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Abstract

Time series forecasting has been a widely explored task of great importance in
many applications. However, it is common that real-world time series data are
recorded in a short time period, which results in a big gap between the deep model
and the limited and noisy time series. In this work, we propose to address the time
series forecasting problem with generative modeling and propose a bidirectional
variational auto-encoder (BVAE) equipped with diffusion, denoise, and disentan-
glement, namely D3VAE. Specifically, a coupled diffusion probabilistic model is
proposed to augment the time series data without increasing the aleatoric uncer-
tainty and implement a more tractable inference process with BVAE. To ensure
the generated series move toward the true target, we further propose to adapt and
integrate the multiscale denoising score matching into the diffusion process for
time series forecasting. In addition, to enhance the interpretability and stability of
the prediction, we treat the latent variable in a multivariate manner and disentangle
them on top of minimizing total correlation. Extensive experiments on synthetic
and real-world data show that D3VAE outperforms competitive algorithms with
remarkable margins. Our implementation is available at https://github.com/
PaddlePaddle/PaddleSpatial/tree/main/research/D3VAE.

1 Introduction

Time series forecasting is of great importance for risk-averse and decision-making. Traditional RNN-
based methods capture temporal dependencies of the time series to predict the future. Long short-term
memories (LSTMs) and gated recurrent units (GRUs) [55, 16, 15, 40] introduce the gate functions into
the cell structure to handle long-term dependencies effectively. The models based on convolutional
neural networks (CNNs) capture complex inner patterns of the time series through convolutional
operations [28, 4, 3]. Recently, the Transformer-based models have shown great performance in time
series forecasting [54, 56, 25, 29] with the help of multi-head self-attention. However, one big issue
of neural networks in time series forecasting is the uncertainty [14, 1] resulting from the properties of
the deep structure. The models based on vector autoregression (VAR) [5, 10, 23] try to model the
distribution of time series from hidden states, which could provide more reliability to the prediction,
while the performance is not satisfactory [27].

Interpretable representation learning is another merit of time series forecasting. Variational auto-
encoders (VAEs) have shown not only the superiority in modeling latent distributions of the data and
reducing the gradient noise [36, 24, 30, 45] but also the interpretability of time series forecasting [11,
12]. However, the interpretability of VAEs might be inferior due to the entangled latent variables.

∗This work was done when the first author was an intern at Baidu Research under the supervision of the
second author.
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There have been efforts to learn representation disentangling [22, 2, 18], which show that the well-
disentangled representation can improve the performance and robustness of the algorithm.

Moreover, real-world time series are often noisy and recorded in a short time period, which may
result in overfitting and generalization issues [13, 49, 57, 41]1. To this end, we address the time series
forecasting problem with generative modeling. Specifically, we propose a bidirectional variational
auto-encoder (BVAE) equipped with diffusion, denoise, and disentanglement, namely D3VAE. More
specifically, we first propose a coupled diffusion probabilistic model to remedy the limitation of time
series data by augmenting the input time series, as well as the output time series, inspired by the
forward process of the diffusion model [42, 19, 34, 35]. Besides, we adapt the Nouveau VAE [45]
to the time series forecasting task and develop a BVAE as a substitute for the reverse process of the
diffusion model. In this way, the expressiveness of the diffusion model plus the tractability of the VAE
can be leveraged together for generative time series forecasting. Though the merit of generalizability
is helpful, the diffused samples might be corrupted, which results in a generative model moving
toward the noisy target. Therefore, we further develop a scaled denoising score-matching network for
cleaning diffused target time series. In addition, we disentangle the latent variables of the time series
by assuming that different disentangled dimensions of the latent variables correspond to different
temporal patterns (such as trend, seasonality, etc.). Our contributions can be summarized as follows:

• We propose a coupled diffusion probabilistic model aiming to reduce the aleatoric uncertainty
of the time series and improve the generalization capability of the generative model.

• We integrate the multiscale denoising score matching into the coupled diffusion process to
improve the accuracy of generated results.

• We disentangle the latent variables of the generative model to improve the interpretability
for time series forecasting.

• Extensive experiments on synthetic and real-world datasets demonstrate that D3VAE outper-
forms competitive baselines with satisfactory margins.

2 Methodology

2.1 Generative Time Series Forecasting

Problem Formulation. Given an input multivariate time series X = {x1, x2, · · · , xn |xi ∈ Rd}
and the corresponding target time series Y = {yn+1, yn+2, · · · , yn+m | yj ∈ Rd′} (d

′ ≤ d). We
assume that Y can be generated from latent variables Z ∈ ΩZ that can be drawn from the Gaussian
distribution Z ∼ p(Z|X). The latent distribution can be further formulated as pϕ(Z|X) = gϕ(X)
where gϕ denotes a nonlinear function. Then, the data density of the target series is given by:

pθ(Y ) =

∫
ΩZ

pϕ(Z|X)(Y − fθ(Z))dZ , (1)

where fθ denotes a parameterized function. The target time series can be obtained directly by sampling
from pθ(Y ).

In our problem setting, time series forecasting is to learn the representation Z that captures useful
signals of X , and map the low dimensional X to the latent space with high expressiveness. The
framework overview of D3VAE is demonstrated in Fig. 1. Before diving into the detailed techniques,
we first introduce a preliminary proposition.
Proposition 1. Given a time series X and its inherent noise ϵX , we have the decomposition:
X = ⟨Xr, ϵX⟩, where Xr is the ideal time series data without noise. Xr and ϵX are independent of
each other. Let pϕ(Z|X) = pϕ(Z|Xr, ϵX), the estimated target series Ŷ can be generated with the
distribution pθ(Ŷ |Z) = pθ(Ŷr|Z) ·pθ(ϵŶ |Z) where Ŷr is the ideal part of Ŷ and ϵŶ is the estimation
noise. Without loss of generality, Ŷr can be fully captured by the model. That is, ∥Yr − Ŷr∥ −→ 0
where Yr is the ideal part of ground truth target series Y . In addition, Y can be decomposed as
Y = ⟨Ŷr, ϵY ⟩ (ϵY denotes the noise of Y ). Therefore, the error between ground truth and prediction,
i.e., ∥Y − Ŷ ∥ = ∥ϵY − ϵŶ ∥ > 0, can be deemed as the combination of aleatoric uncertainty and
epistemic uncertainty.

1The detailed literature review can be found in Appendix A.

2



Figure 1: The framework overview of D3VAE. First, the input and output series are augmented simul-
taneously with the coupled diffusion process. Then the diffused input series are fed into a proposed
BVAE model for inference, which can be deemed a reverse process. A denoising score-matching
mechanism is applied to make the estimated target move toward the true target series. Meanwhile,
the latent states in BVAE are leveraged for disentangling such that the model interpretability and
reliability can be improved.

2.2 Coupled Diffusion Probabilistic Model

The diffusion probabilistic model (diffusion model for brevity) is a family of latent variable models
aiming to generate high-quality samples. To equip the generative time series forecasting model with
high expressiveness, a coupled forward process is developed to augment the input series and target
series synchronously. Besides, in the forecasting task, more tractable and accurate prediction is
expected. To achieve this, we propose a bidirectional variational auto-encoder (BVAE) to take the
place of the reverse process in the diffusion model. We present the technical details in the following
two parts, respectively.

2.2.1 Coupled Diffusion Process

The forward diffusion process is fixed to a Markov chain that gradually adds Gaussian noise to the
data [42, 19]. To diffuse the input and output series, we propose a coupled diffusion process, which is
demonstrated in Fig. 2. Specifically, given the input X = X(0) ∼ q(X(0)), the approximate posterior
q(X(1:T )|X(0)) can be obtained as

q(X(1:T )|X(0)) =

T∏
t=1

q(X(t)|X(t−1)) , q(X(t)|X(t−1)) = N (X(t);
√
1− βtX

(t), βtI) , (2)

where a uniformly increasing variance schedule β = {β1, · · · , βT |βt ∈ [0, 1)} is employed to
control the level of noise to be added. Then, let αt = 1− βt and ᾱt =

∏t
s=1 αs, we have

q(X(t)|X(0)) = N (X(t);
√
ᾱtX

(0), (1− ᾱt)I) . (3)

Furthermore, according to Proposition 1 we decomposeX(0) asX(0) = ⟨Xr, ϵX⟩. Then, with Eq. (3),
the diffused X(t) can be decomposed as follows:

X(t) =
√
ᾱtX

(0) + (1− ᾱt)δX := ⟨
√
ᾱtXr︸ ︷︷ ︸

ideal part

,
√
ᾱtϵX + (1− ᾱt)δX︸ ︷︷ ︸

noisy part

⟩ , (4)

where δX denotes the standard Gaussian noise of X . As α can be determined when the variance
schedule β is known, the ideal part is also determined in the diffusion process. Let X̃(t)

r =
√
ᾱtXr

and δ(t)
X̃

=
√
ᾱtϵX + (1− ᾱt)δX , then, according to Proposition 1 and Eq. (4), we have

pϕ(Z
(t)|X(t)) = pϕ(Z

(t)|X̃(t)
r , δ

(t)

X̃
) , pθ(Ŷ

(t)|Z(t)) = pθ(Ŷ
(t)
r |Z(t))pθ(δ

(t)

Ŷ
|Z(t)) , (5)
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Figure 2: An illustration of the coupled diffusion process. The input X(0) and the corresponding
target Y (0) are diffused simultaneously with different variance schedules. β = {β1, · · · , βT } is the
variance schedule for the input and β′ = {β′

1, · · · , β′
T } is for the target.

where δ(t)
Ŷ

denotes the generated noise of Ŷ (t). To relieve the effect of aleatoric uncertainty resulting
from time series data, we further apply the diffusion process to the target series Y = Y (0) ∼ q(Y (0)).
In particular, a scale parameter ω ∈ (0, 1) is adopted, such that β′

t = ωβt, α
′
t = 1 − β′

t and
ᾱ′
t =

∏t
s=1 α

′
s. Then, according to Proposition 1, we can obtain the following decomposition

(similar to Eq. (4)):

Y (t) =
√
ᾱ′
tY

(0) + (1− ᾱ′
t)δY := ⟨

√
ᾱ′
tYr︸ ︷︷ ︸

ideal part

,
√
ᾱ′
tϵY + (1− ᾱ′

t)δY︸ ︷︷ ︸
noisy part

⟩ = ⟨Ỹ (t)
r , δ

(t)

Ỹ
⟩ . (6)

Consequently, we have q(Y (t)) = q(Ỹ
(t)
r )q(δ

(t)

Ỹ
). Afterward, we can draw the following conclusions

with Proposition 1 and Eqs. (5) and (6). The proofs can be found in Appendix B.

Lemma 1. ∀ε > 0, there exists a probabilistic model fϕ,θ := (pϕ, pθ) to guarantee that
DKL(q(Ỹ

(t)
r )||pθ(Ŷ (t)

r )) < ε, where Ŷ (t)
r = fϕ,θ(X

(t)).

Lemma 2. With the coupled diffusion process, the difference between diffusion noise and generation
noise will be reduced, i.e., limt→∞ DKL(q(δ

(t)

Ỹ
)||pθ(δ(t)Ŷ

|Z(t))) < DKL(q(ϵY )||pθ(ϵŶ )) .

Therefore, the uncertainty raised by the generative model and the inherent data noise can be reduced
through the coupled diffusion process. In addition, the diffusion process simultaneously augments
the input series and the target series, which can improve the generalization capability for (esp. short)
time series forecasting.

2.2.2 Bidirectional Variational Auto-Encoder

Traditionally, in the diffusion model, a reverse process is adopted to generate high-quality samples [42,
19]. However, for the generative time series forecasting problem, not only the expressiveness but
also the supervision of the ground truths should be considered. In this work, we employ a more
efficient generative model, i.e., bidirectional variational auto-encoder (BVAE) [45], to take the place
of the reverse process of the diffusion model. The architecture of BVAE is described in Fig. 1
where Z is treated in a multivariate fashion Z = {z1, · · · , zn} (zi ∈ Rm, zi = [zi,1, · · · , zi,m]) and
zi+1 ∼ p(zi+1|zi, X). Then, n is determined in accordance with the number of residual blocks in
the encoder, as well as the decoder. Another merit of BVAE is that it opens an interface to integrate
the disentanglement for improving model interpretability (refer to Section 2.4).

2.3 Scaled Denoising Score Matching for Diffused Time Series Cleaning

Although the time series data can be augmented with the aforementioned coupled diffusion proba-
bilistic model, the generative distribution pθ(Ŷ (t)) tends to move toward the diffused target series
Y (t) which has been corrupted [32, 43]. To further “clean” the generated target series, we employ the
Denoising Score Matching (DSM) to accelerate the de-uncertainty process without sacrificing the
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model flexibility. DSM [46, 32] was proposed to link Denoising Auto-Encoder (DAE) [47] to Score
Matching (SM) [20]. Let Ŷ denote the generated target series, then we have the objective

LDSM(ζ) = Epσ0 (Ŷ ,Y )∥∇Ŷ log(qσ0(Ŷ |Y )) +∇Ŷ E(Ŷ ; ζ)∥2 , (7)

where pσ0(Ŷ , Y ) is the joint density of pairs of corrupted and clean samples (Ŷ , Y ),
∇Ŷ log(qσ0

(Ŷ |Y )) is derivative of the log density of a single noise kernel, which is dedicated
to replacing the Parzen density estimator: pσ0

(Ŷ ) =
∫
qσ0

(Ŷ |Y )p(Y )dY in score matching,
and E(Ŷ ; ζ) is the energy function. In the particular case of Gaussian noise, log(qσ0

(Ŷ |Y )) =

−(Ŷ − Y )2/2σ0
2 + C. Thus, we have

LDSM(ζ) = Epσ0
(Ŷ ,Y )∥Y − Ŷ + σ2

0∇Ŷ E(Ŷ ; ζ)∥2 . (8)

Then, for the diffused target series at step t, we can obtain

LDSM(ζ, t) = Epσ0 (Ŷ
(t),Y )∥Y − Ŷ (t) + σ2

0∇Ŷ (t)E(Ŷ (t); ζ)∥2 . (9)

To scale the noise of different levels [32], a monotonically decreasing series of fixed σ values
{σ1, · · · , σT |σt = 1 − ᾱt} (refer to the aforementioned variance schedule β in Section 2.2) is
adopted. Therefore, the objective of the multi-scaled DSM is

L(ζ, t) = Eqσ(Ŷ (t)|Y )p(Y )l(σt)∥Y − Ŷ (t) + σ2
0∇Ŷ (t)E(Ŷ (t); ζ)∥2 , (10)

where σ ∈ {σ1, · · · , σT } and l(σt) = σt. With Eq. (10), we can ensure that the gradient has the right
magnitude by setting σ0.

In the generative time series forecasting setting, the generated samples will be tested without applying
the diffusion process. To further denoise the generated target series Ŷ , we apply a single-step gradient
denoising jump [39]:

Ŷclean = Ŷ − σ2
0∇Ŷ E(Ŷ ; ζ) . (11)

The generated results tend to possess a larger distribution space than the true target, and the noisy
term in Eq. (11) approximates the noise between the generated target series and the “cleaned” target
series. Therefore, σ2

0∇Ŷ E(Ŷ ; ζ) can be treated as the estimated uncertainty of the prediction.

2.4 Disentangling Latent Variables for Interpretation

The interpretability of the time series forecasting model is of great importance for many downstream
tasks [44, 17, 21]. Through disentangling the latent variables of the generative model, not only the
interpretability but also the reliability of the prediction can be further enhanced [31].

To disentangle the latent variables Z = {z1, · · · , zn}, we attempt to minimize the Total Correlation
(TC) [50, 22], which is a popular metric to measure dependencies among multiple random variables,

TC(zi) = DKL(pϕ(zi)||p̄ϕ(zi)), p̄ϕ(zi) =

m∏
j=1

pϕ(zi,j) (12)

where m denotes the number of factors of zi that need to be disentangled. Lower TC generally means
better disentanglement if the latent variables preserve useful information. However, a very low TC
can still be obtained when the latent variables carry no meaningful signals. Through the bidirectional
structure of BVAE, such issues can be tackled without too much effort. As shown in Fig. 1, the
signals are disseminated in both the encoder and decoder, such that rich semantics are aggregated
into the latent variables. Furthermore, to alleviate the effect of potential irregular values, we average
the total correlations of z1:n, then the loss w.r.t. the TC score of BVAE can be obtained:

LTC =
1

n

n∑
i=1

TC(zi) . (13)
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Algorithm 1 Training Procedure.
1: repeat
2: X(0) ∼ q(X(0)), Y (0) ∼ q(Y (0)), δX ∼ N(0, Id), δY ∼ N(0, Id)
3: Randomly choose t ∈ {1, · · · , T} and with Eqs. (4) and (6),
4: X(t) =

√
ᾱtX

(0) + (1− ᾱt)δX , Y (t) =
√

ᾱ′
tY

(0) + (1− ᾱ′
t)δY

5: Generate the latent variable Z with BVAE, Z ∼ pϕ(Z|X(t))

6: Sample Ŷ (t) ∼ pθ(Ŷ
(t)|Z) and calculate DKL(q(Y

(t))||pθ(Ŷ (t)))
7: Calculate DSM loss with Eq. (10)
8: Calculate total correlation of Z with Eq. (13)
9: Construct the total loss L with Eq. (14)

10: θ, ϕ← argmin(L)
11: until Convergence

Algorithm 2 Forecasting Procedure.

1: Input: X ∼ q(X)
2: Sample Z ∼ pϕ(Z|X)

3: Generate Ŷ ∼ pθ(Ŷ |Z)

4: Output: Ŷclean and the estimated uncertainty with Eq. (11)

2.5 Training and Forecasting

Training Objective. To reduce the effect of uncertainty, the coupled diffusion equipped with the
denoising network is proposed without sacrificing generalizability. Then we disentangle the latent
variables of the generative model by minimizing the TC of the latent variables. Finally, we reconstruct
the loss with several trade-off parameters, and with Eqs. (10), (11) and (13) we have

L = ψ · DKL(q(Y
(t))||pθ(Ŷ (t))) + λ · L(ζ, t) + γ · LTC + Lmse(Ŷ

(t), Y (t)) , (14)

where Lmse calculates the mean square error (MSE) between Ŷ (t) and Y (t). We minimize the above
objective to learn the generative model accordingly.

Algorithms. Algorithm 1 displays the complete training procedure of D3VAE with the loss function
in Eq. (14). For inference, as described in Algorithm 2, given the input series X , the target series can
be generated directly from the distribution pθ which is conditioned on the latent states drawn from
the distribution pϕ.

3 Experiments

3.1 Experiment Settings

Datasets. We generate two synthetic datasets suggested by [9],

wt = a · wt−1 + tanh(b · wt−2) + sin(wt−3) +N (0, 0.5I)

X = [w1, w2, ..., wN ] · F +N (0, 0.5I) ,

where wt ∈ R2 and 0 ≤ wt,1, wt,2 ≤ 1 (t = 1, 2, 3), F ∈ R2×k ∼ U [−1, 1], k denotes the
dimensionality and N is the number of time points, a, b are two constants. We set a = 0.9, b =
0.2, k = 20 to generate D1, and a = 0.5, b = 0.5, k = 40 for D2, and N = 800 for both D1 and D2.

Six real-world datasets with diverse spatiotemporal dynamics are selected, including Traffic [27],
Electricity2, Weather3, Wind (Wind Power) 4, and ETTs [56] (ETTm1 and ETTh1). To highlight
the uncertainty in short time series scenarios, for each dataset, we slice a subset from the starting
point to make sure that each sliced dataset contains at most 1000 time points. Subsequently, we

2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://www.bgc-jena.mpg.de/wetter/
4This dataset is published at https://github.com/PaddlePaddle/PaddleSpatial/tree/main/

paddlespatial/datasets/WindPower.
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Table 1: Performance comparisons on synthetic data in terms of MSE and CRPS. The best results are
boldfaced.

Model D3VAE NVAE β-TCVAE f-VAE DeepAR TimeGrad GP-copula VAE

D1

8
0.512±.033 1.201±.027 0.631±.003 0.854±.099 1.153±.125 0.966±.102 1.202±.108 0.912±.132

0.585±.021 0.905±.011 0.658±.002 0.745±.036 0.758±.038 0.698±.024 0.773±.033 0.786±.053

16
0.571±.025 1.184±.025 0.758±.047 1.046±.270 0.911±.046 0.945±.315 0.915±.059 0.908±.177

0.625±.013 0.897±.012 0.747±.027 0.835±.108 0.699±.014 0.709±.100 0.704±.020 0.765±.067

D2

8
0.599±.049 1.966±.047 3.096±.197 3.353±.430 0.977±.137 0.963±.385 1.037±.082 3.079±.345

0.628±.027 1.255±.021 1.680±.062 1.640±.154 0.727±.058 0.706±.123 0.753±.026 1.504±.098

16
0.786±.041 1.955±.051 3.067±.443 3.109±.428 0.972±.144 0.850±.061 1.082±.071 3.132±.160

0.728±.026 1.251±.020 1.643±.183 1.558±.157 0.720±.050 0.649±.017 0.762±.008 1.560±.060

Table 2: The performance comparisons on real-world datasets in terms of MSE and CRPS, and the
best results are in boldface.

Model D3VAE NVAE β-TCVAE f-VAE DeepAR TimeGrad GP-copula VAE

Tr
af

fic

8
0.081±.003 1.300±.024 1.003±.006 0.982±.059 3.895±.306 3.695±.246 4.299±.372 0.794±.130

0.207±.003 0.593±.004 0.894±.003 0.666±.032 1.391±.071 1.410±.027 1.408±.046 0.759±.07

16
0.081±.009 1.271±.019 0.997±.004 0.998±.042 4.141±.320 3.495±.362 4.575±.141 0.632±.057

0.200±.014 0.589±.001 0.893±.002 0.692±.026 1.338±.043 1.329±.057 1.506±.025 0.671±.038

E
le

ct
ri

ci
ty 8

0.251±.015 1.134±.029 0.901±.052 0.893±.069 2.934±.173 2.703±.087 2.924±.218 0.853±.040

0.398±.011 0.542±.003 0.831±.004 0.809±.024 1.244±.037 1.208±.024 1.249±.048 0.795±.016

16
0.308±.030 1.150±.032 0.850±.003 0.807±.034 2.803±.199 2.770±.237 3.065±.186 0.846±.062

0.437±.020 0.531±.003 0.814±.002 0.782±.024 1.220±.048 1.240±.048 1.307±.042 0.793±.029

W
ea

th
er 8

0.169±.022 0.801±.024 0.234±.042 0.591±.198 2.317±.357 2.715±.189 2.412±.761 0.560±.192

0.357±.024 0.757±.013 0.404±.040 0.565±.080 0.858±.078 0.920±.013 0.897±.115 0.572±.077

16
0.187±.047 0.811±.016 0.212±.012 0.530±.167 1.269±.187 1.110±.083 1.357±.145 0.424±.141

0.361±.046 0.759±.009 0.388±.014 0.547±.067 0.783±.059 0.733±.016 0.811±.032 0.503±.068

E
T

T
m

1 8
0.527±.073 0.921±.026 1.538±.254 2.326±.445 2.204±.420 1.877±.245 2.024±.143 2.375±.405

0.5570.048 0.760±.026 1.015±.112 1.260±.167 0.984±.074 0.908±.038 0.961±.027 1.258±.104

16
0.968±.104 1.100±.032 1.744±.100 2.339±.270 2.350±.170 2.032±.234 2.486±.207 2.321±.469

0.821±.072 0.822±.026 1.104±.041 1.249±.088 0.974±.016 0.919±.031 0.984±.016 1.259±.132

E
T

T
h1 8

0.292±.036 0.483±.017 0.703±.054 0.870±.134 3.451±.335 4.259±1.13 4.278±1.12 1.006±.281

0.424±.033 0.461±.011 0.644±.038 0.730±.060 1.194±.034 1.092±.028 1.169±.055 0.762±.115

16
0.374±.061 0.488±.010 0.681±.018 0.983±.139 1.929±.105 1.332±.125 1.701±.088 0.681±.104

0.488±.039 0.463±.018 0.640±.008 0.760±.062 1.029±.030 0.879±.037 0.999±.023 0.641±.055

W
in

d 8
0.681±.075 1.854±.032 1.321±.379 1.942±.101 12.53±2.25 12.67±1.75 11.35±6.61 2.006±.145

0.596±.052 1.223±.014 0.863±.143 1.067±.086 1.370±.107 1.440±.059 1.305±.369 1.103±.100

16
1.033±.062 1.955±.015 0.894±.038 1.262±.178 13.96±.1.53 12.86±2.60 13.79±5.37 1.138±.205

0.757±.053 1.247±.011 0.785±.037 0.843±.066 1.347±.060 1.240±.070 1.261±.171 0.862±.092

obtained 5%-Traffic, 3%-Electricity, 2%-Weather, 2%-Wind, 1%-ETTm1, and 5%-ETTh1. The
statistical descriptions of the real-world datasets can be found in Appendix C.1. All datasets are split
chronologically and adopt the same train/validation/test ratios, i.e., 7:1:2.

Baselines. We compare D3VAE with one GP (Gaussian Process) based method (GP-copula [37]),
two auto-regressive methods (DeepAR [38] and TimeGrad [35]), and four VAE-based methods, i.e.,
vanilla VAE, NVAE [45], factor-VAE (f-VAE for short) [22] and β-TCVAE [6].

Implementation Details. An input-lx-predict-ly window is applied to roll the train, validation, and
test sets with stride one time-step, respectively, and this setting is adopted for all datasets. Hereinafter,
the last dimension of the multivariate time series is selected as the target variable by default.
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We use the Adam optimizer with an initial learning rate of 5e − 4. The batch size is 16, and the
training is set to 20 epochs at most equipped with early stopping. The number of disentanglement
factors is chosen from {4, 8}, and βt ∈ β is set to range from 0.01 to 0.1 with different diffusion
steps T ∈ [100, 1000], then ω is set to 0.1. The trade-off hyperparameters are set as ψ = 0.05, λ =
0.1, γ = 0.001 for ETTs, and ψ = 0.5, λ = 1.0, γ = 0.01 for others. All the experiments were
carried out on a Linux machine with a single NVIDIA P40 GPU. The experiments are repeated five
times, and the average and variance of the predictions are reported. We use the Continuous Ranked
Probability Score (CRPS) [33] and Mean Squared Error (MSE) as the evaluation metrics. For both
metrics, the lower, the better. In particular, CRPS is used to evaluate the similarity of two distributions
and is equivalent to Mean Absolute Error (MAE) when two distributions are discrete.

3.2 Main Results

Two different prediction lengths, i.e., ly ∈ {8, 16} (lx = ly), are evaluated. The results of longer
prediction lengths are available in Appendix D.

Toy Datasets. In Table 1, we can observe that D3VAE achieves SOTA performance most of the
time, and achieves competitive CRPS in D2 for prediction length 16. Besides, VAEs outperform
VARs and GP on D1, but VARs achieve better performance on D2, which demonstrates the advantage
of VARs in learning complex temporal dependencies.

Real-World Datasets. As for the experiments on real-world data, D3VAE achieves consistent SOTA
performance except for the prediction length 16 on the Wind dataset (Table 2). Particularly, under
the input-8-predict-8 setting, D3VAE can provide remarkable improvements in Traffic, Electricity,
Wind, ETTm1, ETTh1 and Weather w.r.t. MSE reduction (90%, 71%, 48%, 43%, 40% and 28%).
Regarding the CRPS reduction, D3VAE achieves a 73% reduction in Traffic, 31% in Wind, and 27%
in Electricity under the input-8-predict-8 setting, and a 70% reduction in Traffic, 18% in Electricity,
and 7% in Weather under the input-16-predict-16 setting. Overall, D3VAE gains the averaged 43%
MSE reduction and 23% CRPS reduction among the above settings. More results under longer
prediction-length settings and on full datasets can be found in Appendix D.1.

Uncertainty Estimation. The uncertainty can be assessed by estimating the noise of the outcome
series when doing the prediction (see Section 2.3). Through scale parameter ω, the generated
distribution space can be adjusted accordingly (results on the effect of ω can be found in Appendix
D.3). The showcases in Fig. 3 demonstrate the uncertainty estimation of the yielded series in the
Traffic dataset, where the last six dimensions are treated as target variables. We can find that noise
estimation can quantify the uncertainty effectively. For example, the estimated uncertainty grows
rapidly when extreme values are encountered.

Figure 3: Uncertainty estimation of the prediction of the last six dimensions in the Traffic dataset and
the colored envelope denotes the estimated uncertainty.
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Table 3: Ablation study of the coupled diffusion probabilistic
model w.r.t. MSE and CSPR.

Dataset Traffic Electricity
16 32 16 32

D3VAE−Ỹ

0.122±.006 0.126±.013 0.350±.043 0.422±.012

0.250±.008 0.261±.017 0.480±.032 0.551±.012

D3VAE−Ỹ −DSM

0.096±.006 0.092±.008 0.331±.023 0.502±.079

0.217±.010 0.220±.013 0.450±.021 0.584±.053

D3VAE−X̃

0.123±.003 0.117±.007 0.351±.047 0.420±.056

0.256±.006 0.253±.013 0.481±.036 0.540±.046

D3VAE−CDM
0.123±.004 0.118±.008 0.365±.025 0.439±.014

0.255±.007 0.252±.015 0.498±.018 0.561±.016

D3VAE−CDM−DSM
0.123±.003 0.119±.003 0.338±.041 0.448±.062

0.255±.003 0.253±.005 0.467±.029 0.555±.041

D3VAE 0.081±.009 0.091±.007 0.308±.030 0.410±.075

0.200±.014 0.216±.012 0.437±.020 0.534±.058

Figure 4: Comparisons of predic-
tions with different βT and varying
T on the Electricity dataset.

Disentanglement Evaluation. For time series forecasting, it is difficult to label disentangled factors
by hand, thus we take different dimensions ofZ as the factors to be disentangled: zi = [zi,1, · · · , zi,m]
(zi ∈ Z). We build a classifier to discriminate whether an instance zi,j belongs to class j such that
the disentanglement quality can be assessed by evaluating the classification performance. Besides,
we adopt the Mutual Information Gap (MIG) [6] as a metric to evaluate the disentanglement more
straightforwardly. Due to the space limit, the evaluation of disentanglement with different factors can
be found in Appendix E.

3.3 Model Analysis

Ablation Study of the Coupled Diffusion and Denoising Network. To evaluate the effectiveness of
the coupled diffusion model (CDM), we compare the full versioned D3VAE with its three variants:
i) D3VAE−Ỹ , i.e. D3VAE without diffused Y , ii) D3VAE−X̃ , i.e. D3VAE without diffused X , and
iii) D3VAE−CDM, i.e. D3VAE without any diffusion. Besides, the performance of D3VAE without
denoising score matching (DSM) is also reported when the target series is not diffused, which are
denoted as D3VAE−Ỹ−DSM and D3VAE−CDM−DSM. The ablation study is carried out on Traffic
and Electricity datasets under input-16-predict-16 and input-32-predict-32. In Table 3, we can find
that the diffusion process can effectively augment the input or the target. Moreover, when the target
is not diffused, the denoising network would be deficient since the noise level of the target cannot be
estimated by then.

Variance Schedule β and The Number of Diffusion Steps T . To reduce the effect of the uncertainty
while preserving the informative temporal patterns, the extent of the diffusion should be configured
properly. Too small a variance schedule or inadequate diffusion steps will lead to a meaningless
diffusion process. Otherwise, the diffusion could be out of control 5. Here we analyze the effect of
the variance schedule β and the number of diffusion steps T . We set β1 = 0 and change the value of
βt in the range of [0.01, 0.1], and T ranges from 100 to 4000. As shown in Fig. 4, we can see that the
prediction performance can be improved if proper β and T are employed.

4 Discussion

Sampling for Generative Time Series Forecasting.
The Langevin dynamics has been widely applied to the sampling of energy-based models (EBMs) [51,
8, 53],

Yk = Yk−1 −
ρ

2
∇Y Eϕ(Yk−1) + ρ

1
2N (0, Id) , (15)

5An illustrative showcase can be found in Appendix F.
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where k ∈ {0, · · · ,K}, K denotes the number of sampling steps, and ρ is a constant. With K and ρ
being properly configured, high-quality samples can be generated. The Langevin dynamics has been
successfully applied to applications in computer vision [26, 52], and natural language processing [7].

We employ a single-step gradient denoising jump in this work to generate the target series. The
experiments that were carried out demonstrate the effectiveness of such single-step sampling. We
conduct an extra empirical study to investigate whether it is worth taking more sampling steps for
further performance improvement of time series forecasting. We showcase the prediction results
under different sampling strategies in Fig. 5. By omitting the additive noise in Langevin dynamics, we
employ the multi-step denoising for D3VAE to generate the target series and plot the generated results
in Fig. 5a. Then, with the standard Langevin dynamics, we can implement a generative procedure
instead of denoising and compare the generated target series with different ρ (see Figs. 5b to 5d).
We can observe that more sampling steps might not be helpful in improving prediction performance
for generative time series forecasting (Fig. 5a). Besides, larger sampling steps would lead to high
computational complexity. On the other hand, different configurations of Langevin dynamics (with
varying ρ) cannot bring indispensable benefits for time series forecasting (Figs. 5b to 5d).

(a) Multi-step denoising. (b) ρ = 0.003. (c) ρ = 0.005. (d) ρ = 0.007.

Figure 5: The prediction showcases in the Electricity dataset with different sampling strategies.

Limitations.
With the coupled diffusion probabilistic model, although the aleatoric uncertainty of the time series
can be reduced, a new bias is brought into the series to mimic the distribution of the input and target.
However, as a common issue in VAEs that any introduced bias in the input will result in bias in the
generated output [48], the diffusion steps and variance schedule need to be chosen cautiously, such
that this model can be applied to different time series tasks smoothly. The proposed model is devised
for general time series forecasting, it should be used properly to avoid the potential negative societal
impacts, such as illegal applications.

In time series predictive analysis, disentanglement of the latent variables has been very important
for interpreting the prediction to provide more reliance. Due to the lack of prior knowledge of the
entangled factors in generative time series forecasting, only unsupervised disentanglement learning
can be done, which has been proven theoretically feasible for time series [31]. Despite this, for
boarder applications of disentanglement and better performance, it is still worth exploring how to
label the factors of time series in the future. Moreover, because of the uniqueness of time series data,
it is also a promising direction to explore more generative and sampling methods for the time series
generation task.

5 Conclusion

In this work, we propose a generative model with the bidirectional VAE as the backbone. To further
improve the generalizability, we devise a coupled diffusion probabilistic model for time series
forecasting. Then a scaled denoising network is developed to guarantee the prediction accuracy.
Afterward, the latent variables are further disentangled for better model interpretability. Extensive
experiments on synthetic data and real-world data validate that our proposed generative model
achieves SOTA performance compared to existing competitive generative models.
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