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Abstract

Video-language models suffer from forgetting old/learned knowledge when trained
with streaming data. In this work, we thus propose a continual video-language mod-
eling (CVLM) setting, where models are supposed to be sequentially trained on five
widely-used video-text datasets with different data distributions. Although most of
existing continual learning methods have achieved great success by exploiting extra
information (e.g., memory data of past tasks) or dynamically extended networks,
they cause enormous resource consumption when transferred to our CVLM setting.
To overcome the challenges (i.e., catastrophic forgetting and heavy resource con-
sumption) in CVLM, we propose a novel cross-modal MoCo-based model with
bidirectional momentum update (BMU), termed BMU-MoCo. Concretely, our
BMU-MoCo has two core designs: (1) Different from the conventional MoCo, we
apply the momentum update to not only momentum encoders but also encoders
(i.e., bidirectional) at each training step, which enables the model to review the
learned knowledge retained in the momentum encoders. (2) To further enhance
our BMU-MoCo by utilizing earlier knowledge, we additionally maintain a pair of
global momentum encoders (only initialized at the very beginning) with the same
BMU strategy. Extensive results show that our BMU-MoCo remarkably outper-
forms recent competitors w.r.t. video-text retrieval performance and forgetting rate,
even without using any extra data or dynamic networks.

1 Introduction

Existing video-language modeling (VLM) methods have achieved promising performance for video-
text retrieval [59, 39, 61, 30, 24, 53, 28, 4] with non-streaming data. However, in real-world
application scenarios, VLM models need to evolve with streaming data (e.g., collected from the
Internet [39, 42]) to accommodate more tasks. Under this setting, since it costs too much resource to
retrain the model with both old and new data for each task, a common practice is to fine-tune VLM
models with only the newly-arrived data. Note that such model fine-tuning leads to severe performance
degradation on previous tasks. This is a well-documented phenomenon called catastrophic forgetting
[18, 38] under the conventional continual learning setting [48, 45, 34, 16, 23, 60].

Therefore, in this work, we propose a continual video-language modeling (CVLM) setting to better
simulate the realistic scenario. Under our CVLM setting, models are supposed to be sequentially
trained on five widely-used video-text datasets: VATEX [54], ActivityNet [25], MSR-VTT [55],
DiDeMo [20], and MSVD [10]. An evaluation protocol is also established for CVLM, which contains
three metrics to respectively measure the text-to-video retrieval performance (Recall@1, shortened as
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Figure 1: Illustration of the catastrophic forgetting problem in CVLM and the core design for our
BMU-MoCo. (a) The catastrophic forgetting problem in CVLM. We train a basic cross-modal
MoCo model on five tasks and present the comparative results of the final model and current models
on learned tasks (Task 1–4). Note that there is no catastrophic forgetting on Task 5 and thus this task
is omitted here. (b) The core design of BMU-MoCo. Different from the conventional MoCo, we
update not only momentum encoders but also encoders through the bidirectional momentum update
(BMU) strategy without extra memory or dynamic network across all tasks.

R@1), forgetting rate (FR), and harmonic mean (HM) performance (see more details of the evaluation
protocol in Sec. 4.1). Moreover, we implement a basic cross-modal MoCo [19] model (Base-MoCo)
as our baseline method since it has shown superior performance on video-language modeling [33, 35].
As illustrated in Figure 1(a), we can observe that in spite of achieving great R@1 results with current
models (evaluated right after trained on each task), the performance of the final Base-MoCo model
(trained across all five tasks) drops significantly (i.e., catastrophic forgetting).

To tackle the catastrophic forgetting problem, most recent continual learning works attempt to
preserve the learned knowledge from a variety of perspectives: (1) Maintaining a memory buffer to
save and exploit data from previous tasks [46, 5, 34, 3, 8, 45]; (2) Generating pseudo data of learned
tasks [51, 27, 43, 57]; (3) Extending the network architecture dynamically as each new task arrives
[48, 16, 1, 7, 31]. However, when these methods are transferred to our CVLM setting, the resource
consumption is enlarged rapidly as the number of tasks grows, due to the characteristic of video data.
In addition, another branch of continual learning works focus on imposing a regularization constraint
with quadratic penalty [23, 60, 14, 49] or knowledge distillation [32, 2, 21, 44, 22], which leads to
an unwanted trade-off on the performance of old and new tasks with limited neural resources [40].
Therefore, it is a long-standing and arduous challenge to train a video-language modeling network
under the CVLM setting with both effectiveness and efficiency taken into consideration.

To overcome this challenge under the CVLM setting, we devise BMU-MoCo, a cross-modal MoCo-
based model with a novel bidirectional momentum update (BMU) strategy. As shown in Figure 1(b),
our BMU-MoCo needs neither extra memory data nor dynamically extended neural networks, which
is quite different from previous continual learning methods. Concretely, similar to cross-modal MoCo
applied in [33, 35], our proposed BMU-MoCo has a video encoder (i.e., ViT-Base [13]) and a text
encoder (i.e., BERT-Base [12]), followed by the momentum video/text encoders. Different from
the original MoCo [19] and its cross-modal versions [15, 33, 35] that utilize momentum update
for only momentum encoders to maintain a large consistent queue, our BMU strategy imposes
momentum update on both momentum encoders and (video/text) encoders. As a result, at each
training step, the encoders of our BMU-MoCo learn the new knowledge by end-to-end update with
back-propagation whilst reviewing the old knowledge directly from the parameters of momentum
encoders by momentum update. In our opinion, our BMU-MoCo outperforms existing methods for
two main reasons: (1) Momentum encoders are initialized by current encoders at the beginning of
each new task and then progress slowly, which helps our model preserve adequate old knowledge
without sacrificing the performance on new tasks; (2) Since there is no category information under
the CVLM setting, learning from memory data or distilling with a batch of new data only absorbs
part of previous knowledge while our BMU-MoCo learns holistic old knowledge directly from the
parameters of momentum encoders. To further enhance our proposed BMU-MoCo, we also maintain
a pair of global (cross-task) momentum encoders with the same BMU strategy, which are only
initialized at the very beginning of the whole training process and thus preserve earlier knowledge
than the normal local (task-specific) momentum encoders.
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The main contributions of this paper are four-fold: (1) We propose a new continual video-language
modeling (CVLM) setting, where models are supposed to be sequentially trained on five widely-used
video-text datasets. (2) To effectively and efficiently overcome the catastrophic forgetting problem
under the CVLM setting, we devise BMU-MoCo, a cross-modal MoCo-based model with a novel
bidirectional momentum update (BMU) strategy. For the first time, our BMU strategy can review
holistic old knowledge directly from the parameters of momentum encoders while learning on new
tasks, without extra memory or dynamic network across all tasks. (3) To bring further improvements
to our proposed BMU-MoCo, a pair of global momentum encoders are maintained by the same
BMU strategy to preserve and review earlier knowledge under the CVLM setting. (4) Extensive
experimental results demonstrate that our BMU-MoCo outperforms recent continual learning methods
by large margins w.r.t. both text-to-video retrieval performance and forgetting rate, even without any
extra memory data or dynamically extended networks.

2 Related Work

Video-Language Modeling. Most existing methods for video-language modeling follow two
paradigms: (1) Single-stream methods [36, 61, 52, 29, 28, 56] typically include a multi-modal trans-
former to achieve fine-grained cross-modal interaction between the video and language modalities.
Although achieving great performance, they suffer from the huge time complexity caused by the pair-
wise inputs during inference, which makes them unsuitable for practical applications. (2) Two-stream
methods [17, 41, 4, 33, 35] learn video and text representations independently, and align them after
encoding. To ensure the inference efficiency, both the baseline method (i.e., Base-MoCo) and our
BMU-MoCo for CVLM are set to be two-stream methods. Importantly, different from Base-MoCo,
our BMU-MoCo has a novel BMU strategy to address the catastrophic forgetting problem and two
extra global momentum encoders to further boost the model performance.

Continual Learning. Conventional continual learning methods mainly focus on image classification
tasks. They can be roughly categorized into three groups: (1) Rehearsal-based methods apply extra
memory to store sampled data [45, 34, 46, 9, 5, 3, 8, 6] or generate pseudo data [51, 27, 43, 57]
from previous tasks. The memory size and the training complexity tend to be enlarged significantly
as the number of tasks grows. (2) Expansion-based methods either add extra extended networks
for new tasks [48, 16, 1, 7, 31] or select partial model parameters to update for different tasks
[58, 47, 50]. They need more computational resources especially for a long sequence of training tasks
(e.g., under our CVLM setting). (3) Regularization-based methods modify the model parameters
with quadratic loss penalty [23, 60, 14, 49] or knowledge distillation constraints [32, 2, 21, 44, 22].
Although succeeded in image classification tasks, they still face a large challenge in balancing the
model performance between old and new tasks when applied to our CVLM setting. Although our
BMU-MoCo can be classified as a regularization-based method, it has a vital difference from existing
regularization-based methods: benefiting from the bidirectional momentum updating process, our
BMU-MoCo can directly utilize the holistic previous knowledge from the parameters of momentum
encoders for model training (i.e., updating the encoders), and simultaneously update the momentum
encoders at each training step to accommodate new tasks.

3 Methodology

3.1 Preliminary

We propose a new continual video-language modeling (CVLM) setting, where models are supposed to
be sequentially trained on n video-text datasets D = [D1,D2, · · · ,Dn]. For each task t, it contains a
dataset Dt = {Vi, Ti}Nt−1

i=0 with Nt video-text pairs, where Vi denotes a video with Si frames and Ti

represents an English text description. The target of CVLM is to learn a video encoder fθV and a text
encoder fθT , which can respectively project the input video and its related text description into a joint
embedding space with nearest metric distance. Different from the classical VLM setting which only
considers the model performance on the current dataset Dt, our CVLM setting requires the models to
prevent the catastrophic forgetting on the previously-used datasets [D1,D2, · · · ,Dt−1] (t > 1) while
also performing well on the current dataset Dt. Note that our proposed BMU-MoCo for CVLM is a
memory-free method which only utilizes the current dataset Dt for each task t (without the need of
reloading the other datasets). Therefore, without particular statement, we only consider task t with
Dt in the following subsections for formulation simplicity.
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3.2 Network Architecture

Video Encoder. We follow the most recent video-language modeling works [28, 56, 33, 35] to
learn video representation by fusing the image embeddings of sampled frames per video. Concretely,
given each video Vi with Si frames, we randomly sample s frames (s < Si) and embed them with an
image encoder fimg (i.e., ViT-Base [13]) to obtain the frame embeddings:

F i,j
img = fimg(x

j
i ), j = 1, 2, · · · , s, (1)

where xj
i denotes the j-th sampled frames of video Vi and F i,j

img denotes its image embedding encoded
by fimg . Then we project F i,j

img by a Linear layer fproj :

F i,j
proj = fproj(F

i,j
img), j = 1, 2, · · · , s, (2)

where F i,j
proj ∈ Rd denotes the projected d-dimensional image embedding of F i,j

img . Following COTS
[35] and HiT [33], we obtain the final video embedding of Vi by adopting a fusing layer favg to
aggregate the image embeddings {F i,j

img}:

F i
V = favg(F

i,1
proj , F

i,2
proj , · · · , F

i,j
proj), (3)

where favg denotes an Average Pooling layer and F i
V ∈ Rd is the video embedding of Vi. In summary,

our video encoder fθV encodes the video inputs by adopting fimg , fproj and favg in Eqs. (1)–(3).

Text Encoder. For the language modality, we adopt BERT-Base [12] as our backbone to encode
each input text Ti. In detail, we first tokenize Ti into a sequence of text tokens [l1i , l

2
i , · · · , l

ri
i ], where

ri denotes the length of Ti. Then we obtain the text token embeddings through the backbone fbert:

F i
bert = fbert(l

1
i , l

2
i , · · · , l

ri
i ), (4)

where F i
bert denotes the token embeddings of Ti obtained by fbert. We then project them by a Linear

layer f̂proj into the d-dimensional space as:

F̂ i
proj = [F̂ i

proj [1], F̂
i
proj [2], ..., F̂

i
proj [ri]]

= f̂proj(F
i
bert[1], F

i
bert[2], · · · , F i

bert[ri]), (5)

where F i
bert[j] denotes the j-th element of F i

bert, and F̂ i
proj [j] ∈ Rd represents the projected text

embedding of token j in Ti (which has the same dimension d as video embedding F i
V ). To obtain the

final text embedding of Ti, we apply an Average Pooling layer favg:

F i
T = favg(F̂

i
proj [1], F̂

i
proj [2], · · · , F̂ i

proj [ri]), (6)

where F i
T ∈ Rd denotes the text embedding of Ti. In summary, our text encoder fθT encodes the text

inputs by adopting fbert, f̂proj , and favg in Eqs. (4)-(6).

3.3 BMU-MoCo

Cross-Modal MoCo. Similar to the original single-modal MoCo [19], recent state-of-the-art video-
language modeling works COTS [35] and HiT [33] construct a cross-modal MoCo architecture to
maintain video/text momentum encoders by the same momentum update mechanism, which creates
consistent queues for cross-modal contrastive learning objectives. As illustrated in Figure 2, our
BMU-MoCo follows this paradigm and further transfers it to our CVLM setting. Concretely, for a
mini-batch of NB video-text pairs B = {Vi, Ti}NB

i=1, we first obtain the query embeddings qVi , qTi of
Vi, Ti by video encoder fθV and text encoder fθT :

qVi = fθV (Vi), qTi = fθT (Ti). (7)

Then we maintain two momentum encoders fθV,m
, fθT,m

(termed local momentum video/text en-
coders in Figure 2) for both video and text modalities, whose parameters θV,m, θT,m are initialized
by θV , θT at the beginning of each task t. During the training process, θV,m, θT,m are continuously
updated by θV , θT with the momentum update strategy:

θV,m = m · θV,m + (1−m) · θV , θT,m = m · θT,m + (1−m) · θT , (8)
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Figure 2: Schematic illustration of our BMU-MoCo. The momentum update strategy is applied to
both encoders and momentum encoders (i.e., bidirectional). To exploit earlier knowledge, we further
maintain a pair of global momentum encoders with the same BMU strategy, whose parameters are
inherited across tasks and only initialized at the very beginning.

where m is the coefficient of momentum update. To form the contrastive learning loss of cross-modal
MoCo, we need two consistent queues to preserve the negative video/text samples. In detail, the key
embeddings kVi , kTi of Vi, Ti are firstly acquired by momentum video and text encoders:

kVi = fθV,m
(Vi), kTi = fθT,m

(Ti). (9)

We then respectively push kVi and kTi into the negative video queue QV and the negative text queue
QT (after computing loss), where QV = {kV1 , kV2 , kV3 , · · · kVNQ

} and QT = {kT1 , kT2 , kT3 , · · · , kTNQ
}

(NQ is the queue size). The contrastive losses of cross-modal MoCo (Base-MoCo) are:

L̂V 2T = − 1

NB

NB∑
i=1

log
exp (

qVi ·kT
i

τ )

exp (
qVi ·kT

i

τ ) +
∑NQ

j=1 exp (
qVi ·kT

j

τ )
, (10)

L̂T2V = − 1

NB

NB∑
i=1

log
exp (

qTi ·kV
i

τ )

exp (
qTi ·kV

i

τ ) +
∑NQ

j=1 exp (
qTi ·kV

j

τ )
, (11)

where τ is the temperature. Note that the queue size NQ is decoupled from the batch size NB .
Therefore, it can take a large value for better representation of the data distribution.

Bidirectional Momentum Update. Although achieving great success with non-streaming data
(e.g., a single video-text dataset), the original cross-modal MoCo has difficulty in coping with the
catastrophic forgetting problem under our CVLM setting. To overcome this difficulty, we propose
a novel bidirectional momentum update (BMU) strategy for cross-modal MoCo to review the old
knowledge retained in momentum encoders at each training step. Concretely, for video/text encoders
fθV ,fθT , in addition to the end-to-end update by back-propagation, we further update their parameters
θV , θT using the parameters θV,m, θT,m of momentum encoders fθV,m

, fθT,m
by momentum update:

θV = m̂ · θV + (1− m̂) · θV,m, θT = m̂ · θT + (1− m̂) · θT,m, (12)

where m̂ is a momentum coefficient, and θV,m, θT,m are simultaneously updated by Eq. (8). Together,
Eq. (8) and Eq. (12) compose our BMU strategy. Note that the advantages of BMU lie in two aspects:
(1) At the beginning of each new task t, θV,m and θT,m are respectively initialized by θV and θT ,
which makes the knowledge of task t− 1 be preserved. (2) During the training process, θV,m and
θT,m are constantly and slowly updated by the momentum update strategy, which enables our model
to review the old knowledge but without sacrificing the performance on new tasks.

Global Momentum Encoders. To further enhance our BMU-MoCo, we propose to maintain a
pair of global momentum encoders which can preserve earlier knowledge. As shown in Figure 2,
they are only initialized at the very beginning of the whole training process under our CVLM setting,
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and their parameters are transmitted across tasks. Formally, let fθ̃V,m
and fθ̃T,m

denote the global

momentum video and text encoders, respectively. Their parameters θ̃V,m and θ̃T,m are updated by
the BMU strategy along with the parameters θV and θT of encoders:

θV = m̂ · θV + (1− m̂) · θ̃V,m, θT = m̂ · θT + (1− m̂) · θ̃T,m, (13)

θ̃V,m = m · θ̃V,m + (1−m) · θV , θ̃T,m = m · θ̃T,m + (1−m) · θT . (14)

Note that Eq. (12) and Eq. (13) are implemented subsequently. For each video-text input {Vi, Ti},
we obtain a new group of key embeddings k̃Vi , k̃Ti with the global momentum encoders fθ̃V,m

, fθ̃T,m
:

k̃Vi = fθ̃V,m
(Vi), k̃Ti = fθ̃T,m

(Ti). (15)

We push k̃Vi and k̃Ti respectively into two negative queues Q̃V and Q̃T , where Q̃V =

{k̃V1 , k̃V2 , k̃V3 , · · · , k̃VNQ
}, Q̃T = {k̃T1 , k̃T2 , k̃T3 , · · · , k̃TNQ

}. Note that each query embedding (e.g.,
qTi ) has two corresponding positive embeddings (kVi , k̃Vi ) and two corresponding negative queues
(QV ,Q̃V ). The cross-modal contrastive losses are defined as:

LV 2T = − 1

NB

NB∑
i=1

log
exp (

qVi ·kT
i

τ ) + exp (
qVi ·k̃T

i

τ )

exp (
qVi ·kT

i

τ )+exp (
qVi ·k̃T

i

τ )+
∑NQ

j=1[exp (
qVi ·kT

j

τ ) + exp (
qVi ·k̃T

j

τ )]
, (16)

LT2V = − 1

NB

NB∑
i=1

log
exp (

qTi ·kV
i

τ ) + exp (
qTi ·k̃V

i

τ )

exp (
qTi ·kV

i

τ )+exp (
qTi ·k̃V

i

τ )+
∑NQ

j=1[exp (
qTi ·kV

j

τ ) + exp (
qTi ·k̃V

j

τ )]
, (17)

where τ is the temperature. Now we have the final loss of BMU-MoCo for our CVLM setting:

Lfinal = LV 2T + LT2V . (18)

The full (pseudocode) algorithm of our BMU-MoCo is presented in the supplementary material.

4 Experiments

4.1 Experimental Setup

Datasets. Our CVLM setting is defined over a sequence of five video-text datasets: (1) VATEX [54]
is a large-scale open-domain dataset, which has 25,991 videos with 250K text descriptions for training,
3,000 videos for validation and 6,000 videos for testing. (2) ActivityNet [25] is an action domain
dataset, which consists of 20K YouTube videos with 100K text descriptions. We follow the standard
setting in [4, 28] to use 10K videos for training and 4.9K for test (the val1 split), where all texts of
each video are concatenated into one query paragraph. (3) MSR-VTT [55] contains 10K videos,
with 20 text descriptions per video. We follow the 1k-A split in recent works [28, 4, 56, 33] with
9K training videos and 1K test videos. (4) DiDeMo [20] consists of 10K Flickr videos with 40K
text annotations. Following [4, 28], we train and evaluate our model on paragraph-to-video retrieval
(the same setting for ActivityNet). (5) MSVD [10] has 1,200 videos with 48K texts for training, 100
videos for validation and 670 ones for testing. Overall, there are around 50K videos with 500K text
descriptions in all five datasets (i.e., each dataset has 100K video-text pairs in average).

Evaluation Metrics. Similar to the standard video-language modeling setting, we evaluate the
text-to-video retrieval performance of a model on Recall@1 (shortened as R@1). R@1 refers to the
percentage of text queries that correctly retrieve the ground-truth candidate at top-1. For our CVLM
setting, we further define two evaluation metrics: forgetting rate (FR) and harmonic mean (HM).
Formally, let Mi denote the model after trained on task i and Ai

t (t ≤ i) denotes the R@1 result of
Mi on task t. The overall R@1 ( 1n

∑n
t=1 An

t ) is the average R@1 results of the final model Mn on
all tasks. Based on these notations, we then define the FR and HM as follows:
(1) Forgetting rate (FR) of Mi on task t (t ≤ i) is the performance decrease between Mi and Mt:
FR = At

t −Ai
t, where a lower FR indicates the model forgets less knowledge. Note that there is no

catastrophic forgetting (FR = 0) when t = i. The Overall FR is obtained by just summing the FR
results of the final model Mn across all tasks: Overall FR =

∑n
t=1(At

t −An
t ).
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Table 1: Comparative results obtained by the final model Mn on five video-text datasets/tasks under
our CVLM setting: VATEX [54] (i.e., Task1), ActivityNet [25] (i.e., Task2), MSR-VTT [55] (i.e.,
Task3), DiDeMo [20] (i.e., Task4), MSVD [10] (i.e., Task5). For fair comparison, all baseline models
are re-implemented based on the same cross-modal MoCo architecture for our CVLM setting. †

denotes applying extra encoders, including encoders from the last task (e.g., LwF [32]) and global
momentum encoders (e.g., our BMU-MoCo). ‘Mem.’ denotes applying memory buffer during
training. ‘BMU-MoCo (local)’ denotes BMU-MoCo without global momentum encoders.

Method Mem. Task1 Task2 Task3 Task4 Task5 Overall
R@1↑ FR↓ R@1↑ FR↓ R@1↑ FR↓ R@1↑ FR↓ R@1↑ R@1↑ FR↓ HM↑

Base-MoCo [35] No 38.99 15.30 18.61 15.23 28.00 5.60 28.22 7.27 40.28 30.82 43.40 34.67
LwF† [32] No 42.02 12.27 19.95 14.87 28.90 6.00 29.91 6.98 37.91 32.24 40.12 35.81
ER-ring [9] Yes 41.99 12.30 22.09 11.79 29.80 5.40 30.31 5.08 38.53 32.54 34.57 35.67
DER [5] Yes 40.15 14.14 21.35 12.65 28.80 5.00 30.71 4.09 39.96 32.19 35.88 35.39
Co2L† [6] Yes 41.23 13.06 21.74 13.06 27.50 5.30 30.41 5.38 39.29 31.58 34.48 35.06
LUMP† [37] Yes 40.16 14.13 21.78 12.37 30.50 3.00 29.91 4.99 39.39 32.45 34.49 35.56

BMU-MoCo (local) No 46.82 7.47 23.27 10.84 30.00 3.40 31.21 4.08 41.94 34.65 25.79 37.05
BMU-MoCo† No 48.48 5.81 23.45 10.43 30.80 2.90 32.80 3.49 41.83 35.47 22.63 37.59

(2) Harmonic mean (HM) calculates the harmonic mean of the overall R@1 (current) and the overall
R@1 (final), where the overall R@1 (current) denotes the average of the R@1 values obtained by each
current model Mi (i = 1, 2, · · · , n) on each current task i, and the overall R@1 (final) denotes the

average R@1 for the final model Mn on all tasks. Formally, we have: HM =
2· 1

n

∑n
i=1 Ai

i· 1
n

∑n
i=1 An

i
1
n

∑n
i=1 Ai

i+
1
n

∑n
i=1 An

i

.
Note that HM can alleviate the trade-off problem between overall R@1 (current) and overall R@1
(final), which is otherwise an inherent limitation of FR. Specifically, when a model has a lower
overall R@1 (current) and a lower overall R@1 (final), it could also have a better/lower FR (which is
unsatisfactory) but still lead to a worse/lower HM (see Figure 4(c)).

Implementation Details. Recent works on vision + language demonstrate that video-language
models benefit from image-text pre-training [28, 4], which can accelerate the model convergence
and is more suitable for the real-world application scenarios. We thus apply ViT-Base [13]/BERT-
Base [12] as our image/text encoder, and follow the recent state-of-the-art MoCo-based model
COTS [35] to pre-train our model with 5.3M image-text pairs. We then sequentially train all the
models (BMU-MoCo and all competitors) on five video-text datasets/tasks. For each task, we train
a model for 10 epochs and choose the best trained one w.r.t. the validation R@1 results. For those
competitors using a memory buffer during training (e.g., ER-ring [9]), we set the memory size to
10% of the average data size 100K (i.e., 10K video-text pairs). Note that the percentage 10% is
larger than the buffer size of most recent rehearsal-based continual learning methods [9, 5, 37]. More
implementation details are given as follows: (1) In the training phase, all sampled frames of each
video are resized to 384×384 and augmented by gray-scaling and color-jitter. (2) For the first epoch
of each task under our CVLM setting, we set the learning rate to 5e-5 and decay it to 5e-6 afterwards.
(3) We select the two momentum coefficients m = 0.99, m̂ = 0.99, and the temperature τ = 0.07.
We set the batch size NB to 48 and the queue size NQ to 1,440. (4) The total training time on five
tasks is around 20 hours with 8 Tesla V100 GPUs for each model.

4.2 Main Results

Table 1 summarizes the comparative results in terms of text-to-video retrieval (R@1), forgetting
rate and harmonic mean (HM) obtained by the final model Mn (per method) on five datasets. We
re-implement five recent continual learning methods (fused with cross-modal MoCo) under our
CVLM setting, including rehearsal-based methods (ER-ring [9], DER [5]), regularization-based
methods (LwF [32]) and their combinations (Co2L [6], LUMP [37]). We can observe that: (1)
Our BMU-MoCo outperforms recent methods by large margins without using any extra memory or
dynamically extended networks. Concretely, our method achieves the best R@1 and FR results on all
tasks, and outperforms the second best by 2.93% for overall R@1, 11.85% for overall FR and 1.78%
for overall HM. (2) Without applying global momentum encoders, our BMU-MoCo (local) also beats
all competitors, directly showing the effectiveness of our BMU strategy. (3) The improvements over
Base-MoCO obtained by utilizing knowledge distillation (e.g., LwF [32]) or extra memory data (e.g.,
Co2L [6]) are limited due to the lack of category information under our CVLM setting.
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Figure 3: Detailed comparative results for text-to-video retrieval (R@1) obtained by each model Mi

(per method) on the first two tasks: VATEX and ActivityNet. Note that the gap between the beginning
and the end of each line denotes the forgetting rate.

Table 2: Ablation study results for our BMU-MoCo. ‘Local’ denotes applying the local momentum
encoders, while ‘Global’ denotes applying the global momentum encoders. Results for text-to-video
retrieval (R@1), forgetting rate (FR) and harmonic mean (HM) are reported.

BMU Local Global Task1 Task2 Task3 Task4 Task5 Overall
R@1↑ FR↓ R@1↑ FR↓ R@1↑ FR↓ R@1↑ FR↓ R@1↑ R@1↑ FR↓ HM↑

✓ 38.99 15.30 18.61 15.23 28.00 5.60 28.22 7.27 40.28 30.82 43.40 34.67
✓ 38.95 15.97 18.51 15.45 30.10 4.60 28.91 6.78 39.89 31.47 42.75 35.16

✓ ✓ 41.44 12.85 21.68 13.22 29.40 4.90 29.31 6.08 39.96 32.35 36.95 35.67
✓ ✓ 46.82 7.47 23.27 10.84 30.00 3.40 31.21 4.08 41.94 34.65 25.79 37.05
✓ ✓ 46.35 7.94 23.16 10.99 30.60 3.70 31.41 5.28 41.70 34.64 27.91 37.22
✓ ✓ ✓ 48.48 5.81 23.45 10.43 30.80 2.90 32.80 3.49 41.83 35.47 22.63 37.59

Figure 3 shows more detailed comparative results for text-to-video retrieval (R@1) obtained by each
model Mi (per method) on the first two datasets (VATEX [54] and ActivityNet [25]). We compare
our BMU-MoCo with three representative competitors, including Base-MoCo [19], ER-ring [9], and
Co2L [6]. Concretely, the left sub-figure presents the results of M1 ∼ M5 (per method) on task 1
(VATEX), i.e., Ai

1 (1 ≤ i ≤ 5). The right sub-figure presents the results of M2 ∼ M5 (per method)
on task 2 (ActivityNet), i.e., Ai

2 (2 ≤ i ≤ 5). It can be observed that: (1) For task 1 (VATEX), the
performance of our BMU-MoCo drops the most slowly after it is trained on the following tasks (task
2 to task 5). (2) For task 2 (ActivityNet), our BMU-MoCo also leads to the slowest performance drop
after trained on the following tasks (task 3 to task 5). Overall, our BMU-MoCo indeed significantly
alleviates the performance decrease problem during the whole training process.

4.3 Ablation Study

We first conduct ablation study to demonstrate the contributions of the BMU strategy, the local
momentum encoders and the global momentum encoders applied in our BMU-MoCo. The ablative
results are shown in Table 2. It can be clearly seen that: (1) With our BMU strategy, our model
achieves remarkable improvements (4th row vs. 1st row). (2) Simultaneously applying local and
global encoders is better than using only one of them (3rd row vs. 1st/2nd row), which indicates
that the knowledge preserved in local and global momentum encoders are quite different and thus
complementary to each other. (3) Our BMU strategy helps our model to excavate old knowledge
preserved in different momentum encoders (6th row vs. 3rd row) and achieve the best performance
(6th row vs. 4th/5th row), which further validates the effectiveness of our BMU.

Considering the core role of BMU, we thus analyze the impact of the momentum coefficient m̂
utilized in our BMU-MoCo. According to COTS [35], the other momentum coefficient m of our
model is fixed at 0.99 (only the value of m̂ is changed). Figure 4 shows the results for overall R@1
(current), overall R@1 (final), and overall HM, respectively. We find that the value of m̂ cannot be
too big or too small. Concretely, when m̂ is too big (e.g., 0.999 and 1), the knowledge preserved
in momentum encoders cannot be well-reviewed by our model. When m̂ is too small (e.g., 0.9),
the end-to-end update by back-propagation is influenced too much, which leads to bad results for
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Figure 5: Comparative results obtained by different memory size. The red dotted line denotes our
BMU-MoCo (with no memory) while the blue line denotes the representative rehearsal-based method
ER-ring. The green line suggests that the storage space consumption of our BMU-MoCo (with global
momentum encoders) is equal to ER-ring (with 0.05% memory to store videos).

overall R@1 (current) and overall HM. It is worth mentioning that the model with smaller m̂ (0.9)
has lower/better FR (14.95) since it sacrifices the model performance on overall R@1 (current). This
phenomenon demonstrates the necessity of utilizing the overall HM to measure the overall (trade-off)
model performance. Therefore, we set the momentum coefficient m̂ to 0.99 in all our experiments,
which helps our model to review old knowledge while learning well on new tasks.

4.4 Further Evaluation

To demonstrate both the efficiency and effectiveness of our BMU-MoCo under our CVLM setting, we
compare our model with a representative rehearsal-based method ER-ring [9] by different memory
sizes in Figure 5. Note that our BMU-MoCo has two global momentum encoders that need 0.5GB
more storage space than the original cross-modal MoCo (used by all competitors including ER-ring).
As shown in Figure 5, when the memory size of ER-ring becomes 0.05%, it equals to the size of extra
storage space used by our BMU-MoCo (but our model performs significantly better). In real-world
application scenarios, the memory size of rehearsal-based methods like ER-ring enlarges rapidly as
the number of tasks grows, while the fixed extra space size (0.5GB) of our BMU-MoCo is negligible.
More importantly, our BMU-MoCo (with a fixed 0.5GB sapce size) even outperforms ER-ring using
10% memory (about 200GB under our CVLM setting) by large margins on both overall R@1 (final)
and overall FR. This directly indicates the efficiency and effectiveness of our BMU-MoCo.

Note that the key factor of our BMU-MoCo is to learn holistic knowledge from momentum encoders
by momentum update. This momentum update strategy has two characteristics: (1) encoders are
updated on each iteration by momentum update and (2) momentum encoders are simultaneously
updated. We thus consider two alternative strategies to further validate the effectiveness of our
BMU-MoCo in Table 3: (1) BMU-MoCo-ensemble updates the encoders by adding the parameters
of the momentum encoders at the end of each task (i.e., ensemble), which is different from the
iteration-by-iteration strategy of our BMU-MoCo. It can be observed that BMU-MoCo-ensemble
learns better than the baseline method (Base-MoCo) but still has a large performance gap compared
with our BMU-MoCo. (2) BMU-MoCo-fixed fixes the momentum encoders during each task (only
re-initialized by encoders at the beginning of each task) and utilizes it to update the encoders in
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Table 3: Different momentum update strategies for our BMU-MoCo. Results for text-to-video
retrieval (R@1), forgetting rate (FR) and harmonic mean (HM) are reported.

Method Task1 Task2 Task3 Task4 Task5 Overall
R@1↑ FR↓ R@1↑ FR↓ R@1↑ FR↓ R@1↑ FR↓ R@1↑ R@1↑ FR↓ HM↑

Base-MoCo 38.99 15.30 18.61 15.23 28.00 5.60 28.22 7.27 40.28 30.82 43.40 34.67
BMU-MoCo-ensemble 41.44 12.85 21.68 13.22 29.40 4.90 29.31 6.08 39.96 32.35 36.95 35.67
BMU-MoCo-fixed 51.36 2.93 23.12 7.38 25.10 1.50 30.11 2.00 38.19 34.07 13.81 35.12
BMU-MoCo 48.48 5.81 23.45 10.43 30.80 2.90 32.80 3.49 41.83 35.47 22.63 37.59

Table 4: Comparative results of unsupervised continual learning (UCL). “Multi-Task” represents
the upper-bound method which is based on multi-task learning (over all tasks). “Finetune” is the
lower-bound method that directly fine-tunes the model across all tasks without other strategies.

Method Split CIFAR-10 Split CIFAR-100 Split Tiny-ImageNet
Accuracy↑ Forgetting↓ Accuracy↑ Forgetting↓ Accuracy↑ Forgetting↓

Multi-Task 95.76 – 86.31 – 82.89 –

Finetune 90.11 5.42 75.42 10.19 71.07 9.48
PNN [48] 90.93 – 66.58 – 62.15 –
SI [60] 92.75 1.81 80.08 5.54 72.34 8.26
DER [5] 91.22 4.63 77.27 9.31 71.90 8.36
LUMP [37] 91.00 2.92 82.30 4.17 76.66 3.54
BMU-MoCo 92.80 1.98 83.81 3.69 77.45 3.39

the same iteration-by-iteration way of our BMU-MoCo. It can be observed that BMU-MoCo-fixed
focuses on reviewing the old knowledge but sacrifices the model performance on current tasks, which
leads to worse overall R@1 (final) and HM. Therefore, considering all evaluation metrics (R@1, FR,
and HM), the update strategy (for encoders) of our BMU-MoCo is better than its alternatives.

Finally, to show the transferability of our BMU-MoCo under other continual learning settings,
we apply it to the unsupervised continual learning (UCL) setting which is originally proposed in
LUMP [37]. This UCL setting includes three benchmark datasets for training and evaluation: (1)
Split CIFAR-10 [26] consists of five tasks with 2 random classes per task; (2) Split CIFAR-100 [26]
consists of 20 tasks with 5 random classes per task; (3) Split Tiny-ImageNet consists of 20 tasks with
5 random classes (out of 100 classes from ImageNet [11]) per task. The comparative results of UCL
are shown in Table 4. We can observe that our BMU-MoCo outperforms all the competitors including
PNN [48], SI [60], DER [5], and LUMP [37], showing the effectiveness of our BMU-MoCo under
the UCL setting. This also demonstrates the general applicability of our BMU strategy.

5 Conclusion

In this paper, we propose a new continual video-language modeling (CVLM) setting, where models
are supposed to be sequentially trained on five widely-used video-text datasets. To overcome the
catastrophic forgetting and heavy resource consumption challenges, we propose a novel framework
BMU-MoCo, which is a cross-modal MoCo-based model with bidirectional momentum update
(BMU). We maintain both local and global momentum encoders with our BMU strategy to review
broader old knowledge while learning on new tasks. Extensive experimental results show that our
BMU-MoCo outperforms recent competitors by large margins, even without using extra memory data
or dynamically extended networks. The limitation of our work lies in that we have only evaluated
BMU-MoCo under the CVLM setting, and thus we need to transfer it to other continual learning
settings (e.g., continual image-text pre-training) for comprehensive study.
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