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1 Full Algorithm of BMU-MoCo

We provide the pseudocode of our BMU-MoCo in Algorithm 1.

Algorithm 1 Pseudocode of BMU-MoCo.
Input: Video encoder fθV (with parameters θV );

Text encoder fθT (with parameters θT );
A dataset D = [D1,D2, · · · ,Dn] of n video-text tasks;
The hyper-parameters m, m̂, τ .

Output: The learned f∗
θV

and f∗
θT

1: Initialize the local momentum encoders fθV,m = fθV , fθT,m = fθT ;
2: Initialize the global momentum encoders fθ̃V,m

= fθV , fθ̃T,m
= fθT ;

3: Randomly initialize queues QV , QT , Q̃V , Q̃T ;
4: for all task = 1, 2, · · · , n do
5: for all iteration = 1, 2, · · · , MaxIteration do
6: Sample a mini-batch with NB video-text pairs {Vi, Ti}NB

i=1 from Dt;
7: Obtain the query embeddings qVi , qTi with Eq. (7);
8: Obtain the local key embeddings kV

i , kT
i with Eq. (9);

9: Obtain the global key embeddings k̃V
i , k̃T

i with Eq. (15);
10: Compute the final loss Lfinal with Eqs. (16)-(18);
11: Compute the gradients ∇fθV

Lfinal and ∇fθT
Lfinal with Eq. (18);

12: Update fθV and fθT using Adam;
13: Update fθV and fθT with Eq. (12) and Eq. (13);
14: Update fθV,m and fθT,m with Eq. (8);
15: Update fθ̃V,m

and fθ̃T,m
with Eq. (14);

16: Enqueue kV
i , kT

i to QV , QT ,;
17: Enqueue k̃V

i , k̃T
i to Q̃V , Q̃T ;

18: Dequeue the earliest embeddings from QV , QT , Q̃V , Q̃T ;
19: end for
20: Re-initialize the local momentum encoders fθV,m = fθV , fθT,m = fθT ;
21: end for
22: return the found best f∗

θV
and f∗

θT
.

∗The corresponding author.
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Figure 1: Detailed comparative results for text-to-video retrieval (R@1) obtained by each model Mi

(per method) on all five tasks.

Table 1: Comparative results obtained by the final model Mn on five video-text datasets/tasks under
our CVLM setting. † denotes applying extra encoders. ‘Mem.’ denotes applying memory buffer
during training. ‘BMU-MoCo (local)’ denotes BMU-MoCo without global momentum encoders.
The R@5 results and its corresponding FR/HM are reported.

Task1 Task2 Task3 Task4 Task5 Overall
Method Mem. R@5↑ FR↓ R@5↑ FR↓ R@5↑ FR↓ R@5↑ FR↓ R@5↑ R@5↑ FR↓ HM↑
Base-MoCo [9] No 70.93 14.72 44.62 21.42 56.50 5.70 55.73 9.57 70.36 59.63 51.41 64.36
LwF† [8] No 74.23 11.42 46.98 18.65 55.10 4.90 56.83 8.17 71.01 60.83 43.14 64.86
ER-ring [3] Yes 75.13 10.52 48.77 16.37 56.00 5.50 59.72 4.79 68.79 61.68 37.18 65.19
DER [1] Yes 72.01 13.64 47.53 17.59 57.10 4.20 59.52 3.99 70.12 61.26 39.42 64.96
Co2L† [2] Yes 73.33 12.32 47.90 17.87 55.90 3.60 58.13 6.58 69.72 60.99 40.47 64.77
LUMP† [10] Yes 73.39 12.26 46.96 18.28 56.70 5.30 60.92 3.59 69.96 61.59 39.43 65.29

BMU-MoCo (local) No 79.83 5.82 52.31 13.36 56.70 2.60 59.92 4.99 72.49 64.25 26.77 66.82
BMU-MoCo† No 81.39 4.26 52.21 12.54 56.70 2.20 61.02 4.18 72.17 64.69 23.18 66.93

2 More Comparative Results

Detailed R@1 Results. In our main paper, we present the detailed results of the first two tasks
(VATEX [11] and ActivityNet [7]) in Figure 3 for simplicity. Here, we further provide the detailed
comparative results of other tasks (MSR-VTT [12], DiDeMo [6], and MSVD [4]) in Figure 1.
Concretely, for each sub-figure (with task index t), we present the results of Mt ∼ M5 on task t,
i.e., Ai

t (t ≤ i ≤ 5). We observe that our BMU-MoCo outperforms its competitors on all tasks and
leads to the slowest performance degradation. Moreover, our BMU-MoCo simultaneously ensures
that the model achieves competitive performance on current tasks (the beginning of each line).

R@5 and R@10 Results. For comprehensive study, we evaluate our BMU-MoCo and its competi-
tors with the widely-used metrics Recall@5 (R@5) and Recall@10 (R@10) in Table 1 and Table 2,
respectively. Results for the forgetting rate (FR) and harmonic mean (HM) are also re-calculated
based on R@5 or R@10. We can see that our BMU-MoCo outperforms all competitors by a large
margin, especially on the overall metrics (R@5/R@10, FR, and HM).

Visualization of Training Loss. To show that our re-implemented infoNCE loss (i.e., Eq. (16) of
our main paper) is stable, we respectively draw two training loss plots on ActivityNet and MSR-VTT
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Table 2: Comparative results obtained by the final model Mn on five video-text datasets/tasks under
our CVLM setting. † denotes applying extra encoders. ‘Mem.’ denotes applying memory buffer
during training. ‘BMU-MoCo (local)’ denotes BMU-MoCo without global momentum encoders.
The R@10 results and its corresponding FR/HM are reported.

Task1 Task2 Task3 Task4 Task5 Overall
Method Mem. R@10↑ FR↓ R@10↑ FR↓ R@10↑ FR↓ R@10↑ FR↓ R@10↑ R@10↑ FR↓ HM↑
Base-MoCo [9] No 81.33 10.92 59.14 20.34 65.70 6.90 66.30 8.18 80.14 70.52 46.34 74.87
LwF† [8] No 84.10 8.15 61.38 17.48 65.40 5.80 65.80 9.27 80.20 71.38 40.65 75.32
ER-ring [3] Yes 84.43 8.09 63.43 15.03 66.30 4.20 70.59 3.59 79.11 72.77 30.91 75.73
DER [1] Yes 81.76 10.49 61.62 16.80 67.80 3.20 70.79 3.79 79.62 72.32 34.28 75.59
Co2L† [2] Yes 82.97 9.28 61.48 17.53 66.40 3.60 68.59 6.98 79.82 71.85 37.39 75.40
LUMP† [10] Yes 82.99 9.26 60.89 17.80 67.20 2.30 70.49 4.78 79.23 72.16 34.14 75.42

BMU-MoCo (local) No 88.24 4.01 66.79 11.94 69.00 1.20 69.79 5.09 81.99 75.16 22.24 77.32
BMU-MoCo† No 89.36 2.89 66.79 11.16 67.50 1.80 71.88 3.19 82.09 75.52 19.04 77.37

ActivityNet MSR-VTT

Figure 2: The change of training loss on ActivityNet and MSR-VTT.

in Figure 2. We can see that the losses tend to converge after 3,000 training iterations. Therefore, our
re-implemented infoNCE loss is indeed effective and stable.

3 Implementation Details of Baseline Methods

In Table 1 of our main paper, we compare our BMU-MoCo with many recent continual learning
methods under our proposed CVLM setting. Since all the competitors are originally proposed for other
continual learning settings (e.g., unsupervised continual learning for image classification), we thus
re-implement them to adapt to our proposed CVLM setting. Below we present the implementation
details for each baseline method:

(1) LwF [8] is a regularization-based method which aligns the representations of old and current
models as new data arrives. Under the CVLM setting, based on Base-MoCo, we additionally maintain
a pair of video and text encoders whose parameters are copied from previous encoders. For each
iteration, we align both video and text representations of old and current models.

(2) ER-ring [3] is a rehearsal-based method which has a ring-buffer to save the memory data.
Following its continual learning strategy, we maintain a ring-buffer (with 10K capacity in total) to
save the video-text pairs. The memory data are simply used as training samples in the training process.
The model architecture is exactly the same as Base-MoCo.

(3) DER [1] is a rehearsal- and regularization-based method which aligns the logits of old and current
models on the memory data. Note that the ring-buffer maintained for DER actaully saves the retrieval
logits obtained from the training process, instead of the original video-text pairs.

(4) Co2L [2] is also a rehearsal- and regularization-based method which saves the memory data
and aligns the logits of old and current models on the new/old data. Different from DER, the logits
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used in Co2L are obtained by different augmentations. Therefore, for each mini-batch, we take two
augmentations to construct the alignment loss defined in Co2L.

(5) LUMP [10] is a rehearsal-based method which mixes up the memory data and the current data
during training. Note that LUMP is originally based on SimSiam [5]. Under the CVLM setting, we
transfer LUMP to cross-modal MoCo by taking the mixed data as positive samples while pushing
them into negative queues after loss calculation.
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