
Appendix

Table of Contents
A More Details on Privacy Attacks in Deep Learning 15

B Implementation Details 16
B.1 Hardware, Software and Running Time . 16
B.2 Hyperparameters . 16
B.3 Post-Processing of Reconstructed Samples . 17

C Supplementary Results 17
C.1 Results for Models in Figure 4 . 17
C.2 All Comparisons for Subsection 5.4 . 17
C.3 Stretching the Theoretical Limitations . 20

A More Details on Privacy Attacks in Deep Learning

Below we discuss several privacy attacks that have been extensively studied in recent years (see Liu
et al. [2021], Jegorova et al. [2021] for surveys).

Membership Inference. In membership-inference attacks [Shokri et al., 2017, Long et al., 2018,
Salem et al., 2018, Yeom et al., 2018, Song and Mittal, 2021] the adversary determines whether a
given data point was used to train the model or not. For example, if the model was trained on records
of patients with a certain disease, the adversary might learn that an individual’s record appeared in
the training set and thus infer that the owner of the record has the disease with high chance. Note
that membership inference attacks are significantly different from our attack, as the adversary must
choose a specific data point. E.g., if the inputs are images, then the adversary must be able to guess a
specific image.

Model Extraction. In model-extraction attacks [Tramèr et al., 2016, Oh et al., 2019, Wang and
Gong, 2018, Carlini et al., 2020b, Jagielski et al., 2020, Milli et al., 2019, Rolnick and Kording, 2020,
Chen et al., 2021] the adversary aims to steal the trained model functionality. In this attack, the
adversary only has black-box access with no prior knowledge of the model parameters or training
data, and the outcome of the attack is a model that is approximately the same as the target model.
It was shown that in certain cases the adversary can reconstruct the exact parameters of the target
model. We note that such attacks might be combined with our attack in order to allow extraction of
the training dataset in a black-box setting. Namely, in the first stage the model is extracted using
model-extraction attacks, and in the second stage the training dataset is reconstructed using our attack.

Model Inversion. Model-inversion attacks [Fredrikson et al., 2015] are perhaps the closest to our
attack, as they consider reconstruction of input data given a trained model. These attacks aim to
infer class features or construct class representatives, given that the adversary has some access (either
black-box or white-box) to a model.

Fredrikson et al. [2015] showed that a face-recognition model can be used to reconstruct images
of a certain person. This is done by using gradient descent for obtaining an input that maximizes
the output probability that the face-recognition model assigns to a specific class. Thus, if a class
contains only images of a certain individual, then by maximizing the output probability for this class
we obtain an image that might be visually similar to an image of that person. It is important to note
that the reconstructed image is not an actual example from the training set. Namely, it is an image that
contains features which the classifier identifies with the class, and hence it might be visually similar
to any image of the individual (including images from the training set). If the class members are not

15

all visually similar (which is generally the case), then the results of model inversion do not look like
the training data (see discussions in Shokri et al. [2017] and Melis et al. [2019]). For example, if this
approach is applied to the CIFAR-10 dataset, it results in images which are not human-recognizable
[Shokri et al., 2017]. In Zhang et al. [2020], the authors leverage partial public information to learn
a distributional prior via generative adversarial networks (GANs) and use it to guide the inversion
process. That is, they generate images where the target model outputs a high probability for the
considered class (as in Fredrikson et al. [2015]), but also encourage realistic images using GAN.
We emphasize that from the reasons discussed above, this method does not reconstruct any specific
training data point. Another approach for model inversion is training a model that acts as an inverse of
the target model [Yang et al., 2019]. Thus, the inverse model takes the predicted confidence vectors of
the target model as input, and outputs reconstructed data. A recent paper Balle et al. [2022] shows a
reconstruction attack where the attacker has information about all the data samples except for one. On
the theoretical side, Brown et al. [2021] prove that in certain settings, models memorize information
about training examples, and show reconstruction attacks on some synthetic datasets.

Model inversion and information leakage in collaborative deep learning was studied in, e.g., He et al.
[2019], Melis et al. [2019], Hitaj et al. [2017], Zhu et al. [2019], Yin et al. [2021], Huang et al. [2021].
Extraction of training data from language models was studied in Carlini et al. [2021, 2019], where
they use the ability of language models to complete a given sentence in order to reveal sensitive
information from the training data. We note that this attack is specific to language models, which are
generative models, while our approach considers classifiers and is less specific.

Defences against Training Data Reconstruction. Avoiding leakage of sensitive information on
the training dataset is the motivation behind differential privacy in machine learning, which has
been extensively studied in recent years [Abadi et al., 2016, Dwork et al., 2006, Chaudhuri et al.,
2011]. This approach allows provable guarantees on privacy, but it typically comes with high cost in
accuracy. Other approaches for protecting the privacy of the training set, which do not allow such
provable guarantees, have also been suggested (e.g., Huang et al. [2020], Carlini et al. [2020a]).

B Implementation Details
B.1 Hardware, Software and Running Time

A typical reconstruction runs for about 30 minutes on a GPU Tesla V-100 32GB, for reconstructing
m = 1000 samples from a model with architecture d-1000-1000-1, and for 100, 000 epochs (running
times slightly differ with the number of samples m, number of epochs and the size of the model, but
it still takes about this time to run). Our code is implemented in PYTORCH [Paszke et al., 2019]. We
will release the code.

B.2 Hyperparameters

Our reconstruction scheme has 4 hyperparameters. Already discussed in the paper are the learning
rate and σx (discussed in Subsection 5.2). In Subsection 5.2 we discuss the modification in the
derivative of a ReLU layer y = max{0, x}. The backward function of a ReLU layer works as follows:
given the “gradient from above” ∂L

∂y , the backward gradient is ∂L
∂y · I{x > 0}. Our modification to

the backward gradient is ∂L
∂y · σ (αx), where σ(z) = 1

1+e−z and α is a hyperparameter. As noted in
the paper, this derivative is essentially the derivative of a SoftReLU, where the derivative is the same
as ReLU for α → ∞ and is the derivative of the identity function for α → 0. Note that this is done
only in the backward function, while the forward function remains that of a ReLU function. We also
add an extra hyperparameter λmin to our Lλ loss from Eq. (7):

Lλ(λ1, . . . , λm) =

m∑
i=1

max{−λi + λmin, 0}

The intuition behind is to encourage as many samples to lie on a margin, and thus try and reconstruct
some sample from the training set.

To sum it all, the hyperparameters of our reconstruction scheme are:

1. Reconstruction learning rate
2. σx, the initial scale of xi initialization

16

3. α, of the derivative of the modified ReLU

4. λmin

To find the set of hyperparamerers we used Weights&Biases [Biewald, 2020] using a random grid
search where the parameters are sampled from the following distributions:

• Learning rate, log-uniform in [10−5, 1]

• σx, log-uniform in [10−6, 1]

• ReLU derivative α, uniform in [10, 500]

• λmin, log-uniform in [10−4, 1]

When searching for hyperparameters for the model inversion results in Subsection 5.4 we use the
following:

• Learning rate, log-uniform in [10−6, 1]

• σx, log-uniform in [10−7, 1]

B.3 Post-Processing of Reconstructed Samples

After the reconstruction run ends we want to match the reconstructed samples to samples from the
training set. This is done in the following manner:

1. Scaling. Each reconstructed sample is stretched to fit into the range [0, 1] (by linear
transformation of its minimal/maximal values).

2. Searching Nearest Neighbours. For each training sample from the training set we compute
the distance to all reconstructed outputs using NCC [Lewis, 1995].

3. Voting. For each training sample we compute the mean of all the closest nearest neighbours
(all reconstructed samples with NCC score largest than 0.9 of the distance to the closest
nearest neighbour). Now we have pairs of trainig-sample and its reconstruction.

4. Sorting. For each pair we compute its SSIM [Wang et al., 2004], and sort the results by
descending order.

C Supplementary Results

C.1 Results for Models in Figure 4

In this subsection we provide more details and experiments on each model presented in Figure 4. In
Table 1 we show the train loss, test error and test loss of each model from Figure 4. All the models
achieved a train accuracy of 100%. We note that adding more training samples improves the test
accuracy, while adding more layers keeps the test accuracy approximately the same. In Figures 6-11
we show the best 45 extracted images (sorted by SSIM score) for the models presented in Figure 4.
The reconstructions for the 50 and 500 samples with a d-1000-1000-1 architecture is presented in
Figure 1 and Figure 3 (top) respectively.

C.2 All Comparisons for Subsection 5.4

In this subsection we provide more detailed results on the comparison to other methods as presented
in Subsection 5.4. In Figure 12 and Figure 13 we provide more results from the model inversion
attack on models trained on CIFAR10 and MNIST respectively. These are the same models from
Figure 5 (a). In this attack, we either minimize or maximize the model’s output w.r.t. a randomly
initialized input. In this experiment, half of the initializations were maximized and the other half
is minimized. The images are ordered by output of the model, in an increasing order. The results
indicate that the model inversion attack mostly converge to similar reconstructions, even with many
different initializations and different hyperparameters. Also, these reconstruction are mostly blurry,
and probably represent the averages of each class.

17

Figure 6: Architecture: d-1000-1000-1, Samples: 100
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.

Figure 7: Architecture: d-1000-1000-1, Samples: 1000
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.

Figure 8: Architecture: d-100-100-1, Samples: 500
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.

18

Figure 9: Architecture: d-1000-500-100-1, Samples: 500
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.

Figure 10: Architecture: d-1000-500-100-50-1, Samples: 500
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.

Figure 11: Architecture: d-1000-1000-1 (non-homogeneous), Samples: 500
Odd rows (1,3,5) are reconstructions, even rows (2,4,6) are the original data.

19

Architecture Training Set Size (n) Train Loss Test Accuracy Test Loss

1000-1000 50 1.5 · 10−6 72% 2.14
1000-1000 100 2.0 · 10−6 74% 2.41
1000-1000 500 4.0 · 10−6 78% 2.09
1000-1000 1000 5.5 · 10−6 79% 1.96
100-100 500 3.0 · 10−7 77% 2.72
1000-500-100 500 1.2 · 10−7 78% 3.14
1000-500-100-50 500 8.4 · 10−7 77% 2.57
1000-1000
(Non-Homogeneous) 500 4.3 · 10−6 77% 2.12

Table 1: Train/Test loss and Test Error for models shown in Figure 4

In Figure 14 and Figure 15 we show all the weights, as images, of the first fully-connected layer of
models trained on CIFAR10 and MNIST respectively. These are the same models as in Figure 3,
i.e., there are 1000 weights. Some weights are indicative of several input samples, e.g., a plane from
CIFAR10 and the digits 8 and 5 from MNIST. We note that our reconstruction scheme is able to
reconstruct much more samples, and in better quality than is represented in these weights.

C.3 Stretching the Theoretical Limitations

In this section we show results from several experiments which go beyond the theoretical limitations
of Theorem 3.1.

Experiment Training Set Size (n) Train Loss Test Accuracy Test Loss

Standard Initialization 10 8.3 · 10−7 71% 1.68
Standard Initialization 50 1.5 · 10−6 74% 1.72
SGD 500 4.0 · 10−6 77% 2.21
10k Epochs (CIFAR10) 500 0.0039 77% 1.22
10k Epochs (MNIST) 500 0.014 87% 0.55

Table 2: Train/Test loss and Test Error for models shown in Figure 16

C.3.1 Standard Initialization Scale

In this subsection we consider networks trained with standard initialization scales. We recall that
in the experiments presented in Section 5 the first fully-connected layer is initialized to a Gaussian
distribution with mean 0 and standard deviation 10−4, while the other layers are initialized by standard
Kaiming initialization [He et al., 2015]. In Figure 17 and Figure 18 we show reconstructions of a
model trained on CIFAR10 on 10 and 50 samples respectively, where the all the layers of the model
are initialized by standard Kaiming initialization. The architecture of the model is d-1000-1000-1.
We note that although the quality of the reconstructions is lower than when initializing the first layer
with a small scale, there is still a strong signal that some of reconstructions correlate with training
samples. It is an interesting future direction to improve the reconstruction quality for models with
standard initialization.

In Figure 16 (a,b) we plot the SSIM score of each training sample against the output of the model.
Note that indeed in these experiments the best SSIM score is lower than from other experiments
presented in Figure 4. This corresponds to the lower quality of reconstructions when using standard
initialization.

C.3.2 Less Epochs

In the experiments from Section 5 we trained each model for 106 epochs. The reason for this long
training time is that Theorem 3.1 gives guarantees only when converging to KKT point. Such a
convergence happens only after training until infinity, and longer training time may converge closer
to the KKT point. In this section we provide reconstruction results for models trained for only 104

epochs. Figure 19 and Figure 20 show reconstructions for models trained on 500 samples from

20

Figure 12: Model inversion attack on a model trained on CIFAR10, with 500 samples. We re-
constructed a total of 40, 000 images using different initializations and hyperparameters. We
sorted the results according to the model’s output, and selected 500 representative with index
i = 0, 80, 160, ..., 40000.

21

Figure 13: Model inversion attack on a model trained on MNIST, with 500 samples. We reconstructed
a total of 40, 000 images using different initializations and hyperparameters. We sorted the results
according to the model’s output, and selected 500 representative with index i = 0, 80, 160, ..., 40000.

22

Figure 14: All the 1000 weights, shown as images, of the first fully-connected layer of a model
trained on 500 samples on CIFAR10.

23

Figure 15: All the 1000 weights, shown as images, of the first fully-connected layer of a model
trained on 500 samples on MNIST.

24

20 10 0 10 20
(a)

0.00
0.25
0.50
0.75
1.00

SS
IM

Standard Init.
(n = 10)

20 0 20
(b)

0.00
0.25
0.50
0.75
1.00

Standard Init.
(n = 50)

40 20 0 20 40
(c)

0.00
0.25
0.50
0.75
1.00

SGD

20 0 20
(d)

0.00
0.25
0.50
0.75
1.00

10k Epochs
(CIFAR10)

20 0 20
(e)

10

15

20

PS
NR

10k epochs
(MNIST)

Classifier Output A

A

Figure 16: Each point represents a training sample. The y-axis is the highest SSIM score achieved by
a reconstruction of this sample, the x-axis is the output of the model. From left to right: (a,b) models
trained with standard Kaiming initialization in all layers on 10 and 50 CIFAR samples. (c) A model
trained using SGD with a batch size of 50. (d,e) Models trained for 104 epochs on 500 samples from
CIFAR and MNIST respectively.

Figure 17: Reconstructions from a model trained on 10 CIFAR10 images with labels animals vs.
vehicles. In the first row are the reconstructions, and in the second row are their corresponding nearest
neighbor from the dataset (sorted by SSIM score).

Figure 18: Top 10 reconstructions from a model trained on 50 CIFAR10 images with labels animals
vs. vehicles. Top row shows reconstructions, and bottom row shows their corresponding nearest
neighbor.

CIFAR10 and MNIST datasets respectively, with an architecture of d-1000-1000-1. It is clear that
the quality of the reconstruction is very similar to when training for more epochs, this may indicate
that even after significantly less training epochs the model converge sufficiently close to a KKT point.

In Figure 16 (d,e) we plot the SSIM score of each training sample against the output of the model.
We note that we are able to reconstruct samples which appear approximately on the margin for both
MNIST and CIFAR. In addition, the model for MNIST did not achieve 0 train error, and the margin
is still very small. With that said, we are still able to reconstruct a large portion of the data with high
quality. This goes beyond our theoretical limitations which have guarantees only for models which
successfully label the entire training set.

C.3.3 Mini-batch SGD

In the experiments from Section 5 we trained the models using full-batch gradient descent. This was
done to align with the theoretical guarantees of Theorem 3.1, which assume training with gradient
flow. In Figure 21 we show reconstructions from a model trained with mini-batch SGD, using a
batch size of 50. The model is trained on 500 images from CIFAR10, and with an architecture of
d-1000-1000-1.

In Figure 16 (c) we plot the SSIM score of each training sample against the output of the model. This
plot shows that we indeed reconstruct samples that lie on the margin.

25

Figure 19: Reconstructions from a model trained for 104 epochs on CIFAR10 with labels animals vs.
vehicles. Odd rows (1,3,5) are reconstruction, and even rows (2,4,6) are their nearest neighbor from
the training samples.

Figure 20: Reconstructions from a model trained for 104 epochs on MNIST with labels odd vs. even.
Odd rows (1,3,5) are reconstruction, and even rows (2,4,6) are their nearest neighbor from the training
samples.

Figure 21: Reconstructions from a model trained using SGD with a batch size of 50. The model
trained on 500 images from CIFAR10 with labels animals vs. vehicles. Odd rows (1,3,5) are
reconstructions and even rows (2,4,6) are their nearest neighbor from the training dataset.

26

	 Appendix
	More Details on Privacy Attacks in Deep Learning
	Implementation Details
	Hardware, Software and Running Time
	Hyperparameters
	Post-Processing of Reconstructed Samples

	Supplementary Results
	Results for Models in Figure 4
	All Comparisons for Subsection 5.4
	Stretching the Theoretical Limitations
	Standard Initialization Scale
	Less Epochs
	Mini-batch SGD

