
Performative Power

Moritz Hardt⇤
Max-Planck Institute for Intelligent Systems, Tübingen

hardt@is.mpg.de

Meena Jagadeesan⇤

UC Berkeley
mjagadeesan@berkeley.edu

Celestine Mendler-Dünner⇤
Max-Planck Institute for Intelligent Systems, Tübingen

cmendler@tuebingen.mpg.de

Abstract

We introduce the notion of performative power, which measures the ability of a firm
operating an algorithmic system, such as a digital content recommendation platform,
to cause change in a population of participants. We relate performative power to
the economic study of competition in digital economies. Traditional economic
concepts struggle with identifying anti-competitive patterns in digital platforms not
least due to the complexity of market definition. In contrast, performative power
is a causal notion that is identifiable with minimal knowledge of the market, its
internals, participants, products, or prices.
We study the role of performative power in prediction and show that low performa-
tive power implies that a firm can do no better than to optimize their objective on
current data. In contrast, firms of high performative power stand to benefit from
steering the population towards more profitable behavior. We confirm in a simple
theoretical model that monopolies maximize performative power. A firm’s ability
to personalize increases performative power, while competition and outside options
decrease performative power. On the empirical side, we propose an observational
causal design to identify performative power from discontinuities in how digital
platforms display content. This allows to repurpose causal effects from various
studies about digital platforms as lower bounds on performative power. Finally, we
speculate about the role that performative power might play in competition policy
and antitrust enforcement in digital marketplaces.

1 Introduction

Digital platforms pose a well-recognized challenge for antitrust enforcement. Traditional market
definitions, along with associated notions of competition and market power, map poorly onto digital
platforms. A core challenge is the difficulty of precisely modeling the interactions between the market
participants, products, and prices. An authoritative report, published by the Stigler Committee [2019],
details the many challenges associated with digital platforms, among them: “Pinpointing the locus of
competition can also be challenging because the markets are multisided and often ones with which
economists and lawyers have little experience. This complexity can make market definition another
hurdle to effective enforcement.” Published the same year, a comprehensive report from the European
Commission calls for “less emphasis on analysis of market definition, and more emphasis on theories
of harm and identification of anti-competitive strategies.” [Crémer et al., 2019]

Our work responds to this call by developing a normative and technical proposal for reasoning
about power in digital economies, while relaxing the reliance on market definition. Our running
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example is a digital content recommendation platform. The platform connects content creators with
viewers, while monetizing views through digital advertisement. Key to the business strategy of a
firm operating a digital content recommendation platform is its ability to predict revenue for content
that it recommends. Often framed as a supervised learning task, the firm trains a statistical model
on observed data to predict some proxy of revenue, such as clicks, views, or engagement. Better
predictions enable the firm to more accurately identify content of interest and thus increase profit.

A second way of increasing profit is more subtle. The platform can use its predictions to steer
participants towards modes of consumption and production that are easier to predict and monetize.
For example, the platform could reward consistency in the videos created by content creators, so that
the popularity of their videos becomes more predictable. Similarly, the platform could recommend
addictive content to viewers, appealing to behavioral weaknesses to drive up viewer engagement.
How potent such a strategy is depends on the extent to which the firm is able to steer participants,
which we argue reveals a salient power relationship between the platform and its participants.

1.1 Our contribution

We introduce the notion of performative power that quantifies a firm’s ability to steer a population
of participants. We argue that the sensitivity of participant behavior to algorithmic changes in the
platform provides an important indicator of the firm’s power. Performative power is a causal statistical
notion that directly quantifies how much participants change in response to actions by the platform,
such as updating a predictive model. In doing so it avoids market specifics, such as the number of
firms involved, products, and monetary prices. Neither does it require a competitive equilibrium
notion as a reference point. Instead, it focuses on where rubber meets the road: the algorithmic
actions of the platform and their causal powers.

We build on recent developments in performative prediction [Perdomo et al., 2020] to articulate the
difference between learning and steering in prediction. We show that under low performative power,
a firm cannot do better than standard supervised learning on observed data. Intuitively, this means the
firm optimizes its loss function ex-ante on data it observes. We interpret this optimization strategy as
analogous to the firm being a price-taker, an economic condition that arises under perfect competition
in classical market models. We contrast this optimization strategy with a firm that performs ex-post
optimization and takes advantage of performative power to achieve lower expected risk.

To better understand our definition, we study performative power in the concrete algorithmic market
model of strategic classification. Strategic classification models participants as best-responding agents
that change their features rationally in response to a predictor to achieve a better prediction outcome.
We study the role of different economic factors by extending the standard model to incorporate
competing firms and outside options. Our first observation is that a monopoly firm can derive
significant performative power because participants are willing to incur a cost up to the utility of using
the service in order to adjust to the firm’s predictor. Moreover, performative power is maximized if the
firm can personalize decisions to individual users. Our second observation is that performative power
decreases in the presence of competition and outside options. When firms compete for participants,
offering services that are perfect substitutes for each other, then even two firms can lead to zero
performative power. This result stands in analogy with classical Bertrand competition.

On the empirical side, we propose a causal design to identify performative power in the context of a
recommender system arranging content into display slots. This design, we call discrete display design
(DDD), establishes a connection between performative power and the causal effect of display position
on consumption. To derive a lower bound on performative power, DDD constructs a hypothetical
algorithmic action that aggregates the causal effects of display position across the population. This
allows us to repurpose reported causal effects of display position as lower bounds on performative
power. It also charts out a concrete empirical strategy for measuring power in digital economies.

Finally, we examine the role of performative power in competition policy. We contrast performative
power with traditional measures of market power, describe how performative power can capture
complex behavioral patterns, and discuss the potential role of performative power in antitrust debates.

1.2 Related work

Our notion of performative power builds on the development of performativity in prediction by
Perdomo et al. [2020]. Performativity captures that the predictor can influence the data-generating
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process, a dependency ruled out by the traditional theory of supervised learning. A growing line
of work on performative prediction, e.g., [Mendler-Dünner et al., 2020; Drusvyatskiy and Xiao,
2022; Izzo et al., 2021; Dong and Ratliff, 2021; Miller et al., 2021; Brown et al., 2022; Li and Wai,
2021; Ray et al., 2022; Jagadeesan et al., 2022; Wood et al., 2022], has studied different optimization
challenges and solution concepts in performative prediction. Rather than viewing performative
effects as a challenge for the learning algorithm, we argue that performativity reveals a salient power
relationship between the decision maker and the population. From an optimization perspective,
our work demonstrates that sufficiently high performative power is necessary for performative
optimization approaches to be beneficial compared with standard supervised learning.

The strategic classification setup we use for our case study was proposed in [Brückner et al., 2012;
Hardt et al., 2016] and is closely related to a line of work in the economics community [Frankel
and Kartik, 2022; Ball, 2020; Hennessy and Goodhart, 2020; Frankel and Kartik, 2019]. A line
of work on strategic classification makes the assumption that performative effects are the result of
individuals manipulating their features so as to best respond to the deployment of a predictive model.
The focus has been on describing participant behavior in response to a single firm acting in isolation.
Our extensions incorporate additional market factors into the model, such as outside options or the
choice between competing firms, which we believe are helpful for gaining a better understanding of
interactions in digital economies. Beyond the case of a single classifier, recently, Narang et al. [2022]
and Piliouras and Yu [2022] consider multiple firms simultaneously applying retraining algorithms in
performative environments and analyze convergence to equilibrium solutions. Ginart et al. [2021]
study another model of feedback loops arising from competition between machine learning models.

There is extensive literature on the topic of competition on digital platforms that we do not attempt to
survey here. For starting points, see, for example, recent work by Bergemann and Bonatti [2022],
a survey by Calvano and Polo [2021], a discussion by Parker et al. [2020], the reports already
mentioned [Stigler Committee, 2019; Crémer et al., 2019], as well as a macroeconomic perspective
on the topic [Syverson, 2019].

2 Performative power

Fix a set U of participants interacting with a designated firm, where each u 2 U is associated with a
data point z(u). Fix a metric dist(z, z0) over the space of data points. Let F denote the set of actions
a firm can take. We think of an action f 2 F as a predictor that the firm can deploy at a fixed point
in time. For each participant u 2 U and action f 2 F , we denote by zf (u) the potential outcome
random variable representing the counterfactual data of participant u if the firm were to take action f .
Definition 1 (Performative Power). Given a population U , an action set F , potential outcome pairs
(z(u), zf (u)) for each unit u 2 U and action f 2 F , and a metric dist over the space of data points,
we define the performative power of the firm as

P := sup
f2F

1

|U|
X

u2U
E [dist (z(u), zf (u))] ,

where the expectation is over the randomness in the potential outcomes.

The expression inside the supremum generalizes an average treatment effect, corresponding to scalar
valued potential outcomes and the absolute value as metric. We could generalize other causal
quantities such as heterogeneous treatment effects, but this avenue is not subject of our paper. The
definition takes a supremum over possible actions a firm can take at a specific point in time. We can
therefore lower bound performative power by estimating the causal effect of any given action f 2 F .

Having specified the sets F and U , estimating performative power amounts to causal inference
involving the potential outcome variables zf (u) for unit u 2 U and action f 2 F . In an observational
design, an investigator is able to identify performative power without an experimental intervention on
the platform. We propose and apply one such observational design in Section 5. In an experimental
design, the investigator deploys a suitably chosen action to estimate the effect. Neither route requires
understanding the specifics of the market in which the firm operates. It is not even necessary to know
the firm’s objective function, how it optimizes its objective, and whether it successfully achieves its
objective. In practice, the dynamic process that generates the potential outcome zf (u) may be highly
complex, but this complexity does not enter the definition. Consequently, the definition applies to
complex multisided digital economies that defy mathematical specification. To make this abstract
concept of performative power more concrete, let us instantiate it in a concrete example.
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Example: Digital content recommendation. Consider a digital content recommendation platform,
such as the video sharing services YouTube or Twitch. The platform aims to recommend channels
that generate high revenue, personalized to each viewer. Towards this goal, the platform collects data
to build a predictor f for the value of a channel c to a viewer with preferences p. Let x = (xc, xp) be
the features used for the prediction task that capture attributes xc of the channel and the attributes xp

of the viewer preferences. Let y be the target variable, such as watch time, that acts as a proxy for
the monetary value of showing a channel to a specific viewer. For concreteness, take the supervised
learning loss `(f(x), y) incurred by a predictor f to be the squared loss (f(x)� y)2.

When defining performative power, participants could either be viewers or content creators. The
definition is flexible and applies to both. By selecting the units U , which features to include in the data
point z, and how to specify the distance metric dist, we can pinpoint specific power relationships.

Content creators. The predictor f can affect the type of videos that content creators stream on their
channels. For example, content creators might strategically adjust various features of their content
relevant for the predicted outcome, such as the length, type or description of their videos, to improve
their ranking. Thus, by changing how it predicts the monetary value of a channel, the platform can
induce changes in the content on the channel. To measure this source of power, we let the participants
U be content creators and suppose that each content creator u 2 U maintains a channel of videos.
Let the data point z(u) correspond to features xc characterizing the channel c created by content
creator u. Let dist be a metric over features of content. The resulting instantiation of performative
power measures the changes in content induced by potential implementations F of the prediction
function. In Section 4, we investigate this form of performative power from a theoretical perspective
by building on the setup of strategic classification.

Viewers. The predictor f can shape the consumption patterns of viewers, since viewers tend to follow
recommendations when deciding what content to consume (e.g. [Ursu, 2018]). Thus, by changing
which content it recommends to a user, the platform can induce changes in the target variable: how
much time the users spends watching content on a given channel. Let’s suppose that we wish to
investigate the effect of the predictor on viewer consumption of a certain genre of content (e.g. radical
content). To formalize this source of power, we let the units U be viewers. Let the data point z(u)
correspond to how long the viewer u spends watching content in the genre of interest. More formally,
let z(u) for a user u with preferences p be equal to the cumulative watch time over pairs (xc, xp)
where c is a channel within the genre of interest. Let dist(z, z0) = |z � z0| capture the difference in
watch time. The resulting instantiation of performative power measures the changes in consumption
of a given genre of content induced by a set of prediction functions F . In Section 5, we propose an
observational design to identify this quantity.

3 Learning versus steering

Performative power enters the firm’s optimization problem and has direct consequences for their
optimization strategies. Instead of identifying the best action f while treating data as fixed, high
performative power enables the firm to steer the population towards data that it prefers. In the
following, we elucidate the role of performative power in optimization and study the equilibria
attained in an economy of performative predictors.

3.1 Optimization strategies

Let us focus on predictive accuracy as the optimization objective of the firm. Hence, the goal of the
firm is to choose a predictive model f that suffers small loss `(f(x), y) measured over instances
(x, y). To make the role of steering explicit we distinguish between the ex-ante loss `(f(x(u)), y(u))
and the ex-post loss `(f(xf (u)), yf (u)). The former describes the loss that the firm can optimize
when building the predictor. The latter describes the loss that the firm observes after deploying f .
More formally, the ex-post risk that the firm suffers after deploying f on a population U is given by

1

|U|
X

u2U
`(f(xf (u)), yf (u)) . (1)

Expression (1) is an instance of what Perdomo et al. [2020] call performative risk of a predictor. That
is the loss a predictor incurs on the distribution over instances it induces. To simplify notation we
adopt their conceptual device of a distribution map: D(✓) maps a predictive model, characterized by
model parameters ✓, to a distribution over data instances.
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To express the firm’s optimization problem within the framework of performative prediction, we
define a data instance as z(u) = (x(u), y(u)) for u 2 U so we can capture performativity in the
features as well as in the labels. Let the firm’s action correspond to choosing a parameter vector
✓ for its predictor f✓ from an action set F = ⇥. Then, the aggregate distribution over data D(✓)
corresponds to the distribution over the potential outcome variable z✓(u) after the firm takes action
✓ 2 ⇥, where the randomness comes from u being uniformly drawn from U as well as randomness
in the potential outcomes. The firm’s ex-post risk (1) for deploying f✓ is the performative risk:

PR(✓) := E
z⇠D(✓)

[`(✓; z)],

where the loss typically corresponds to the mismatch between the predicted label and the true label:
`(✓; z) = `(f✓(x), y) for z = (x, y).

Observe that ✓ arises in two places in the objective: in the distribution D(✓) and in the loss `(✓; z).
Thus, for any choice of model �, we can decompose the performative risk PR(✓) as:

PR(✓) = R(�, ✓) + (R(✓, ✓)� R(�, ✓)) (2)
where R(�, ✓) := Ez⇠D(�) `(✓; z) denotes the loss of a model ✓ on the distribution D(�). This
tautology highlights the difference between learning and steering and we differentiate between the
following two optimization approaches:

Ex-ante optimization. Ex-ante optimization focuses on optimizing the first term in the decom-
position (2). For any �, the resulting minimizer can be computed statistically and corresponds to
✓SL := argmin✓2⇥ R(�, ✓) . Let f� be any previously chosen model, then employing supervised
learning on historical data sampled from D(�) corresponds to what we call ex-ante optimization.

Ex-post optimization. In contrast to ex-ante optimization, ex-post optimization accounts for the
impact of the model on the distribution. It trades-off the two terms in (2), and directly optimizes
the performative risk ✓PO := argmin✓2⇥ PR(✓). Solving this problem exactly, and finding the
performative optimum ✓PO requires optimization over the distribution map D(✓).

In the context of digital content recommendation, ex-ante optimization corresponds to training ✓ on
historical data collected by the platform, whereas ex-post optimization selects ✓ based on randomized
experiments, A/B testing or explicit modeling of D(✓). It holds that PR(✓PO)  PR(✓SL), because
in ex-post optimization the firm can choose to steer the population towards more predictable behavior.
Remark (Generalizing to other objectives). We thus far have focused on the firm’s prediction problem
when describing performative effects. Nonetheless, the conceptual distinction between learning and
steering applies to general optimization objectives. Ex-ante optimization corresponds to optimizing
on historical data, whereas ex-post optimization corresponds to optimizing over the counterfactuals.

3.2 Gain of ex-post optimization is bounded by a firm’s performative power

We show that the gain of ex-post optimization over ex-ante optimization can be bounded by the firm’s
performative power with respect to the set of actions ⇥ and the data vector z = (x, y). Intuitively,
if the firm’s performative power is low, then the distributions D(✓) and D(�) for any ✓,� 2 ⇥ are
close to one another. Coupled with a regularity assumption on the loss, this means that the second
term in (2) should be small. Thus, using the ex-ante approach of minimizing the first term produces a
near-optimal ex-post solution, as we demonstrate in the following result:
Proposition 1. Let P be the performative power of a firm with respect to the action set ⇥. Let Lz be
the Lipschitzness of the loss in z with respect to the metric dist. Let ✓PO be the ex-post solution and
✓SL be the ex-ante solution computed from D(�) for any past deployment � 2 ⇥. Then, we have that

PR(✓SL)  PR(✓PO) + 4LzP.

The gain achievable through ex-post optimization is bounded by performative power. Hence, a firm
with small performative power cannot do much better than ex-ante optimization and might be better
off sticking to classical supervised learning practices instead of engaging with ex-post optimization.

3.3 Ex-post optimization in an economy of predictors

The result in Proposition 1 studies the optimization strategy of a single firm in isolation. In this
section, we investigate the interaction between the strategies of multiple firms that optimize si-
multaneously over the same population. We consider an idealized marketplace where C firms
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all engage in ex-post optimization and we assume all exogenous factors remain constant. Let
DC(✓1, . . . , ✓i�1, ✓i, ✓i+1, . . . , ✓C) be the distribution over z(u) induced by each firm i 2 [C] de-
ploying model f✓i . Let `i denote the loss function chosen by firm i. We say a set of predictors
[f✓1 , . . . , f✓C ] is a Nash equilibrium if and only if no firm has an incentive to unilaterally deviate
from their predictor using ex-post optimization:

✓i 2 argmin
✓2⇥

E
z⇠DC(✓1,...,✓i�1,✓,✓i+1,...,✓C)

[`i(✓; z)].

First, we show that at the Nash equilibrium, the suboptimality of each predictor f✓i on the induced
distribution depends on the performative power of the respective firm.
Proposition 2. Suppose that the economy is in a Nash equilibrium (✓1, . . . , ✓C), and firm i has
performative power Pi with respect to the action set ⇥. Let Lz be the Lipschitzness of the loss `i in z
with respect to the metric dist. Then, it holds that Ez⇠D[`i(✓i; z)]  min✓ Ez⇠D[`i(✓; z)] + LzPi ,
where D = DC(✓1, . . . , ✓C) is the distribution induced at the equilibrium.

Proposition 2 implies that if the performative power of all firms is small (Pi ! 0 8i), then the equi-
librium becomes indistinguishable from that of a static, non-performative economy with distribution
D over content. Interestingly, there is an important distinction with the static setting: if the firms
were to collude—for example, because of common ownership [Azar et al., 2018] —then they would
be able to significantly shift the distribution. In particular, even if the performative power Pi of any
given firm i is small, the aggregate performative power of a set of firms S can be much larger.

To illustrate this, we consider a mixture economy, where all of the firms share a common loss function
` and performative power is uniformly distributed across firms (we formalize the construction of a
mixture economy in Appendix B.1). We can apply Proposition 2 to analyze the equilibria as C ! 1.
Corollary 1. Suppose that all firms i 2 [C] share the same loss function `i = `. Let ✓⇤ be a
symmetric Nash equilibrium in the mixture economy with C platforms. As C ! 1, it holds that:

E
z⇠DC(✓⇤,...,✓⇤)

[`(✓⇤; z)] ! min
✓

E
z⇠DC=1(✓⇤)

[`(✓; z)].

Corollary 1 demonstrates that a symmetric equilibrium approaches a performatively stable point
of the monopoly economy where C = 1 as the number of firms in the economy grows and the
performative power of each individual firm diminishes. In contrast, if all C firms collude, they would
obtain the performative power of a monopoly platform and instead choose a performatively optimal
point of DC=1. A competitive economy can thus exhibit a very different equilibrium from that of the
monopoly or collusive economy.

4 Performative power in strategic classification

We now turn to a stylized market model and investigate how performative power depends on the
economy in which the firm operates. Specifically, we use strategic classification [Hardt et al., 2016]
as a test case for our definition. In strategic classification, participants strategically adapt their
features with the goal of achieving a favorable classification outcome. Hence, performative power is
determined by the degree to which a firm’s classifier can impact participant features. We use this
concrete market setting to examine the qualitative behavior of performative power in the presence of
competition and outside options.

4.1 Strategic classification setup

Let x(u) be the features and y(u) the binary label describing a participant u 2 U . A firm chooses a
binary predictor f : Rm ! {0, 1} and incurs loss `(f(x), y) = |f(x)� y|. Let Dorig denote the base
distribution over features and labels (xorig(u), yorig(u)) absent any strategic adaptation, which we
assume is continuous and supported everywhere. Let D(f) be the distribution over potential outcomes
(xf (u), yf (u)) that arises from the response of participant u to the deployment of a model f . We
assume that participant u incurs a cost c(xorig(u), x0) for changing their features to x0. In line with the
standard setup, the cost for feature changes is measured relative to the original features. We assume c
is a metric and any feature change that deviates from the original features results in nonnegative cost
for participants. Further, we assume the label does not change, i.e., yf (u) = yorig(u).
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Since performative effects surface as changes in participant features, we measure performative power
over z(u) = x(u). In Appendix B.2, we describe how this instantiation of performative power can be
interpreted in the context of content recommendation platforms and hiring platforms.

4.2 Performative power in the monopoly setting

Consider an economy with a single firm that offers utility � > 0 to its participants for a positive
prediction. Participants want to use the service regardless of what classifier the firm chooses. In
addition, assume there is an outside options at utility level � > 0 that does not demand any extra
effort from participants. This decreases the budget they are willing to invest to their surplus utility
�� = max(0, ���). We adopt the following standard rationality assumption on participant behavior.

Assumption 1 (Participant Behavior Specification). Let �� � 0 be the surplus utility that a
participant can expect from a positive classification outcome from classifier f over any outside option.
Then, a participant u 2 U with original features xorig(u) will change their features according to
xf (u) = argmaxx0 (��f(x0)� c(xorig(u), x0)).

As a result of Assumption 1, a participant will change their features if and only if the cost of a
feature change is no larger than ��. Furthermore, if participants change their features, then they will
expend the minimal cost required to achieve a positive outcome. This specification of participant
behavior allows us to bound the firm’s performative power in terms of the cost function c and
the distance function dist. Namely, the set of potential values xf (u) can take on is restricted to
X��(u) := {x : c(xorig(u), x)  ��}. Thus, the effect of a change in the decision rule on participant
u can be upper bounded by the distance between x(u) and the most distant point in X�� . Aggregating
these unilateral effects yields a bound on performative power:

Lemma 1. The performative power P of the firm with respect to any set of predictors F and a
population U can be upper bounded as

P  1

|U|
X

u2U
sup

x02X��(u)
dist(x(u), x0). (3)

Tightness of Lemma 1. If the firm action space F is restricted to a parametric family of predictors,
the upper bound in Lemma 1 need not be tight. A typical decision rule, such as a linear threshold
classifier, does not impact all participants u 2 U equally. More specifically, the amount of change
that the firm can induce with a decision rule f on an individual u depends the relative position of
their features xorig(u) to the decision boundary. (In Appendix B.3 we provide a precise bound for
threshold classifiers).

Interestingly, the ability to personalize decisions to each user maximizes performative power.

Proposition 3. Consider a population U of users. Let F be the set of all functions from Rm to {0, 1}.
Suppose that the first coordinate of x(u) is immutable, and uniquely identifies user u 2 U: that is,
xorig(u)[1] = xf (u)[1] = i for all f 2 F . Then, the performative power of the firm matches the
upper bound in (3).

The intuition behind Proposition 3 is that personalization enables the firm to simultaneously extract
the maximum utility from each individual participant.

Role of surplus utility ��. Let us now investigate the role of �� in the upper bound (3). Recall
that user behavior is determined by the cost c of changing features relative to xorig(u), performative
power is measured as the distance from the current state x(u) with respect to dist. The Lipschitz
constant L := supx,x0

dist(x,x0
)

c(x,x0) allows us to relate the two metrics and derive a simpler upper bound:

Corollary 2. The performative power of a firm in the monopoly setup can be bounded as P  2L��,
where �� measures the surplus utility offered by the service of the firm over outside options.

Corollary 2 makes explicit that �� > 0 is a prerequisite for a firm to have any performative power.
This qualitative behavior is in line with common intuition in economics that monopoly power relies
on the firm offering a service that is superior to existing options (i.e. � > �).
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4.3 Firms competing for participants

We next consider a model of competition between two firms where participants always choose the firm
that offers higher utility. We demonstrate how the presence of competition reduces the performative
power of a firm. In particular, we will show that for a natural constraint on the firm’s action set, each
firm’s performative power can drop to zero at equilibrium, regardless of how much utility participants
derive from the firm’s service.

To model competition in strategic classification, we specify participant behavior as follows: Given
that the first firm deploys f1 and the second firm deploys f2, then participant u will choose f1 if
maxx0 (f1(x0)� c(xorig(u), x0)) > maxx0 (f2(x0)� c(xorig(u), x0)), and choose f2 otherwise. We
assume that a participant tie-breaks in favor of the lower threshold, randomizing if the two thresholds
are equal. After choosing firm i 2 {1, 2}, they change their features according to Assumption 1 as
xf (u) = argmaxx0 (�fi(x0)� c(xorig(u), x0)), where � is the utility of a positive outcome.

We assume that the firm chooses their classifier based on the following utility function. For a rejected
participant, the firm receives utility 0 and for an accepted participant, the firm receives utility ↵ > 0
if they have a positive label and utility �↵ if they have a negative label. We assume that the firm’s
action set is constrained to models for which it derives non-negative utility. More specifically, if f✓
denotes the model deployed by the competing firm, let the action set F+(✓) of this firm denote the
set of models that yield non-negative utility for the firm.

For simplicity, focus on a 1-dimensional setup where F is the set of threshold functions. We assume
that the cost function c(x, x0) is continuous in both of its arguments, strictly increasing in x0 for
x0 > x, strictly decreasing for x0 < x, and satisfies limx0!1 c(x, x0) = 1. Furthermore, we assume
that the posterior p(x) = PDorig [Y = 1 | X = x] is strictly increasing in x with limx!�1 p(x) = 0,
and limx!1 p(x) = 1.

We show that the presence of competition can drive the performative power of each firm to zero.
Proposition 4. Consider the 1-dimensional setup with two competing firms specified above. Suppose
that the economy is at a symmetric Nash equilibrium (✓⇤, ✓⇤). If L < 1, then the performative
power of either firm with respect to the action set F+(✓⇤) is P = 0.

The intuition behind Proposition 4 is that performative power of a firm purely arises from how much
larger the current threshold ✓ is than the minimum threshold a firm can deploy within their action set
F+(✓). At the Nash equilibrium (where both firms best-respond with respect to their utility functions
taking their own performative effects into account), the firms deploy exactly the minimum threshold
within their action set. The formal proof of the result can be found in Appendix C.9.

Corollary 4 bears an intriguing resemblance to well-known results on market power under Bertrand
competition in economics (see e.g., [Baye and Kovenock, 2008]) that show how a state of zero power
is reached with only two competing firms.

5 Discrete display design

Now that we have examined the theoretical properties of performative power, we turn to the question
of measuring performative power from observational data. We focus on our running example of
digital content recommendation and we propose an observational design to measure the recommender
system’s ability to shape consumption patterns.

5.1 The causal effect of position

We assume that there are C pieces of content C = {0, 1, 2, . . . , C � 1} that the platform can present
in m display slots. We make the convention that item 0 corresponds to leaving the display slot empty.
We focus on the case of two display slots (m = 2) since it already encapsulates the main idea. The
first display slot is more desirable as it is more likely to catch the viewer’s attention. For example, the
first display slot could be the first ad slot on a page of search results. Researchers have studied the
causal effect of position on consumption, often via quasi-experimental methods such as regression
discontinuity designs, but also through experimentation in the form of A/B tests.
Definition 2 (Causal effect of position). Let the treatment T 2 {0, 1} be the action of flipping the
content in the first and second display slots for a viewer u, and let the potential outcome variable Yt(u)
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indicate whether, under the treatment T = t, viewer u consumes the content that is initially in the
first display slot. We call the corresponding average treatment effect

� =
��E [Y1 � Y0]

��

the causal effect of position, where the expectation is taken over the population of viewers and the
randomness in the potential outcomes.

For example, Narayanan and Kalyanam [2015] estimate the causal effect of position in search
advertising, where advertisements are displayed across a number of ordered slots whenever a keyword
is searched. They measured the causal effect of position on click-through rate of participants.

5.2 From causal effect of position to performative power

The identification strategy we propose, called discrete display design (DDD), derives a lowerbound
on performative power by repurposing existing measures of the causal effect of position. Note that
we focus on content recommendation in this section, the design however can be generalized to other
settings where the firm’s action corresponds to a discrete decision of how to display content. Setting
up the DDD involves two steps: First, we need to instantiate the definition of performative power
with a suitable action set so that the firm’s actions result in swapping the position of content items,
and second, we plug in the causal effect of position to lower bound performative power.

While the first step is mostly a technical exercise, the second step relies on a crucial assumption.
In particular, it involves relating the unilateral causal effect of position to performative power that
quantifies the effect of an action on the entire population of viewers. Thus, for being able to extrapolate
the effect from a single viewer to the population DDD relies on a non-interference assumption. In the
advertising example, this means that the ads shown to one viewer do not influence the consumption
behavior of another viewer. Let us investigate the two steps in greater detail:

Step 1: Instantiating performative power. Let the units U be the set of viewers. For each viewer
u 2 U let z(u) 2 RC be the distribution over content items C consumed by viewer u, represented as
a histogram. More formally, let z(u) be a vector in the C-dimensional probability simplex where the
ith coordinate is the probability that viewer u consumes content item i. The metric dist(z, z0) is the
`1-distance dist(z, z0) =

PC�1

i=0
|z[i]� z0[i]|.

The decision space F of the firm corresponds to its decisions of how to arrange content in the m = 2
display slots. It is natural to decompose this decision into a continuous score function s followed by
a discrete conversion function  that maps scores into an allocation. The score function s : U ! RC

maps the viewer to a vector of scores, where each coordinate is an estimate of the quality of the match
between the viewer and the corresponding piece of content. The conversion function  : RC ! C2

takes as input the vector of scores and outputs an ordered list of items with the top 2 scores. We
assume the platform displays these 2 items in order and the conversion function  is fixed. Hence, we
identify the firm’s action space with the set of feasible score functions S ✓ U ! RC .

To define the reference state z(u), we think of scurr as being the score function currently deployed by
the platform. Let � be the maximum difference in the highest score and second highest score for any
user under scurr. Consider the set S of scoring functions defined as

S :=
�
s : U ! RC | 8u 2 U : ks(u)� scurr(u)k1  �

 
.

Notably, there exists an sswap 2 S that is capable of swapping the order of the first and second
highest scoring item under scurr for any user u 2 U simultaneously. We denote the counterfactual
variable corresponding to a score function s 2 S as zs(u). Given this specification, performative
power with respect to the action set S can be bounded by the causal effect of sswap as follow

P = sup
s2S

1

U
X

u2U
kzscurr(u)� zs(u)k1 � 1

U
X

u2U
kzscurr(u)� zsswap(u)k1. (4)

Step 2: Lower bounding performative power. To relate the lower bound on performative power
from (4) to the causal effect of position, let itop(u) =  � scurr(u)[1] denote the coordinate of the
item displayed to user u in the first display slot under scurr. Then, we can lower bound each term
in the sum (4) as kzscurr(u) � zsswap(u)k1 � |zscurr(u)[itop(u)] � zsswap(u)[itop(u)]|. Now to enable
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us to study the effect of changing scurr to sswap independently for each user we place the following
non-interference assumption on the counterfactual variables which closely relates to the stable unit
treatment value assumption (SUTVA) [Imbens and Rubin, 2015] prevalent in causal inference.
Assumption 2 (No interference across units). For any u 2 U and any pair of scoring functions
s1, s2 2 S , if (s1(u)) = (s2(u)), it also holds that zs1(u) = zs2(u).

The assumption requires that there are no spill-over or peer effects and the content a viewer consumes
only depends on the content recommended to them and not the content recommended to other viewers.
The effect of a unilateral change to the consumption of item itop(u) under sswap exactly corresponds
to what we defined as the causal effect of position. Aggregating these unilateral causal effects across
all viewers in the population we obtain a lowerbound on performative power. The proof of Theorem 1
can be found in Appendix C.12.
Theorem 1. Let P be performative power as instantiated above. If Assumption 2 holds, then
performative power is at least as large as the causal effect of position

P � �.

Let us return to the search advertisement marketplace study of Narayanan and Kalyanam [2015]
to demonstrate how we can leverage Theorem 1 to relate the findings of their observational causal
design to performative power. In particular, they examine position effects in search advertising, where
ads are displayed across a number of ordered slots whenever a keyword is searched. They found
that the effect of showing an ad in display slot 1 versus display slot 2 corresponds to 0.0048 clicks
per impression (see Table 2 in their paper). By treating each incoming keyword query as a distinct
“viewer” u, this number exactly corresponds to what we defined as the causal effect of position. Thus,
we can apply Theorem 1 to get P � 0.0048. Putting this into context; the mean click-through rate in
display slot 2 is 0.023260. Hence, the lower bound 0.0048 is a 21% percent increase relative to the
baseline. The firm thus has a substantial ability to shape what advertisements users click on.

6 Discussion

We discuss the potential role of performative power in competition policy and antitrust enforcement.

The complexity of digital marketplaces has made it necessary to develop new approaches for evaluat-
ing and regulating these economies. One challenge is that traditional measures of market power—such
as the Lerner Index [Lerner, 1934], or the Herfindahl–Hirschman Index (HHI)—are based on classical
markets for homogeneous goods, but these markets map poorly to digital economies. In particular,
these measures struggle to appropriately capture the multi-sided nature of digital economies and to
account for the role of behavioral weaknesses of consumers—such as tendencies for single-homing,
vulnerability to addiction, and the impact of framing and nudging on participant behavior [e.g. Thaler
and Sunstein, 2008; Fogg, 2002]. We further expand on this discussion in Appendix A.

By focusing on observable statistics, performative power could be particularly helpful in markets that
resist a clean specification. Performative power is sensitive to the market nuances without explicitly
modeling them. For example, suppose that as a result of uncertainty about market boundaries, a
regulator failed to account for a competitor in a marketplace. Performative power would still implicitly
capture the impact of the competitor and indicate the market is more competitive than suspected.

We leave open the question of how to best instantiate performative power in a given marketplace.
Conceptually, we view performative power as a tool to flag market situations that merit further
investigation, since it corresponds to “potential for harm to users”. However, if a regulator wishes
to draw fine-grained conclusions about consumer harm, it is crucial to appropriately instantiate the
choice of action set F , the definition of a population U , and the specification of the features z. As an
example, we show in Appendix B.4 how to closely relate performative power into consumer harm for
strategic classification. In general, however, harm and power are two distinct normative concepts, and
going from performative power to consumer harm thus requires additional substantive arguments.
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