
A Derivation of Backdoor Adjustment

We show the derivation of backdoor adjustment for the proposed causal graph in Fig. 2 based on the
rules with do-calculus [33]. Consider a directed acyclic graph G with three nodes: X , Y and Z. We
denote GX as the intervened causal graph by cutting off all arrows coming into X , and GX as the
graph by cutting off all arrows going out from X . For any interventional distribution compatible with
G, we have the following two rules:
Rule 1. Action/observation exchange:

P (y|do(x), do(z)) = P (y|do(x), z), if (Y ? Z|X)GXZ
(17)

Rule 2. Insertion/deletion of actions:

P (y|do(x), do(z)) = P (y|do(x)), if (Y ? Z|X)GXZ
(18)

We could derive the interventional distribution via:

P✓(Y |do(S = S)) =
|C|X

i=1

P✓(Y |do(S = S), C = ci)P (C = ci|do(S = S))

=

|C|X

i=1

P✓(Y |do(S = S), C = ci)P (C = ci)

=

|C|X

i=1

P✓(Y |S = S, C = ci)P (C = ci),

(19)

where the first step follows the law of total probability, the second step applies Rule 2, and the last
step applies Rule 1.

B Derivation of Variational Context Adjustment

We derive the variational context adjustment in Eq. (3). We re-write the logarithm of interventional
distribution P✓(Y |do(S = S)) as

logEc⇠P (C) [P✓(Y |S = S, C = c)] . (20)

We introduce a variational distribution Q(C|S = S) as an approximation of the true posterior
P (C|S = S, Y = y). By using variational inference, we derive a tractable lower bound as objective:

logP✓(Y |do(S = S))

= logEc⇠P (C)

P✓(Y |S = S, C = c)

Q(C = c|S = S)
Q(C = c|S = S)

�

= logEc⇠Q(C|S=S)

P✓(Y |S = S, C = c)

P (C = c)

Q(C = c|S = S)

�

�Ec⇠Q(C|S=S)

logP✓(Y |S = S, C = c)

P (C = c)

Q(C = c|S = S)

�

=Ec⇠Q(C|S=S) [logP✓(Y |S = S, C = c)]�DKL (Q(C|S = S)kP (C)) ,

(21)

where the third step is given by Jensen Inequality.

C More Discussions

We gather the continued Kronecker product of the probability vector ql
t in each layer to compute the

final variational posterior qt:

qt = Flatten

DO

l=1

q
l
t

!
2 R

KD

. (22)

16

... ...

... ...

 Time Line (Training)

 Time Line (Testing)

...

...

...

G
en

er
al
iz
e

Figure 8: An intuitive explanation of how CaseQ generalize to novel context. Each small solid box
denotes an inference unit. ck denotes the context type at a certain time step. The size of the bubble
represents its frequency. The colored boxes (in red for training and blue for testing) highlight the
inference units selected by branching models.

Kronecker product is a generalization of the outer product from vectors to matrices. The entries of qt

denotes the probability for every possible combination of inference units (termed as path) at time step
t. For example, consider D = 3,K = 3. We have q

l
t 2 R

3, q1
t ⌦ q

2
t ⌦ q

3
t 2 R

3 ⇥ R
3 ⇥ R

3, and
qt 2 R

27. The i-th element in qt denotes the probability of a certain path in the network, representing
the probability of a type of context Q(C = ci|S = S). Suppose i = (xyz)3 is a ternary number, the
path corresponds to the combination of z/y/x-th inference unit at the first/second/third layer.

How CaseQ generalizes to novel context? As mentioned before, one advantage of such a design
is that it could associate different types of contexts through shared inference units in some layers.
By this way, we build links between majority (seen) contexts and minority (unseen) contexts. It can
guide the model to generalize to future environments when the minority context may become the
major one or unseen context occurs. We provide an example in Fig. 8 for further illustration. In
training stage, the latent contexts gradually change over time (and so as the corresponding path in the
network). During this time, c2 and c3 are majority contexts, c4 is the minority context, and c1 is a
unseen one. Despite the imbalanced contexts, each inference unit as a module is relatively equally
trained. Therefore, in testing stage, when c1 and c4 become majority contexts, our model can still
generalize well by using well-trained inference units as modules.

D Comparison with Existing Causal Models

We compare CaseQ with existing causal models for sequence learning and user behavior modeling.
Some existing methods [38; 16; 60; 61; 17] aim to extract causal relations based on observed or
predefined patterns, yet they often require domain knowledge or side information for guidance
and also do not consider temporal distribution shift. [1; 2; 6; 48] adopt counterfactual learning to
overcome the effect of an ad-doc bias in recommendation task (e.g., exposure bias, popularity bias)
or mitigate clickbait issue. Differently, they do not focus on modeling sequential events and are still
based on maximum likelihood estimation as learning objectives. There are also few recent works that
attempt to adopt causal inference to de-noise input sequences in sequential user behaviors[58]. Yet,
they overlook the distribution shift and have distinct research focus compared with this paper.

E Dataset Descriptions

Movielens Movielens [15] is a widely used benchmark dataset for sequential recommendation
evaluation. It contains one million ratings of 3900 movies made by 6040 users. We use each user’s
rating records as implicit feedbacks and construct a sequence of rated movies for each user in the
order of timestamps, where each rating for a movie is treated as an event.

17

Datasets #Sequences #Event Types #Events Avg. length

Movielens 6039 3415 1.00M 165.50
Yelp 23056 15575 0.649M 28.14

Stack Overflow 4777 22 0.345M 72.25
ATM 1554 7 0.552M 355.35

Table 2: Statistics of four datasets.

Yelp Yelp is a dataset for business recommendation, provided by the Yelp Dataset Challenge 2.
After pre-processing and filtering, it contains 648, 687 reviews for businesses by 23, 057 users. We
treat all user reviews as events and sort them chronically into sequences.

Stack Overflow This dataset is collected from a question answering website Stack Overflow [9].
It includes 480, 000 records of awarded badges of 6, 000 users during two years between 2012 and
2014. Each awarded badge is treated as an event. The task is to predict the next awarded badge of
users.

ATM This dataset is collected from 1554 ATMs owned by an anonymous global bank headquartered
in North America [53], which includes 7 types of events including 6 error types. It has a total number
of 552, 215 events. The task is to predict future events for better maintenance support services.

The statistics of these datasets are summarized in Table 2.

F Implementation Details

We implement CaseQ with PyTorch. All parameters are initialized with Xavier initialization method.
We train the model by Adam optimizer. All the models are trained from scratch without any
pre-training on GTX 2080 GPU with 11G memory. For comparative methods, we refer to the
hyper-parameter settings in their papers and also finetune them on different datasets. For sequences
whose length is greater than 100, we only consider the most recent 100 events to speed up training.
We run all experiments 5 times and take the average value.

G Evaluation Protocol and Problem Setting

Given a dataset consists of N event sequences, i.e., D = {Si}Ni=1, where Si =
{xi,1, xi,2, · · · , xi,|Si|}. We use Si[: t] to denote the first t events in the sequence and Si[�t :]
to denote the last t events. The training, validation and test sets are:

Dtrain = {(Si[: t� 1], xi,t)}i2{1,··· ,N},t2{2,··· ,|Si|�G�2}

Dvalid = {(Si[: t� 1], xi,t)}i2{1,··· ,N},t=|Si|�G�1

Dtest = {(Si[: t� 1], xi,t)}i2{1,··· ,N},t2{|Si|�G,··· ,|Si|},

(23)

where G is the maximal gap size. When the sequence length is less than or equal to G+3, we use the
whole sequence for training. Given a specific gap size g 2 [0, G], we evaluate the model performance
on a test subset:

Dtest(g) = {(Si[: t� 1], xi,t)}i2{1,··· ,N},t=|Si|�G+g . (24)

By increasing g, we could enlarge the time gap between training and testing data, so as to simulate
temporal distribution shift in real-world scenario where data collection and online serving are during
different periods of time, and evaluate model’s effectiveness against distribution shift. We are
interested in the model performance drop as a metric to evaluate the robustness to distribution
shift. Note that evaluations with different g are conducted simultaneously using the same model to
control variates. When G = 0 and g = 0, this evaluation method exactly degrades to widely used
leave-one-out evaluation protocol that is widely used in recommendation tasks [24; 44; 45].

2https://www.yelp.com/dataset/challenge

18

	Introduction
	Our Contributions
	Related Works

	Problem and Model Formulation
	Understanding the Limitations of Maximum Likelihood Estimation
	Variational Context Adjustment

	Model Instantiations
	Experiments
	Sequential Recommendation
	Event Prediction
	Case Study
	Scalability Test
	Hyper-Parameter Analysis

	Limitations and Conclusion
	Derivation of Backdoor Adjustment
	Derivation of Variational Context Adjustment
	More Discussions
	Comparison with Existing Causal Models
	Dataset Descriptions
	Implementation Details
	Evaluation Protocol and Problem Setting

