbations is shared across environments, i.e.

8e1, e2 2 E , �Le1(f) = �Le2(f) (11)
where �Le(f) ⌘ lim

✏!0
EPe(x,y)[ l(o, y + ✏� (y))� l(o, y) ]/✏

= EP (y)[Ee[ @yl(o, y)|y ] · � (y) ] (12)

where � : Y ! Y is an arbitrary perturbation that is unrestricted in the space of all measurable
functions, and �Le(f) denotes the resulting change in risk. Ee[@yl(o, y)|y] ⌘ EPe(o|y)[@yl(o, y)].
Lemma 3.6. For standard loss functions, Definition 3.5 is equivalent to

8e1, e2 2 E , Ee1 [o|y] = Ee2 [o|y], (13)

which conserves the label-conditioned feature expectation Ee[o|y] ⌘ EPe(o|y)[o] across environments.

Proof. Eq (11) is satisfied if and only if Ee[@yl(o, y)|y] is conserved. For standard loss functions, the
loss derivative has the form @yl(o, y) = �o+⇢(y)6. Therefore, Ee1 [@yl(o, y)|y]�Ee2 [@yl(o, y)|y] =
Ee1 [o|y]� Ee2 [o|y] = 0.

Remark Note that MRI attains invariance in a direct manner without involving any intermediate
term, which results in the number of constraints in eq (11) matching the conservation law eq (13).

5IRM-s imposes @ Ee[ l( · o, y)] = 0, where  is a scalar factor. Note that @ l( · o, y) = @ol(o, y) · o.
6 Square loss and BCE loss are considered: ⇢(y) = y for square loss, and ⇢(y) = 0 for BCE loss.
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Algorithm Constraint ~c(f) �Le(f)

IRM-v1 ~�L(f) Ee[ @ol(o, y) · o ]
MRI-v1 Q ~�L(f) Ee[ @yl(o, y) · y ]

Table 1: Constraint functions of IRM-v1 and MRI-v1. o = f(x;w).

3.2.1 MRI-v1

Restricting the label perturbations to the space of linear functions, or equivalently, an identity function
� (y) = y, reduces eq (12) to �Le(f) = Ee[ @yl(o, y) ·y ]. This reduces the conservation law eq (13)
to

8e1, e2 2 E , Ee1 [oy] = Ee2 [oy]. (14)

which describes a necessary condition for the MRI invariance eq (13). Therefore, MRI’s direct
mechanism for attaining invariance continues to hold when � is restricted to the space of linear
functions.

4 Methods

4.1 Constrained optimization problem

The full methods of IRM-v1 and MRI-v1 can be formalized as a constrained optimization problem

min
f2F

Ltr(f) subject to ~c(f) = ~0, (15)

where Ltr =
1

|Etr|
P

e2Etr
Le is the average risk over the set of training environments Etr ⇢ E . The

constraint functions are ~c = ~�L 2 R|Etr| for IRM-v1 and ~c = Q ~�L 2 R|Etr|�1 for MRI-v1, where
~�L 2 R|Etr| is a vector of perturbed risks �Le for e 2 Etr, and Q 2 R(|Etr|�1)⇥|Etr| is an orthonormal

matrix that satisfies Q~1 = ~0, such that Q ~�L computes the differences of �Le between environments.
For example, for a training set of two environments Etr = {e1, e2}, Q ~�L = (�Le1 � �Le2)/

p
2,

since Q = [1,�1]/
p
2. See Table 1.

4.2 Soft-constraint methods

Numerically solving IRM-v1 and MRI-v1 requires converting the hard constraints ~c(f) = ~0 to soft
constraints, which allows the use of off-the-shelf gradient-based optimization algorithms.

Penalty Method (PM) Penalty method is the most commonly used approach, including in Arjovsky
et al. (2019), which adds the squared residual constraints as a penalty term to the objective,

min
f2F

Ltr(f) + µ k~c(f)k2 (16)

However, this method requires increasing µt ! 1 over training iteration t in order to approximate
the exact hard-constraint, which leads to training instability and slow convergence (Bertsekas, 1976).

Augmented Lagrangian Method (ALM) ALM was introduced to overcome the limitations of
penalty method (Bertsekas, 1976), which adds a Lagrange multiplier term to (16)

min
f2F

Ltr(f) + µ k~c(f)k2 + ~�| · ~c(f), (17)

where ~� is typically initialized at ~0 and updated at each training iteration t to accumulate the residual
constraints ~c(f(wt)). In practice, ALM can operate with moderate values of µ (⇠ 10) without fine
tuning, and thus exhibits fast and stable convergence (Bertsekas, 1976).
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5 Analytic Results

5.1 General Linear SEM

In this section, we demonstrate that MRI-v1 can effectively eliminate all features that are spuriously
correlated with the label in a linear predictor, given a sufficient number of environments. Consider
a data generating process according to Fig 1, in which the observation x = g(zi, zs) is an injective
linear function of the latent features zi 2 Rdi , zs 2 Rds . Note that this Structural Equation Model
(SEM) (Pearl, 2009) does not require any assumptions on the generation process Y ! Zi, Zs, which
generalizes the SEM of Rosenfeld et al. (2020), which additionally assumed binary labels and additive
Gaussian noise for generating the latent features.

We consider a linear predictor f : X ! O. Since g is injective and has an inverse over its range,
without loss of generality, we can define f as a linear function directly over the latents as

o = f(x;w) = w|
i
· zi + w|

s
· zs (18)

with parameters w ⌘ {wi 2 Rdi , ws 2 Rds}.
Theorem 5.1. Given |Etr| > ds training environments, and that Ee[zsy] are in general linear

positions, MRI-v1 will eliminate all spurious feature dimensions.

Proof. MRI-v1’s constraint eq (14) yields
8e 2 Etr, Ee[oy] = wi · Ee[ziy] + ws · Ee[zsy] = const,

which can be expressed in a matrix form as
ws ·M 0 = 0, (19)

where M 0 = M � M̄ · 1 with M ⌘ [Ee[zsy]]e2Etr 2 Rds⇥|Etr| and M̄ = 1
|Etr|

P
e2Etr

Ee[zsy].

Since rank(M 0) = ds, eq (19) is equivalent to ws = 0.

A similar result was shown for IRM-v1, but under a more restricted setting, such as a specialized
linear family of environments with binary labels and additive Gaussian noise (Rosenfeld et al., 2020).
In fact, IRM-v1 has been shown to fail in more general linear problems with non-Gaussian noise
(Arjovsky et al., 2019; Kamath et al., 2021).

5.2 Minimal Example: di = 1, ds = 1, |Etr| = 2

Here, we demonstrate a minimal case of the above general linear problem that involves one invariant
feature, one spurious feature and two training environments (Shape-Texture linear regression problem
in Section 6.1). See Supplementary Materials for the detailed experimental set up and the analytical
solutions. A similar minimal examples for linear binary classification are also analyzed and shown in
Supplementary Materials (Fig 6, linear shape-texture classification and toy-CMNISTa/b).

Analytic solutions (Hard-constraints, Fig 2A) IRM-v1 has two quadratic equality constraints,
Ee1 [o

2 � oy] = Ee2 [o
2 � oy] = 0, shown as two elliptic curves. The intersection between the

non-convex constraints on a 2-D feature space yields a disjoint set of 0-D points, all of which are
local constrained optima, including the true invariant optimum, a zero-predictor solution, and two
non-invariant solutions. Note that one of the non-invariant solutions exhibits lower train loss than the
true invariant optimum solution.

We also test the relaxed version of IRM-v1 by removing the extraneous constraint. The relaxed
version has a single constraint Ee1 [o

2 � oy] = Ee2 [o
2 � oy], which describes a pair of hyperbolic

curves (appears as two straight lines in Fig 2A), i.e. a non-convex constraint. This problem exhibits
two local constrained optima, including the true invariant optimum and a non-invariant solution, with
the non-invariant solution exhibiting a lower train loss. Therefore, simply relaxing the extraneous
constraint does not resolve the fundamental problem of IRM-v1.

In contrast, MRI-v1 has one linear equality constraint, Ee1 [oy] = Ee2 [oy], that exactly prescribes
the set of all invariant solutions ws = 0. That is, a solution is an invariant predictor if and only if

it satisfies this constraint. This is a convex problem, since both the objective and the constraint are
convex, and thus features a unique optimum, which is the true invariant optimum solution.
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Figure 2: Minimal example in Section 5.2. (A) Hard-constraint case. Background: Average train
domain risk Ltr(f(w)). Lines: Invariance constraints ~c(f(w)) = ~0. Stars: Local constrained optima.
(B) Soft-constraint case. Background: Train loss Ltr(f(w))+µ k~c(f(w))k2. Convergence trajectories
wt from multiple initialization are shown. (C) Loss profiles of the above convergence trajectories.
Color-matched with panel B. (Top) Average train domain risk Ltr(f(wt)). (Bottom) Test domain risk
Ltest(f(wt)). Dashed line: True optimal invariant solution (yellow star in panel A/B).

Convergence Dynamics (Soft-constraints, Fig 2B/C) Here, we analyze the optimization dynam-
ics under full-batch gradient descent (penalty method eq (16) with µ = 5 ⇥ 104). IRM-v1’s
convergence is highly dependent on the initialization (shown with differently colored trajectories),
due to the presence of multiple local minima. Note that most trajectories do not converge to the true
invariant optimum. IRM-relaxed also exhibits complex dynamics due to a saddle point near the true
invariant solution: Some trajectories (red and magenta) first approach the line of invariant solutions,
but all trajectories eventually converge to the non-invariant solution. Note that the true invariant
optimum solution is not even a local optimum of IRM-relaxed at this value of µ, but it would exist in
the limit µ ! 1. In contrast, MRI-v1 always converges to the true invariant optimum regardless of
initialization since it is a unique minimum.

6 Nonlinear Image-based Problems

Unlike for linear problems, theoretical proof for invariance is difficult to show for nonlinear problems.
Here, we empirically investigate the performance of IRM-v1 and MRI-v1 in nonlinear image-based
problems.

6.1 Datasets
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Shape-Texture Dataset We introduce a new dataset that is designed to evaluate domain general-
ization algorithms across various settings, including linear regression, linear classification, nonlinear
image-based regression, and nonlinear image-based classification. The generative process of the
dataset involves an invariant feature zi = ei✓i , a spurious feature zs = ei✓s , and a label feature ei✓y ,
each of which represents an orientation on a complex unit circle: ei✓ 2 S1. The angles of orientations
are generated as ✓y ⇠ US1 , where US1 is the circular uniform distribution, and for ⇤ 2 {i, s},
✓⇤ = ✓y with probability p⇤ or ✓⇤ ⇠ US1 with probability 1� p⇤. The parameter pi = 0.75 is fixed
across environments, whereas ps varies from one environment to another. We consider two training
environments Etr = {e1, e2} with pse1 = 1, pse1 = 0.8 and one testing environment Etest = {e0}
with pse0 = 0.

In the linear regression task (section 5.2), the observed input is the concatenated latent features
x = [ei✓i , ei✓s ] and the label is y = ei✓y . In the linear classification task, the input is x =
[sin(✓i), sin(✓s)] and the label is y = H(sin(✓y)), where H is the sign function. In the nonlinear
regression/classification tasks, the observed input is the image composed of two planar waves, in
which ✓i is the orientation of the low frequency wave (i.e. shape) and ✓s is that of the high frequency
wave (i.e. texture), as shown in Fig 5.

Colored MNIST (CMNIST) CMNIST (Arjovsky et al., 2019) is a synthetic dataset derived from
MNIST for binary classification. In this dataset, the label y assigned to an image is based on the
digit bit zi (1 for digits 0 ⇠ 4 and -1 for 5 ⇠ 9) such that y = zi with probability pi or �zi with
probability 1 � pi. The color bit zs (1 for red -1 for green) is chosen based on the label such that
zs = y with probability ps or �y with probability 1� ps. We consider two versions, CMNISTa and
CMNISTb, with two sets of environmental parameters: CMNISTa is the version from Arjovsky et al.
(2019) with pi = 0.75, pse1 = 0.9, pse1 = 0.8, and pse0 = 0.1 for the training Etr = {e1, e2} and
the testing Etest = {e0} environments; CMNISTb uses pi = 0.9, pse1 = 1, pse1 = 0.8, pse0 = 0.1.
In the nonlinear tasks, the input observation x is the colored MNIST image. In the abstracted versions,
called toy-CMNISTa/b, the input observation is the two-bit data x = [zi, zs] (Kamath et al., 2021).

Remark Note that both Shape-Texture and CMNIST datasets can be equally understood as being
generated from Fig 1 with causal directions Y ! Zi or Zi ! Y (Fig 9).

6.2 Result

Here, we report the performance of IRM-v1, MRI-v1, as well as the vanilla Empirical Risk Minimiza-
tion (ERM) algorithm (i.e. without imposing any invariance constraint). For reference, the results are
compared to the Oracle performance, which is obtained by applying ERM on the modified training
datasets in which the spurious features are rendered uncorrelated with the label.

We tested the algorithms under a wide range of hyperparameters for both the Shape-Texture (Fig 3) and
the CMNIST-b (Fig 4) datasets. Overall, MRI-v1 consistently achieves good invariant performance
close to the Oracle, whereas IRM-v1 often shows either chance-level performance or poor OOD
generalization with large differences between the train and the test domain risks. The results for a
specific hyperparameter setting is shown in Table 2.

Under the PM setting, we observe that IRM-v1 often drives the models to the zero-predictor solution,
i.e. making zero output regardless of the input, even with annealing the penalty term to be applied
only in the later phase of training. This explains IRM-v1’s identically low performance across train
and test domains, consistent to the previously reported results in Gulrajani and Lopez-Paz (2020). In
contrast, MRI-v1 never drives the models to the zero-predictor solution, consistent with the finding in
Sec 5.2 that MRI-v1 does not have an local minima at the zero-predictor in the linear problem setting.

Interestingly, the ALM setting greatly improves IRM-v1’s performance especially in terms of accuracy,
while MRI-v1’s performance remains relatively unchanged between PM and ALM. Under the ALM
setting, IRM-v1 shows comparable or slightly higher accuracy than MRI-v1 for the CMNIST dataset.

In the Supplementary Materials, we also report the results for other recent domain generalization
methods including MMD (Li et al., 2018b), GroupDRO (Sagawa et al., 2019), and IB-IRM (Ahuja
et al., 2021) on the Shape-Texture classification task, which exhibit significantly worse performance
than MRI-v1 (Fig 7).
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Figure 3: Comparison of algorithms’ performance over a range of hyperparameters on the Shape-
Texture classification dataset. (Top) averaged train and test domain risk and (bottom) accuracy. The
grey dashed line denotes the Oracle performance. Box-plots show sample quartiles.

Figure 4: Result on CMNIST-b dataset. Same as Fig 3.
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Risk
S-T Regression S-T Classification CMNISTa CMNISTb

Train Test Train Test Train Test Train Test

Oracle 0.46± 0.00 0.46± 0.00 0.47± 0.00 0.47± 0.00 0.57± 0.00 0.58± 0.00 0.22± 0.00 0.24± 0.01

ERM 0.16± 0.00 1.37± 0.01 0.24± 0.00 1.16± 0.01 0.36± 0.00 1.44± 0.01 0.13± 0.00 0.73± 0.01

IRM-v1 (PM) 1.00± 0.00 1.00± 0.00 0.69± 0.00 0.69± 0.00 0.69± 0.00 0.69± 0.00 0.69± 0.00 0.69± 0.00

IRM-v1 (ALM) 0.23± 0.00 0.62± 0.01 0.4± 0.01 0.51± 0.01 0.62± 0.02 0.69± 0.02 0.17± 0.01 0.47± 0.02

MRI-v1 (PM) 0.53± 0.03 0.54± 0.03 0.44± 0.01 0.46± 0.01 0.62± 0.01 0.66± 0.01 0.46± 0.01 0.4± 0.01

MRI-v1 (ALM) 0.45± 0.01 0.46± 0.00 0.47± 0.00 0.47± 0.00 0.63± 0.02 0.64± 0.01 0.25± 0.01 0.29± 0.01

Accuracy
S-T Classification CMNISTa CMNISTb

Train Test Train Test Train Test

Oracle 0.86± 0.00 0.86± 0.00 0.74± 0.00 0.74± 0.00 0.94± 0.00 0.94± 0.00

ERM 0.95± 0.00 0.50± 0.00 0.85± 0.00 0.10± 0.00 0.94± 0.00 0.80± 0.02

IRM-v1 (PM) 0.52± 0.02 0.52± 0.04 0.73± 0.14 0.23± 0.16 0.6± 0.03 0.52± 0.05

IRM-v1 (ALM) 0.79± 0.01 0.77± 0.01 0.64± 0.03 0.66± 0.03 0.93± 0.00 0.91± 0.00

MRI-v1 (PM) 0.86± 0.01 0.85± 0.01 0.68± 0.01 0.63± 0.02 0.82± 0.01 0.86± 0.01

MRI-v1 (ALM) 0.86± 0.01 0.86± 0.01 0.66± 0.02 0.65± 0.02 0.93± 0.00 0.9± 0.00

Table 2: Comparison of algorithms on the Shape-Texture (S-T) and the Colored MNIST-a/b datasets:
(Top) average risk Ltr, Ltest, and (bottom) accuracy. Oracle uses environments in which the spurious
features are uncorrelated with the label. Mean and standard deviation shown up to 2 decimal places.

7 Discussion

Limitations In principle, IRM only requires Ee[y|zi] to be constant across domains in order to
guarantee invariance, and therefore it has been previously thought to be generally applicable in a
wide range of problems, even though this guarantee was only shown in the impractical limit of
optimizing over the unrestricted function space of  . Here, we showed a strong negative result that
no meaningful form of invariance can be stated for IRM when the function space of  is restricted. In
contrast, MRI requires a more limiting condition that the label distribution P (y) and P (zi) should be
constant across domains, but it can be more generally applied even for the case of restricted function
space of  . which yields more practicality.

A common limitation of both MRI and IRM (Rosenfeld et al., 2020; Ahuja et al., 2021) is that they
require significant support overlap across domains in order to guarantee OOD generalization. This
may limit the applicability of these methods on certain domain generalization benchmarks that consist
of domains that lack such overlap, such as VLCS (different image stylization, Fang et al. (2013)),
and Terra-Incognita (different natural backgrounds, Beery et al. (2018)). In the Supplementary
Materials, we report that both methods do not show significant improvement over ERM on these
datasets (Table 3).

Insensitivity of accuracy metric in evaluating invariance For CMINSTa/b, IRM-v1 (ALM)
exhibits comparable performance to MRI-v1 in terms of test domain accuracy, despite having
significantly worse performance in term of test domain risk (See Table 2). We investigated this
phenomenon by analyzing the linear version of the task, toy-CMINSTa/b. The accuracy landscape
is piece-wise constant (Fig 8C,F). Especially, it exhibits identical (i.e. invariant) accuracy between
train and test domain in the region defined by wi > |ws|. Therefore, the accuracy metric cannot
distinguish invariant solutions (ws = 0) from non-invariant solutions within the region. In contrast,
the train domain and the test domain risk share the same value only if the solution is invariant
(ws = 0) (Fig 8B,E). The constraint function of IRM-v1 (Fig 8A,D) shows that toy-CMNISTa
only has invariant local optima and that toy-CMNISTb has additional non-invariant local optima,
all of which satisfy wi > |ws|, thus exhibiting the same accuracy performance as the invariant
optimum solution. This result illustrates that using accuracy metric alone for evaluating the degree
of invariance could be insufficient, and highlights the need to also consider risk for evaluations.
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[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3
and 5.

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3 and 5.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes]
https://github.com/IBM/MRI

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Supplementary Materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Table 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Supplementary Materials.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6.1 and
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(b) Did you mention the license of the assets? [Yes] See Supplementary Materials.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

https://github.com/IBM/MRI
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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